
8. HTTP and Server-Side Processing

1. HTTP/1.0 Overview
2. HTTP Interaction
3. HTTP/1.1 Persistent Connections
4. Pipelining
5. HTTP Client Requests
6. HTTP Server Responses
7. Some request and response headers
8. Example of request and response
9. Example using HTML form

10. HTML for form
11. HTML form processing
12. Sessions and Cookies
13. Cookies
14. Server-side processing technologies
15. Node.js
16. Node.js example
17. Running and using Node
18. PHP
19. PHP code for www-inventor.php
20. Processing XML with PHP (1)
21. Processing XML with PHP (2)
22. Retrieving JSON
23. REST
24. PHP and JSON
25. PHP code for Nobel Prizes (1)
26. PHP code for Nobel Prizes (2)
27. PHP code for Nobel Prizes (3)
28. Ajax
29. XMLHttpRequest object
30. Asynchronous requests
31. Cross-Origin Resource Sharing (CORS)
32. CORS in PHP
33. Google Suggest lookalike
34. searchSuggest function
35. searchSuggest.php (1)
36. searchSuggest.php (2)
37. handleSearchSuggest function
38. handleSearchSuggest function (for loop)
39. Mouse over, mouse out and click functions
40. Exercises
41. Links to more information

8.1. HTTP/1.0 Overview
application-layer transfer protocol used by browsers to interact with web servers
normally runs over TCP
defined in RFC 2616
based on client/server architecture
HTTP is stateless: servers retain no information about past requests
interaction between client and server has 4 phases:

client connects to server
client sends request to server
server sends response to client
server closes connection (although persistent connections are possible)

8.2. HTTP Interaction
assume we enter the URL http://www.dcs.bbk.ac.uk/news/ into the address bar of a browser
the browser (HTTP client) initiates a TCP connection to the server www.dcs.bbk.ac.uk on port 80
the browser sends an HTTP request message to the server asking for resource /news/
the HTTP server retrieves the resource, encapsulates it in an HTTP response message, and sends this to the browser
the HTTP server tells TCP to close the connection
the browser receives the response
if the HTML in the response includes images, the process has to repeat

file:///Users/ptw/Documents/teaching/IWT/slides/internet-apps/internet-applications.html#(2)
file:///Users/ptw/Documents/teaching/IWT/slides/internet-intro/intro-to-internet.html#(17)

8.3. HTTP/1.1 Persistent Connections
poor performance of HTTP/1.0 is due to a separate connection for each request
persistent connections send multiple request and response interactions over a single TCP connection
this results in improved performance
persistent connections are the default

8.4. Pipelining

pipelining can be used over an HTTP persistent connection
allows a client to make multiple requests without waiting for each response
this results in better utilisation of connection
the server processes requests concurrently
in principle, server could send responses in the order requests complete which would minimise waiting times
but HTTP has no way of identifying a response with a request (it is stateless)
so the specification states that the server must send responses in the same order as requests

8.5. HTTP Client Requests
each client request message has the format:

method URL-path HTTP-version (request-line)
headers (0 or more lines)
<blank line> (CRLF)
message-body (only if a POST or PUT method)

some request methods:
GET: request document named by URL-path
HEAD: return only header information of URL-path (e.g., test for validity, recent modification)
POST: submit information to entity on server given by URL-path
PUT: server will replace entity given by URL-path

example of a request-line:

GET /index.html HTTP/1.0

URL-path includes optional query string or fragment identifier (anchor)

file:///Users/ptw/Documents/teaching/IWT/slides/internet-apps/internet-applications.html#(6)

8.6. HTTP Server Responses
each server response message has format:

HTTP-version status-code reason-phrase (status-line)
headers (0 or more lines)
<blank line> (CRLF)
message-body

example of status-line:

HTTP/1.0 200 OK

response includes data as message-body if request successful;
otherwise reason-phrase states why unsuccessful
examples of status codes and reason phrases:

Status Code Reason Phrase
200 OK
401 Unauthorized
404 Not Found
500 Internal Server Error

8.7. Some request and response headers
form of each HTTP header is field: value
(some) client request headers

Host: the domain name (and port) of the server; required in every request; allows server to differentiate requests for multiple
hosts with same IP address
User-Agent: information about the client program (type, version)
Accept: formats acceptable to the client, given using MIME types

