
10. Transport Layer

1. TCP/IP layers
2. TCP/IP layers with some protocols
3. Transport Protocols
4. Multiplexing and Demultiplexing
5. Endpoint Identification
6. Well-known port numbers
7. The User Datagram Protocol
8. The Connectionless Paradigm
9. Message-Oriented Interface

10. Connectionless Multiplexing and Demultiplexing
11. UDP Segment Structure
12. UDP Header Example (DNS Request)
13. UDP Header Example (DNS Response)
14. Internet Checksum
15. Checksum Example
16. Example of Checksum Failure
17. UDP Encapsulation
18. Protocols Using UDP
19. Transmission Control Protocol (TCP)
20. End-To-End Service
21. Connection-Oriented Multiplexing and Demultiplexing
22. Multiplexing and Demultiplexing Example
23. Reliable Data Transfer
24. Simple Reliable Data Transfer
25. Pipelined Reliable Data Transfer
26. Packet Loss and Retransmission
27. Packet Loss and Retransmission - Example
28. Adaptive Retransmission
29. Adaptive Retransmission - Example
30. TCP Segment Structure
31. TCP Flags
32. TCP Example (HTTP Request)
33. TCP Example (HTTP Response)
34. Sequence and Acknowledgement Numbers
35. Example: Lost Acknowledgement
36. Example: Single Retransmission
37. Example: No Retransmission Necessary
38. Flow Control
39. Flow Control Example
40. TCP Connection Establishment
41. Example: Connection Establishment
42. TCP Example SYN
43. TCP Example ACK+SYN
44. SYN Flood Attack
45. TCP Connection Release
46. Congestion Control
47. Links to more information



10.1. TCP/IP layers

recall the 5-layer model above
the network interface layer is often called the link layer
we use the generic term packet for each block of data transmitted
recall that each layer adds its own header, so nature of "packet" varies
so in fact the following terms are usually used for "packets" at each layer

frames at the link layer
datagrams at the internet layer
segments at the transport layer

we focus on the transport layer in this section

10.2. TCP/IP layers with some protocols

we focus on the UDP and TCP in this section



10.3. Transport Protocols
Internet Protocol (IP) provides a packet delivery service across an internet
however, IP cannot distinguish between multiple processes (applications) running on the same
computer
fields in the IP datagram header identify only computers
a protocol that allows an application to serve as an end-point of communication is known as a
transport protocol or an end-to-end protocol
the TCP/IP protocol suite provides two transport protocols:

the User Datagram Protocol (UDP)
the Transmission Control Protocol (TCP)

10.4. Multiplexing and Demultiplexing
a socket is the interface through which a process (application) communicates with the transport
layer
each process can potentially use many sockets
the transport layer in a receiving machine receives a sequence of segments from its network layer
delivering segments to the correct socket is called demultiplexing
assembling segments with the necessary information and passing them to the network layer is called
multiplexing
multiplexing and demultiplexing are need whenever a communications channel is shared

10.5. Endpoint Identification
sockets must have unique identifiers
each segment must include header fields identifying the socket
these header fields are the source port number field and the destination port number field
each port number is a 16-bit number: 0 to 65535



10.6. Well-known port numbers
port numbers below 1024 are called well-known ports and are reserved for standard services, e.g.:

Port 
number

Application 
protocol Description Transport 

protocol
21 FTP File transfer TCP
23 Telnet Remote login TCP
25 SMTP E-mail TCP
53 DNS Domain Name System UDP
79 Finger Lookup information about a user TCP
80 HTTP World wide web TCP

110 POP-3 Remote e-mail access TCP
119 NNTP Usenet news TCP
161 SNMP Simple Network Management Protocol UDP

these pre-defined port numbers are registered with the Internet Assigned Numbers Authority
(IANA)

10.7. The User Datagram Protocol
UDP is less complex and easier to understand than TCP
the characteristics of UDP are given below:

end-to-end: UDP can identify a specific process running on a computer
connectionless: UDP follows the connectionless paradigm (see below)
message-oriented: processes using UDP send and receive individual messages called
segments or user datagrams
best-effort: UDP offers the same best-effort delivery as IP
arbitrary interaction: UDP allows processes to send to and receive from as many other
processes as it chooses
operating system independent: UDP identifies processes independently of the local operating
system

http://www.iana.org/


10.8. The Connectionless Paradigm
UDP uses a connectionless communication setup
a process using UDP does not need to establish a connection before sending data (unlike TCP)
when two processes stop communicating there are no, additional, control messages (unlike TCP)
communication consists only of the data segments themselves

