Automata and Formal Languages

Peter Wood

Department of Computer Science and Information Systems
Birkbeck, University of London
ptw@dcs.bbk.ac.uk
Outline

Motivation and Background

Automata

Grammars

Regular Expressions

Example of Research

Conclusion
Doing Research

- analysing problems/languages
- computability/solvability/decidability — is there an algorithm?
- computational complexity — is it practical?
- expressive power — are there things that cannot be expressed?
- formal languages provide well-studied models
Formal Languages

- Given a finite *alphabet* (set) of symbols Σ — e.g., $\Sigma = \{0, 1\}$
- A *string* is a sequence (concatenation) of symbols — e.g., 0101
- All finite strings over Σ are denoted by Σ^* — e.g., $\Sigma^* = \{\epsilon, 0, 1, 00, 01, 10, 11, \ldots\}$
- A *language* L over Σ is just a subset of Σ^* — e.g., L_1: strings with an even number of 1’s — e.g., L_0: strings representing valid Java programs (over an alphabet of all legal symbols in Java)
- Are there finite representations for infinite languages?
Formal Languages

- Given a finite alphabet (set) of symbols Σ — e.g., $\Sigma = \{0, 1\}$
- A string is a sequence (concatenation) of symbols — e.g., 0101
- All finite strings over Σ are denoted by Σ^* — e.g., $\Sigma^* = \{\epsilon, 0, 1, 00, 01, 10, 11, \ldots\}$
- Language L over Σ is just a subset of Σ^* — e.g., L_1: strings with an even number of 1’s — e.g., L_0: strings representing valid Java programs (over an alphabet of all legal symbols in Java)
- Are there finite representations for infinite languages?
- Yes, grammars (generative) and automata (recognition)
Automata

- device (machine) for recognising (accepting) a language
- provide models of computation
- automaton comprises states and transitions between states
- automaton is given a string as input
- automaton M accepts a string w by halting in an accept/final state, when given w as input
- language $L(M)$ accepted by automaton M is the set of all strings which M accepts
Types of Automata

- finite state automaton
 - deterministic
 - nondeterministic
- pushdown automaton
- linear-bounded automaton
- Turing machine
Example of a Finite State Automaton

- L_1 (strings with an even number of 1’s) can be recognised by the following FSA
 - 2 states s_{even} and s_{odd}
 - 4 transitions
 - s_{even} is both the initial and final state

- FSA recognises 011:

```
0 1 0

s_{even} ← (0) → 1 → (0) → s_{odd}
```

- FSA recognises 011:
Example of a Finite State Automaton

- L_1 (strings with an even number of 1’s) can be recognised by the following FSA
 - 2 states s_{even} and s_{odd}
 - 4 transitions
 - s_{even} is both the initial and final state

FSA recognises 011:
Example of a Finite State Automaton

- L_1 (strings with an even number of 1’s) can be recognised by the following FSA
 - 2 states s_{even} and s_{odd}
 - 4 transitions
 - s_{even} is both the initial and final state

- FSA recognises 011: 0
Example of a Finite State Automaton

- L_1 (strings with an even number of 1’s) can be recognised by the following FSA
 - 2 states s_{even} and s_{odd}
 - 4 transitions
 - s_{even} is both the initial and final state

- FSA recognises 011: 01
Example of a Finite State Automaton

- L_1 (strings with an even number of 1’s) can be recognised by the following FSA
 - 2 states s_{even} and s_{odd}
 - 4 transitions
 - s_{even} is both the initial and final state

- FSA recognises 011: 011
Grammars

Grammars generate languages using:

- symbols from alphabet Σ (called *terminals*)
- set N of *nonterminals* (one designated as *starting*)
- set P of *productions*, each of the form $U \rightarrow V$

where U and V are (loosely) strings over $\Sigma \cup N$

- a string (sequence of terminals) w is generated by G if there is a *derivation* of w using G, starting from the *starting* nonterminal of G

- language *generated* by grammar G, denoted $L(G)$, is the set of strings which can be derived using G
Grammar Example