(some) server response headers
Server: name and version of server
Content-Type: the (MIME) media type of the resource being returned
Content-Length: size of message body in bytes
Last-Modified: date and time when entity was last modified

8.8. Example of request and response
Machine responses are this colour below:

Peter-Woods-MacBook-Pro:~ ptw$ telnet www.dcs.bbk.ac.uk 80
Trying 193.61.29.21...
Connected to www.dcs.bbk.ac.uk.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.1 200 OK
Date: Fri, 18 Nov 2011 17:44:06 GMT
Server: Apache/2.2.16 (Unix) mod_ssl/2.2.16 OpenSSL/0.9.8o DAV/2 SVN/1.6.5 mod_fcgid/2.3.6 mod_perl/2.0.4 Perl/v5.8.4
Connection: close
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Computer Science and Information Systems Birkbeck University of London</title>

...

</body>
</html>

Connection closed by foreign host.
Peter-Woods-MacBook-Pro:~ ptw$

8.9. Example using HTML form
servers don't only deliver (static) documents
they can also run programs to generate content
usually based on user input via an HTML form, e.g.:
Who invented the WWW (surname only)? Submit answer Erase answer

file:///Users/ptw/Documents/teaching/IWT/slides/internet-apps/internet-applications.html#(24)

8.10. HTML for form
<form action="http://titan.dcs.bbk.ac.uk/~ptw/teaching/IWT/server/www-inventor.php"
 method="GET">
 <label for="www-inventor">Who invented the WWW (surname only)?</label>
 <input type="text" id="www-inventor" name="inventor" />
 <input type="submit" value="Submit answer" />
 <input type="reset" value="Erase answer" />
</form>

action gives URI of PHP script (see later) to run
method used is GET
only one input control with name attribute
so ?inventor=Berners-Lee, e.g., is added to URL-path

8.11. HTML form processing
HTML form element has

action attribute whose value is the URI for processing agent
method attribute whose value specifies the HTTP method to use for sending data: GET or POST

form input data is sent to the server as name=value pairs
name is the value of the name attribute of an input control
value is the value of the corresponding value attribute or is entered by the user

name=value pairs are separated by & characters
for GET, name=value pairs form the URI query string
for POST, name=value pairs form the message body

8.12. Sessions and Cookies
a session is a sequence of related interactions between a client and a server
HTTP is a stateless protocol

no way of storing current state of a session, e.g., contents of shopping cart
one solution is to use cookies

8.13. Cookies
small data items stored on clients (web browser) but managed by servers
can track users independently of sessions
cookies are exchanged using HTTP headers
server can set a cookie as part of an HTTP response, e.g.,

Set-Cookie: sessionid=724A3B616C0D89B3B521C70612

client (web browser) will store this cookie
in subsequent requests to the same server, client will include HTTP request header, e.g.,

Cookie: sessionid=724A3B616C0D89B3B521C70612

8.14. Server-side processing technologies
web servers, such as Apache, usually include support for programming languages such as

Perl
PHP

as well as very old techniques such as
server-side include (SSI) pages
common gateway interface (CGI) programs

Apache Tomcat, e.g., also supports
Java servlets
Java server pages (JSP)

frameworks for building web applications include
ASP.NET (C#, Microsoft)
Django (Python)
Express (uses Node.js, Javascript)

8.15. Node.js
Node.js is a Javascript runtime environment based on Google Chrome's V8 Javascript engine
uses an event-driven non-blocking model of programming
includes modules to implement a web server

https://httpd.apache.org/
https://nodejs.org/en/

8.16. Node.js example
let web.js contain the following Javascript code:

var http = require('http');
var fs = require('fs');
var port = 8080;

function process_request(request, response) {
 response.writeHead(200);
 response.end(fs.readFileSync(__dirname + request.url));
}

var server = http.createServer(process_request);
server.listen(port);

console.log('Listening on port ' + port);

http is the web server module
fs is the file system module
createServer launches a web server, and is passed a function to call when requests arrive
process_request takes the request and produces a response
the response is simply the contents of the file (request.url)