10.9. Message-Oriented Interface
UDP provides a message-oriented interface
each message is sent as a single UDP segment
however, this also means that the maximum size of a UDP message depends on the maximum size
of an IP datagram
allowing large UDP segments can cause problems
sending large segments can result in IP fragmentation (see later)
UDP offers the same best-effort delivery as IP
this means that segments can be lost, duplicated, or corrupted in transit
this is why UDP is suitable for applications such as voice or video that can tolerate delivery errors

10.10. Connectionless Multiplexing and Demultiplexing
say a process on Host A, with port number 19157, wants to send data to a process with UDP port
46428 on Host B
transport layer in Host A creates a segment containing source port, destination port, and data
passes it to the network layer in Host A
transport layer in Host B examines destination port number and delivers segment to socket
identified by port 46428
note: a UDP socket is fully identified by a two-tuple consisting of

a destination IP address
a destination port number

source port number from Host A is used at Host B as "return address":



10.11. UDP Segment Structure
UDP segment is sometimes called a user datagram
it consists of an 8-byte header followed by the application data (sometimes called payload), as
shown below

Source port # identifies the UDP process which sent the segment
Dest port # identifies the UDP process which will handle the application data
Length specifies the length of the segment, including the header, in bytes
Checksum is optional (see below)

10.12. UDP Header Example (DNS Request)



10.13. UDP Header Example (DNS Response)

10.14. Internet Checksum
both UDP and TCP use a 16-bit Checksum field
the sender can choose to compute a checksum or set the field to zero
the receiver only verifies the checksum if the value is non-zero
note that the checksum is computed using ones-complement arithmetic, so a computed zero value is
stored as all-ones

10.15. Checksum Example

to compute the checksum, the sender treats the data as a sequence of binary integers and computes
their sum, as illustrated above
each pair of characters is treated as a 16-bit integer
if the sum overflows 16 bits, the carry bits are added to the total
the advantage of such checksums is their size and ease of computation



addition requires very little computation and the cost of sending an additional 16-bits is negligible

10.16. Example of Checksum Failure

checksums do not detect all common errors, as illustrated above
a transmission error has inverted the second bit in each of the four data items, yet the checksums are
identical

10.17. UDP Encapsulation
recall that each layer in the protocol stack adds its own header
each UDP segment is encapsulated in a network-layer (IP) datagram
each IP datagram is encapsulated in a link-layer frame

10.18. Protocols Using UDP
UDP is especially useful in client-server situations, when a client sends a short request to the server
and expects a short response
if either the request or response is lost, the client times out and tries again
if all is well, only two packets are required
an example of an application that uses UDP in this way is the Domain Name System (DNS)



10.19. Transmission Control Protocol (TCP)
the Transmission Control Protocol (TCP) is the transport level protocol that provides reliability in
the TCP/IP protocol suite
from an application program's perspective, TCP offers:

connection-oriented: an application requests a connection, and then uses it for data transfer
point-to-point communication: each TCP connection has exactly two end points
reliability: TCP guarantees that the data sent across the connection will be delivered exactly
as sent, without missing or duplicate data
full-duplex connection: a TCP connection allows data to flow in both directions at any time
stream interface: TCP allows an application to send a continuous stream of bytes across the
connection
reliable startup: TCP requires that two applications must agree to the new connection before
it is established
graceful shutdown: TCP guarantees to deliver all the data reliably before closing the
connection

10.20. End-To-End Service
TCP uses IP to carry messages, known as segments
each TCP segment is encapsulated in an IP datagram and sent across the Internet
TCP treats IP as a packet communication system:

as illustrated, TCP software is required at both ends of the virtual connection, but not on
intermediate routers
from TCP's point of view, the entire Internet is a communication system capable of accepting and
delivering messages without changing their contents



10.21. Connection-Oriented Multiplexing and Demultiplexing
each TCP connection has exactly two end-points
this means that two arriving TCP segments with different source IP addresses or source port
numbers will be directed to two different sockets, even if they have the same destination port
number
so a TCP socket is identified by a four-tuple: 
(source IP address, source port #, destination IP address, destination port #)
recall UDP uses only (destination IP address, destination port #)