L_1 (strings with an even number of 1’s) can be generated by a grammar with productions

\[
\begin{align*}
S & \rightarrow \varepsilon \\
S & \rightarrow 0S \\
S & \rightarrow 1T \\
T & \rightarrow 0T \\
T & \rightarrow 1S
\end{align*}
\]

where S is the starting nonterminal.
Grammar Example

- L_1 (strings with an even number of 1’s) can be generated by a grammar with productions

 $S \rightarrow \epsilon$

 $S \rightarrow 0S$

 $S \rightarrow 1T$

 $T \rightarrow 0T$

 $T \rightarrow 1S$

 where S is the starting nonterminal

- a derivation of 01010 is given by

 $S \Rightarrow 0S$
Grammar Example

- L_1 (strings with an even number of 1’s) can be generated by a grammar with productions

\[
\begin{align*}
S & \rightarrow \epsilon \\
S & \rightarrow 0S \\
S & \rightarrow 1T \\
T & \rightarrow 0T \\
T & \rightarrow 1S
\end{align*}
\]

where S is the *starting* nonterminal

- a *derivation* of 01010 is given by

\[
S \Rightarrow 0S \Rightarrow 01T
\]
Grammar Example

- L_1 (strings with an even number of 1’s) can be generated by a grammar with productions

\[
\begin{align*}
S & \rightarrow \epsilon \\
S & \rightarrow 0S \\
S & \rightarrow 1T \\
T & \rightarrow 0T \\
T & \rightarrow 1S
\end{align*}
\]

where S is the *starting* nonterminal

- a *derivation* of 01010 is given by

\[
S \Rightarrow 0S \Rightarrow 01T \Rightarrow 010T
\]
Grammar Example

- L_1 (strings with an even number of 1’s) can be generated by a grammar with productions:

$$
\begin{align*}
S & \rightarrow \epsilon \\
S & \rightarrow 0S \\
S & \rightarrow 1T \\
T & \rightarrow 0T \\
T & \rightarrow 1S \\
\end{align*}
$$

where S is the starting nonterminal.

- a derivation of 01010 is given by:

$$
S \Rightarrow 0S \Rightarrow 01T \Rightarrow 010T \Rightarrow 0101S
$$
Grammar Example

- \(L_1 \) (strings with an even number of 1’s) can be generated by a grammar with productions

\[
\begin{align*}
S & \rightarrow \epsilon \\
S & \rightarrow 0S \\
S & \rightarrow 1T \\
T & \rightarrow 0T \\
T & \rightarrow 1S
\end{align*}
\]

where \(S \) is the starting nonterminal

- a derivation of 01010 is given by

\[
S \Rightarrow 0S \Rightarrow 01T \Rightarrow 010T \Rightarrow 0101S \Rightarrow 01010S
\]
Grammar Example

- L_1 (strings with an even number of 1’s) can be generated by a grammar with productions

 $$
 S \rightarrow \epsilon \\
 S \rightarrow 0S \\
 S \rightarrow 1T \\
 T \rightarrow 0T \\
 T \rightarrow 1S
 $$

 where S is the starting nonterminal

- a derivation of 01010 is given by

 $$
 S \Rightarrow 0S \Rightarrow 01T \Rightarrow 010T \Rightarrow 0101S \Rightarrow 01010S \Rightarrow 01010
 $$
Uses of Grammars

- to specify syntax of programming languages
- in natural language understanding
- in pattern recognition
- to specify schemas (types) for tree-structured data, e.g., XML, JSON
- in data compression
- ...
Hierarchy of Grammars and Languages

- restrictions on productions give different *types* of grammars
 - *regular* (type 3)
 - *context-free* (type 2)
 - *context-sensitive* (type 1)
 - *phrase-structure* (type 0)
- for context-free, e.g., left side must be single nonterminal
- no restrictions for phrase-structure
- language is of type *i* iff there is a grammar of type *i* which generates it
Examples of Language Hierarchy

- varying expressive power
- regular ⊂ context-free ⊂ context-sensitive ⊂ phrase-structure
Examples of Language Hierarchy

- varying expressive power
- regular \subset context-free \subset context-sensitive \subset phrase-structure
- L_1 (strings over $\{0, 1\}$ with an even number of 1’s) is regular
Examples of Language Hierarchy

- varying expressive power
- regular \subset context-free \subset context-sensitive \subset phrase-structure
- L_1 (strings over $\{0, 1\}$ with an even number of 1’s) is regular
- $L_2 = \{0^n1^n | n \geq 0\}$ is context-free, but not regular
Examples of Language Hierarchy