8.17. Running and using Node
to run the web server specified by web.js, we enter the following at the command line

node web.js

we get the following message displayed

Listening on port 8080

in another shell (command) window, we enter

curl -i http://localhost:8080/test.html

(curl is a Unix command for retrieving URLs from the command line; -i includes headers)
the response is

HTTP/1.1 200 OK
Date: Mon, 02 Mar 2020 11:35:04 GMT
Connection: keep-alive
Transfer-Encoding: chunked

<html>
 ... contents of test.html ...
</html>

8.18. PHP
PHP: Hypertext Preprocessor (PHP) is an open-source, server-side scripting language
variables don't have to be declared and are not strongly typed
uses <?php and ?> delimiters for PHP code
delimiters differentiate PHP code from static HTML
server needs to have PHP installed
comes as part of Apache web server

8.19. PHP code for www-inventor.php
<html>
<head><title>WWW Inventor</title></head>
<body>
<h1>
<?php
if ($_GET['inventor'] == "Berners-Lee")
 echo "Congratulations, you answered correctly.";
else
 echo "Sorry, the correct answer is Berners-Lee.";
?>
</h1>
</body>
</html>

variable names start with $
built-in variable $_GET is an associative array providing access to the values of name=value pairs in the query string
so $_GET['inventor'] gets value of inventor parameter in query string
output passed to server via standard output - using echo or print

8.20. Processing XML with PHP (1)
very simple application: an XML file containing acronyms:

<dictionary>
 <acronym>AJAX</acronym>
 ...
 <acronym>XSLT</acronym>
</dictionary>

want to transform the XML on the server using a stylesheet and send the resulting HTML output to the browser
stylesheet produces an unordered list with each list item containing an acronym:

<xsl:template match="/dictionary">
 ...

 <xsl:for-each select="acronym">

 <xsl:value-of select="."/>

 </xsl:for-each

 ...
</xsl:template>

8.21. Processing XML with PHP (2)
PHP code in acronyms.php is:

<?php
$xmlDoc = new DomDocument();
$xmlDoc->load("acronyms.xml");

$xslDoc = new DomDocument();
$xslDoc->load("acronyms.xsl");

$processor = new XSLTProcessor();
$xslDoc = $processor->importStylesheet($xslDoc);

$htmlDoc = $processor->transformToDoc($xmlDoc);
print $htmlDoc->saveXML();
?>

DomDocument and XSLTProcessor are PHP objects
load, importStylesheet and transformToDoc are PHP methods
transformToDoc uses the associated stylesheet to return an HTML/XML document
the saveXML method converts a DOM tree to a string

8.22. Retrieving JSON
information about Nobel prizes is available at https://www.nobelprize.org
they also provide an API for retrieving information about prizes in JSON
e.g., to retrieve the winners from 1991, use the URL
http://api.nobelprize.org/v1/prize.json?year=1991
query parameters include

year: year in which prizes were awarded
yearTo: ending year for a range of years (year required)
category: one of the 6 categories
numberOfLaureates: filter prizes by number of winners sharing the prize

8.23. REST
the Nobel prize API is what is called a REST API
REST (REpresentational State Transfer), or RESTful, web services provide

access to and manipulation of web resources
using a uniform and predefined set of stateless operations
when using HTTP, these operations include GET, POST, PUT, DELETE
all information is encoded in the URLs and resources returned

typically
a URI identifies a resource
GET will retrieve a resource
POST will create a new resource
PUT will overwrite an existing resource
DELETE will delete a resource

file:///Users/ptw/Documents/teaching/IWT/slides/server-2020/acronyms.xml
file:///Users/ptw/Documents/teaching/IWT/slides/server-2020/acronyms.xsl
http://titan.dcs.bbk.ac.uk/~ptw/teaching/IWT/server/acronyms.php
https://www.nobelprize.org/
http://api.nobelprize.org/v1/prize.json?year=1991

8.24. PHP and JSON
let's use a simple form to pass a year value to the Nobel prize API
it is sent via a PHP script (next slide) which also turns the JSON response into HTML
the name of the textbox in the form is year
the action value is http://titan.dcs.bbk.ac.uk/~ptw/teaching/IWT/server/nobel-year.php
Enter a year: Submit answer Erase answer