10.22. Multiplexing and Demultiplexing Example
an example where clients A and C both communicate with B on port 80:

10.23. Reliable Data Transfer
TCP is a reliable data transfer protocol
implemented on top of an unreliable network layer (IP)
some problems:

bits in a packet may be corrupted
packets can be lost by the underlying network

some solutions:
acknowledgements (ACKs) can be used to indicate packet received correctly
a countdown timer can be used to detect packet loss
packet retransmission can be used for lost packets



10.24. Simple Reliable Data Transfer
a simple reliable data transfer protocol might

send a packet
wait until it is sure the receiver has received it correctly

such a protocol is known as a stop-and-wait protocol
performance of such a protocol on the Internet would be poor

10.25. Pipelined Reliable Data Transfer
a pipelined protocol allows for multiple data packets to be sent while waiting for acknowledgements
this results in better network utilisation
sender and receiver now need buffers to hold multiple packets
packets need sequence numbers in order to identify them
an acknowledgement needs to refer to corresponding sequence number
retransmission can give rise to duplicate packets
sequence numbers in packets allow receiver to detect duplicates

10.26. Packet Loss and Retransmission
TCP copes with the loss of packets using retransmission
when TCP data arrives, an acknowledgement is sent back to the sender
when TCP data is sent, a timer is started
if the timer expires before an acknowledgement arrives, TCP retransmits the data

10.27. Packet Loss and Retransmission - Example

host on the left is sending data; host on the right is receiving it
TCP must be ready to retransmit any packet that is lost



how long should TCP wait?
the TCP software does not know whether it is using

a local area network (acknowledgements within a few milliseconds) or
a long-distance satellite connection (acknowledgements within a few seconds)

10.28. Adaptive Retransmission
TCP estimates the round-trip delay for each active connection
for each connection, TCP generates a sequence of round-trip estimates and produces a weighted
average (mean)
it also maintains an estimate of the variance
it then uses a linear combination of the estimated mean and variance as the value of the timeout

10.29. Adaptive Retransmission - Example

the connection on the left above has a relatively long round-trip delay
the connection on the right above has a shorter round-trip delay
the goal is to wait long enough to decide that a packet was lost, without waiting longer than
necessary
when delays start to vary, TCP adjusts the timeout accordingly



10.30. TCP Segment Structure

Source port #, Dest port # and Internet checksum are as for UDP
Sequence number (32 bits) and Acknowledgement number (32 bits) are used to implement reliable
transfer (see below)
Header length (4 bits) is the header length (including possible options) in 32-bit words
the flag field contains 6 1-bit flags (see below)
Receive window identifies how much buffer space is available for incoming data (used for flow
control)

10.31. TCP Flags
URG flag indicates that the sender has marked some data as urgent
in this case, the Urgent data pointer contains an offset into the TCP data stream marking the last
byte of urgent data
ACK flag indicates that the acknowledgement number field is valid (i.e. the segment is an
acknowledgement)
PSH flag indicates that should be delivered immediately (PUSHed) and not buffered
RST flag is used to reset a connection, i.e. a confused or refused connection
SYN flag is used to establish a connection (see below)
FIN flag is used to terminate a connection (see below)

10.32. TCP Example (HTTP Request)



10.33. TCP Example (HTTP Response)



10.34. Sequence and Acknowledgement Numbers
TCP views data as an ordered stream of bytes
sequence numbers are with respect to the stream of transmitted bytes
the sequence number for a segment is therefore the byte-stream number of the first data byte in the
segment
the receiver uses the sequence number to re-order segments arriving out of order and to compute an
acknowledgement number
an acknowledgement number identifies the sequence number of the incoming data that the receiver
expects next
suppose Host A has received bytes 0 through 535 and 900 through 1000 from Host B, but not bytes
536 through 899
A's next segment to B will contain 536 in the acknowledgement number field
TCP only acknowledges bytes up to the first missing byte in the stream
TCP is said to provide cumulative acknowledgements

10.35. Example: Lost Acknowledgement

Host A sends one segment to Host B
this segment has sequence number 92 and contains 8 bytes of data
the acknowledgement from B is lost
A retransmits after its timer expires