- varying expressive power
- regular \subset context-free \subset context-sensitive \subset phrase-structure
- L_1 (strings over $\{0, 1\}$ with an even number of 1’s) is regular
- $L_2 = \{0^n1^n \mid n \geq 0\}$ is context-free, but not regular
- $L_3 = \{ww \mid w \in \{0, 1\}^*\}$ is context-sensitive, but not context-free
Examples of Language Hierarchy

- varying expressive power
- regular \subset context-free \subset context-sensitive \subset phrase-structure
- L_1 (strings over $\{0, 1\}$ with an even number of 1’s) is regular
- $L_2 = \{0^n1^n \mid n \geq 0\}$ is context-free, but not regular
- $L_3 = \{ww \mid w \in \{0, 1\}^*\}$ is context-sensitive, but not context-free
- there exists a phrase-structure (recursive) language which is not context-sensitive
Complexity of Grammar Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is $w \in L(G)$?</td>
<td>P</td>
</tr>
<tr>
<td>Is $L(G)$ empty?</td>
<td>P</td>
</tr>
<tr>
<td>Is $L(G_1) \equiv L(G_2)$?</td>
<td>PSPACE</td>
</tr>
</tbody>
</table>

- **P**: decidable in polynomial time
- **PSPACE**: decidable in polynomial space (and complete for PSPACE: at least as hard as NP-complete)
- **U**: undecidable
- so type of grammar has significant effect on complexity
Relationships between Languages and Automata

A language is

- regular
- context-free
- context-sensitive
- phrase-structure

iff

accepted by

- finite-state
- pushdown
- linear-bounded
- Turing machine
Regular Expressions

- algebraic notation for denoting regular languages
- use \circ (concatenation), \cup (union) and \ast (closure) operators
- L_1 denoted by RE $0^* \cup (0^* \circ 1 \circ 0^* \circ 1 \circ 0^*)^*$
- given RE R, the set of strings it denotes is $L(R)$
- pattern matching in text
- query languages for XML or RDF
Using Regular Expressions to Query Graphs

Graphs (networks) are widely used for representing data:

- social networks
- transportation and other networks
- geographical information
- semistructured data (e.g., XML and JSON)
- (hyper)document structure
- semantic associations in criminal investigations
- bibliographic citation analysis
- pathways in biological processes
- knowledge representation (e.g., semantic web)
- program analysis
- workflow systems
- data provenance
- ...
Using Regular Expressions to Query Graphs

- (my PhD thesis!)
- usually regular expressions used for string search
- consider data represented by a directed graph of labelled nodes and labelled edges
- regular expressions can express *paths* we are interested in
- sequence of edge labels rather than sequence of symbols (characters)
- a query using regular expression R can ask for all nodes connected by a path whose concatenation of edge labels is in $L(R)$
Graph G (where nodes represent people and places):

- a is a citizenOf node SA.
- b is a bornIn node CT.
- c is a bornIn node UK.
- An additional relationship $locatedIn$ connects a to SA.
- Another relationship $livesIn$ connects b to CT.
Regular expression

\[R = \text{citizenOf} \cup ((\text{bornIn} \cup \text{livesIn}) \circ \text{locatedIn}^*) \]

asks for paths of edges between a person \(x \) and a place \(y \) such that

- \(x \) is a citizenOf \(y \), or
- \(x \) is bornIn or livesIn \(y \), or
- \(x \) is bornIn or livesIn a place that is locatedIn \(y \)
Regular path query evaluation

- **Regular Path Problem**
 Given graph G, pair of nodes x and y and regular expression R, is there a path from x to y satisfying R?