8.25. PHP code for Nobel Prizes (1)
<html>
<body>
<h1>Nobel Prize Winners</h1>
<?php
 $year = $_GET['year'];
 if ($year >= 1901 && $year <= 2017) {
 $url = 'http://api.nobelprize.org/v1/prize.json?year=' . $year;
 $string = file_get_contents($url);

 # Read the JSON output into an associative array
 $result = json_decode($string, true);

 print "<p>In $year, the prizes were awarded as follows:</p>\n";
 ... # see next slide
 print "";
 }
 else {
 print "<p>Year value out of range; years range from 1901 to 2017</p>";
 }
?>
</body>
</html>

we previously used $_GET (on slide 15)
string concatenation in PHP uses .
file_get_contents returns file contents as a string
json_decode with second parameter set to true returns JSON string as an associative array
variable references, such as $year, inside strings delimited by double quotes are dereferenced (but not for single quotes)

8.26. PHP code for Nobel Prizes (2)
returned JSON data is as follows (for year 1991):

{"prizes":
 [
 {"year":"1991",
 "category":"physics",
 "laureates":[
 {"id":"141",
 "firstname":"Pierre-Gilles",
 "surname":"de Gennes",
 "motivation":"...",
 "share":"1"}]},
 {"year":"1991",
 "category":"chemistry",
 "laureates":[
 {"id":"276",
 "firstname":"Richard R.",
 "surname":"Ernst",
 "motivation":"...",
 "share":"1"}]},
 {"year":"1991",
 "category":"medicine",
 "laureates":[
 {"id":"444",
 "firstname":"Erwin",
 "surname":"Neher",
 "motivation":"...",
 "share":"2"},
 {"id":"445",
 "firstname":"Bert",
 "surname":"Sakmann",
 "motivation":"...",
 "share":"2"}]},
 {"year":"1991",
 "category":"literature",
 "laureates":[
 {"id":"668",
 "firstname":"Nadine",
 "surname":"Gordimer",
 "motivation":"...",

file:///Users/ptw/Documents/teaching/IWT/slides/server-2020/notes.html#(15)

 "share":"1"}]},
 {"year":"1991",
 "category":"peace",
 "laureates":[
 {"id":"553",
 "firstname":"Aung San Suu Kyi",
 "motivation":"...",
 "share":"1",
 "surname":""}]},
 {"year":"1991",
 "category":"economics",
 "laureates":[
 {"id":"707",
 "firstname":"Ronald H.",
 "surname":"Coase",
 "motivation":"...",
 "share":"1"}]}
]
}

8.27. PHP code for Nobel Prizes (3)
recall $result contains the JSON data as an associative array
the rest of the PHP code is as follows:

 # Find out how many prizes are listed
 $num_prizes = count($result['prizes']);

 for ($i = 0; $i < $num_prizes; $i++) {

 # Print out the category
 $cat = $result['prizes'][$i]['category'];
 print "in $cat to \n";

 # Find out how many winners in this category
 $num_winners = count($result['prizes'][$i]['laureates']);

 for ($j = 0; $j < $num_winners; $j++) {

 # Print out the names
 $firstname = $result['prizes'][$i]['laureates'][$j]['firstname'];
 $surname = $result['prizes'][$i]['laureates'][$j]['surname'];
 print "$firstname $surname \n";

 }
 print "\n";
 }

count counts number of elements in an array

8.28. Ajax
Ajax = Asynchronous Javascript and XML
Ajax is used by many websites to implement responsive and dynamic web applications
examples include Google's Gmail, Suggest and Maps services
based on the XMLHttpRequest object (built in to browsers)
no longer restricted to retrieving XML
used by the jQuery get method:
$.get(url [, data] [, success] [, dataType]) is shorthand for:

$.ajax({
 url: url,
 data: data,
 success: success,
 dataType: dataType
});

both return a jqXHR object (a superset of XMLHttpRequest)