10.36. Example: Single Retransmission

Host A sends two segments back to back to Host B
acknowledgements from B arrive only after timeout
if acknowledgement for second segment arrives before the new timeout, the second segment will
not be retransmitted



10.37. Example: No Retransmission Necessary

Host A sends two segments back to back to Host B (as in previous example)
suppose the acknowledgement for the first segment is lost
if second acknowledgement arrives before timeout, A does not retransmit either segment

10.38. Flow Control
TCP uses a window mechanism to control the flow of data
when a connection is established, each end of the connection allocates a buffer to hold incoming
data, and sends the size of the buffer to the other end
as data arrives, the receiver sends acknowledgements together with the amount of buffer space
available called a window advertisement
if the receiving application can read data as quickly as it arrives, the receiver will send a positive
window advertisement with each acknowledgement
however, if the sender is faster than the receiver, incoming data will eventually fill the receiver's
buffer, causing the receiver to advertise a zero window
a sender that receives a zero window advertisement must stop sending until it receives a positive
window advertisement



10.39. Flow Control Example

sender is using a maximum segment size of 1000 bytes
receiver advertises an initial window size of 2500 bytes
sender transmits three segments (two containing 1000 bytes and one containing 500 bytes); then
waits for an acknowledgement
the first three segments fill the receiver's buffer faster than the receiving application can consume
the data, so the advertised window reaches zero
after the application reads 2000 bytes, the receiving TCP sends an additional acknowledgement
advertising a window of 2000 bytes
sender responds by sending two 1000-byte segments resulting in another zero window
application reads 1000 bytes, so the receiving TCP sends an acknowledgement with a positive
window size

10.40. TCP Connection Establishment
connections are established by means of a three-way handshake
each side sends a control message, specifying window size and Initial Sequence Number (ISN)
which is randomly chosen
a random ISN reduces the chance of a "lost" segment from an already-terminated connection being
considered part of this connection
the three steps are:

the sender sends a TCP segment (including window size and ISN) with the SYN flag on
the recipient sends a segment (including window size and ISN) with both SYN and ACK
flags on
the sender replies with ACK



10.41. Example: Connection Establishment

host 1 opens the connection with an ISN
host 2 accepts the connect request by sending a TCP segment which

acknowledges host 1's request (ACK flag on)
sets acknowledgement number to ISN+1
makes its own connection request (SYN flag on) with an ISN

host 1 acknowledges this request
note that the SYN flag "consumes" one byte of sequence space so that it can be acknowledged
unambiguously

10.42. TCP Example SYN



10.43. TCP Example ACK+SYN

10.44. SYN Flood Attack
SYN Flood Attack is a type of Denial of Service (DoS) attack
attacker sends a large number of TCP SYN segments without completing the third handshake step
server sets up buffer space etc. for all SYN requests and so consumes all its resources
solution is for server to choose as ISN a hash function of

source and destination IP addresses
source and destination port numbers
secret number known only to the server

not to allocate resources until third handshake step
nor to remember ISN
if an ACK comes back, it can compute the hash value and check it against the ACK value (minus
one)
if no ACK, no resources have been allocated



10.45. TCP Connection Release

a three-way handshake is also used to terminate a connection
in this example, host 1 terminates the connection by transmitting a segment with the FIN flag set
containing optional data
host 2 acknowledges this (the FIN flag also consumes one byte of sequence space) and sets its own
FIN flag
the third and last segment contains host 1's acknowledgement of host 2's FIN flag

10.46. Congestion Control
packet loss typically results from buffer overflow in routers as the network becomes congested
congestion results from too many senders trying to send data at too high a rate
packet retransmission treats a symptom of congestion, but not the cause
to treat the cause, senders must be "throttled" (reduce their rate)
TCP implements a congestion control algorithm based on perceived congestion by the sender:

if it perceives little congestion, it increases its send rate
if it perceives there is congestion, it reduces its send rate

we will not cover the details of how TCP does this

10.47. Links to more information
The companion web site for Tanenbaum's book, Chapter 6.

See Chapter 3 of [Kurose and Ross], Chapters 25 and 26 of [Comer] and parts of Chapter 6 of
[Tanenbaum].

http://www.cs.vu.nl/~ast/CN5/