- **Algorithm**:
 - construct a nondeterministic finite automaton (NFA) M accepting $L(R)$
 - assume M has initial state s_0 and final state s_f
 - consider G as an NFA with initial state x and final state y
 - form the “intersection” (or “product”) I of G and M
 - check if there is a path from (x, s_0) to (y, s_f)

- Each step can be done in PTIME, so Regular Path Problem has PTIME complexity
NFA M for $R = \text{citizenOf} \cup ((\text{bornIn} \cup \text{livesIn}) \circ \text{locatedIn}^*)$
Intersection of G and M
Intersection of G and M

![Diagram showing the intersection of two automata G and M. The diagram includes states and transitions labeled with symbols such as a, s_0, b, s_0, c, s_0, SA, s_1, CT, s_1, UK, s_1, SA, s_f, CT, s_f, UK, s_f, and transitions labeled with ϵ. The transitions are labeled with actions like citizenOf, locatedIn, bornIn, and livesIn.]
Intersection of G and M

![Diagram of automata intersection]

- a, s_0 to SA, s_1 with label ϵ
- b, s_0 to CT, s_1 with label ϵ
- c, s_0 to UK, s_1 with label ϵ
- SA, s_f
- CT, s_f
- UK, s_f
Intersection of G and M
Intersection of G and M
Intersection of G and M
Regular simple path queries

- path p is *simple* if no node is repeated on p
- **Regular Simple Path Problem**
 Given graph G, pair of nodes x and y and regular expression R, is there a *simple* path from x to y satisfying R?

> Regular Simple Path Problem is NP-complete

\[\text{Example: } R = (c \circ d)^* a b c d\]
Regular simple path queries

- path p is *simple* if no node is repeated on p
- **Regular Simple Path Problem**
 Given graph G, pair of nodes x and y and regular expression R, is there a *simple* path from x to y satisfying R?
- **Regular Simple Path Problem** is NP-complete [Mendelzon & Wood (1989)]
Regular simple path queries

- path p is *simple* if no node is repeated on p
- **Regular Simple Path Problem**
 Given graph G, pair of nodes x and y and regular expression R, is there a *simple* path from x to y satisfying R?
- **Regular Simple Path Problem** is NP-complete [Mendelzon & Wood (1989)]
- there can be a path from x to y satisfying R but no simple path satisfying R, e.g., $R = (c \circ d)^*$

![Diagram of graph with nodes a, c, b, d and edges a-c, c-b, d-b]
Approaches to deal with this problem

- what causes the problem?
Approaches to deal with this problem

- what causes the problem?
- the presence of cycles
Approaches to deal with this problem

- what causes the problem?
- the presence of cycles
- obvious first step is to consider graphs without cycles—DAGs
Approaches to deal with this problem

- what causes the problem?
- the presence of cycles
- obvious first step is to consider graphs without cycles—DAGs
- then might look at restricted forms of REs—we looked at those corresponding to languages closed under *abbreviations*
Approaches to deal with this problem

- what causes the problem?
- the presence of cycles
- obvious first step is to consider graphs without cycles—DAGs
- then might look at restricted forms of REs—we looked at those corresponding to languages closed under *abbreviations*
- then one might consider a combination of graphs and REs—we looked at graphs whose cycle structure does not *conflict* with the RE
Approaches to deal with this problem

- what causes the problem?
- the presence of cycles
- obvious first step is to consider graphs without cycles—DAGs
- then might look at restricted forms of REs—we looked at those corresponding to languages closed under *abbreviations*
- then one might consider a combination of graphs and REs—we looked at graphs whose cycle structure does not *conflict* with the RE
- finally showed that conflict-freedom is a generalisation:
 - no RE conflicts with any DAG
 - an RE closed under abbreviations never conflicts with any graph
Other approaches

- in general, may also run experiments to measure actual running times
Other approaches

- in general, may also run experiments to measure actual running times
- may also develop *approximation* algorithms
 - can sometimes find a PTIME algorithm with a performance guarantee (e.g. for TSP, finds a tour at most twice the optimal distance)
 - other times this problem itself is NP-hard
Other approaches

➤ in general, may also run experiments to measure actual running times
➤ may also develop *approximation* algorithms
 ➤ can sometimes find a PTIME algorithm with a performance guarantee (e.g. for TSP, finds a tour at most twice the optimal distance)
 ➤ other times this problem itself is NP-hard
➤ use heuristic approaches
Conclusion

- is my system/language more *powerful* than others?
- is my system/language more *efficient* than others?
- expressive power or computational complexity can be studied by relating them to
 - formal language theory: languages, grammars, automata, …
- tradeoff between expressive power and computational complexity
- consider restrictions of difficult problems or giving up exact solutions
References