8.29. XMLHttpRequest object
XMLHttpRequest object (XHR for short) is a WHATWG specification
WHATWG = Web Hypertext Application Technology Working Group
using standard DOM, we can send a request as follows:

 var xhr = new XMLHttpRequest();
 xhr.open("GET", url, false);
 xhr.send(null);
 var xmldoc = xhr.responseXML;

first create an XMLHttpRequest object

http://gmail.google.com/
http://maps.google.com/
https://xhr.spec.whatwg.org/

the open method sets up an HTTP request:
the first argument is an HTTP method (GET in this case)
the second argument is the URL of the XML document
the third argument specifies whether the script executes asynchronously with the request or not
false means synchronous: interpreter waits for response before continuing (not recommended)

the send method sends the HTTP request to the server; content is null for GET
responseXML property makes response available as XML (responseText can also be used)

8.30. Asynchronous requests
when calls to open are asynchronous, we need to specify an event handler
XHR has a readyState property and an onreadystatechange event
values for readyState are:

0 = unsent - open() has not yet been called
1 = opened - send() has not yet been called
2 = headers received - send() has been called, headers in response are available
3 = loading - the response's body is being received
4 = loaded - finished

we must specify the function to call when readyState changes:

 var xhr = new XMLHttpRequest();
 xhr.open("GET", url, true);
 xhr.onreadystatechange = function;
 ...

8.31. Cross-Origin Resource Sharing (CORS)
when issuing requests, the request must be to the same origin (domain, protocol, port) as the loaded page
this is to try to prevent cross-site scripting which can result in security vulnerabilities
Cross-Origin Resource Sharing (CORS) is a mechanism to grant an application permission to access selected resources from a
server at a different origin
uses additional HTTP headers, including:

Origin in the request
Access-Control-Allow-Origin in the response

Origin specifies the domain name origin of the request
Access-Control-Allow-Origin value can be * for any origin, or the single origin in the request

8.32. CORS in PHP
server-side programming environments (e.g., PHP) provide

access to HTTP request headers
ability to set HTTP response headers

consider the following fragment of PHP:

if($_SERVER['HTTP_ORIGIN'] == "http://www.dcs.bbk.ac.uk") {
 header('Access-Control-Allow-Origin: http://www.dcs.bbk.ac.uk');
 ...
}

$_SERVER is an associative array of values available from the server
HTTP_ORIGIN gives the value of the Origin: header
header() function sets an HTTP header to be sent with the response

8.33. Google Suggest lookalike
example taken from Dynamic AJAX Suggest Tutorial

code for form above is:

<form>
<input type="text" id="txtSearch" name="txtSearch"
 onkeyup="searchSuggest();" autocomplete="off" />
<div id="search_suggest">
</div>
</form>

text box has id="txtSearch"
searchSuggest() (next slide) is called in response to an onkeyup event
autocomplete="off" turns off browser default to suggest recently entered data
div with id="search_suggest" is where suggestions will appear

8.34. searchSuggest function
var searchReq = getXmlHttpRequestObject();

function searchSuggest() {
 if (searchReq.readyState == 4 || searchReq.readyState == 0) {
 var str = escape(document.getElementById('txtSearch').value);
 searchReq.open("GET", 'searchSuggest.php?search=' + str, true);
 searchReq.onreadystatechange = handleSearchSuggest;
 searchReq.send(null);
 }
}

getXmlHttpRequestObject just returns an XMLHttpRequest object
text box in form has id="txtSearch"
note that calls to open are asynchronous
so we must specify the function to call (handleSearchSuggest) when readyState changes

8.35. searchSuggest.php (1)
<?php
header("Content-Type: application/json; charset=utf-8");
...
$suggestions = array("Ajax","ASP","Javascript","JSP","XML","XPath","XSD","XSLT");
$result = array();

// Make sure that a value was sent.
if (isset($_GET['search']) && $_GET['search'] != '') {
 $search = $_GET['search'];
 ... // see next slide
}
?>

set header to specify contents in response is JSON
isset function checks that a value is not NULL
$result is an array

8.36. searchSuggest.php (2)
...
 foreach ($suggestions as $suggestion) {
 // Add each suggestion to the $result array
 if (strpos($suggestion,$search)===0)
 $result[] = $suggestion;
 }
 echo json_encode($result);
...

foreach allows iteration through array
strpos returns first position where second argument is found in first argument, or FALSE if not found
since FALSE==0 is true in PHP, need to use strict comparison === to check types are equal too
if value for $search matches $suggestion at 0'th position

add $suggestion to $result array
output the $result array as JSON using json_encode

http://www.dynamicajax.com/

8.37. handleSearchSuggest function
//Called when the AJAX response is returned.
function handleSearchSuggest() {
 if (searchReq.readyState == 4) {
 var ss = document.getElementById('search_suggest');
 ss.innerHTML = '';
 var str = JSON.parse(searchReq.responseText); // PTW modified for JSON
 // For loop to build list of suggestions goes here (next slide)
 }
}

div element under textbox in form has id="search_suggest"
note the use of responseText since response is text (in JSON format)
JSON.parse() parses JSON text, returning a JSON type
for loop is on the next slide

8.38. handleSearchSuggest function (for loop)
...
 // Returned suggestions are in array str
 for(i=0; i < str.length; i++) {
 //Build our element string. This is cleaner using the DOM,
 //but IE doesn't support dynamically added attributes.
 var suggest = '<div onmouseover="javascript:suggestOver(this);" ';
 suggest += 'onmouseout="javascript:suggestOut(this);" ';
 suggest += 'onclick="javascript:setSearch(this.innerHTML);" ';
 suggest += 'class="suggest_link">' + str[i] + '</div>';
 ss.innerHTML += suggest;
 }
...

each suggestion is output as a div element with mouseover, mouseout and onclick events
suggestOver, suggestOut and setSearch are defined on next slide

8.39. Mouse over, mouse out and click functions
//Mouse over function
function suggestOver(div_value) {
 div_value.className = 'suggest_link_over';
}
//Mouse out function
function suggestOut(div_value) {
 div_value.className = 'suggest_link';
}
//Click function
function setSearch(value) {
 document.getElementById('txtSearch').value = value;
 document.getElementById('search_suggest').innerHTML = '';
}

suggest_link_over is a CSS class value which highlights the suggestion
suggest_link unhighlights the suggestion
setSearch() enters the value in the search box and clears the suggestions
all code is in ajax_search.js and the CSS file suggest.css

8.40. Exercises
Combine the functionality of the Google Suggest lookalike with that for retrieving acronyms in XML in order to achieve the
following. When a user types into the textbox, the suggestions are retrieved from an XML file on the server, rather than being
hardcoded into the program. Note that PHP has a getElementsByTagName method which returns a DOMNodeList. A DOMNodeList
has a length property and an item method which takes an index value and returns a DOMNode. A DOMNode has firstChild and
nodeValue properties (see the PHP DOMDocument Class and links from there).
Rewrite the Javascript code in ajax_search.js for the Google Suggest lookalike so that it uses jQuery.

8.41. Links to more information
RFC2616 which specifies HTTP/1.1
Wikipedia article on HTTP
Wikipedia article on REST
PHP home page
jQuery get method
Cross-Origin Resource Sharing
Server-side web frameworks

file:///Users/ptw/Documents/teaching/IWT/slides/server-2020/ajax_search.js
file:///Users/ptw/Documents/teaching/IWT/slides/server-2020/suggest.css
file:///Users/ptw/Documents/teaching/IWT/slides/server-2020/notes.html#(34).html
file:///Users/ptw/Documents/teaching/IWT/slides/server-2020/notes.html#(18).html
https://secure.php.net/manual/en/class.domdocument.php
file:///Users/ptw/Documents/teaching/IWT/slides/server-2020/ajax_search.js
file:///Users/ptw/Documents/teaching/IWT/slides/server-2020/notes.html#(34).html
https://tools.ietf.org/html/rfc2616
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Representational_state_transfer
http://www.php.net/
http://api.jquery.com/jQuery.get/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Web_frameworks

HTTP is covered briefly in Section 4.6 of [Comer]. Section 7.3 of [Tanenbaum] covers HTML forms and HTTP, and mentions CGI
and PHP. Servlets are covered in Chapter 9 and JSP in Chapter 10 of [Moller and Schwartzbach]. Server-side processing of XML
using PHP (and VB.NET) is covered in Chapters 11 (12) and 13 in [Jacobs]. AJAX is covered in Chapter 9 in [Jacobs]. It is also
mentioned in Section 7.3.3 of [Tanenbaum].

