
A logic-based framework for ontology comparison and module extraction
in DL-Lite

Roman Kontchakov∗,a, Frank Wolterb, Michael Zakharyascheva

aSchool of Computer Science and Information Systems, Birkbeck College London, U.K.
bDepartment of Computer Science, University of Liverpool, U.K.

Abstract

We develop a formal framework for comparing different versions of DL-Lite ontologies. The main feature of our
approach is that we take into account the vocabulary (= signature) with respect to which one wants to compare
ontologies. Five variants of difference and inseparability relations between ontologies are introduced and their respec-
tive applications for ontology development and maintenance discussed. These variants are obtained by generalising
the notion of conservative extension from mathematical logic and by distinguishing between differences that can
be observed among concept inclusions, answers to queries over ABoxes, by taking into account additional context
ontologies, and by considering a model-theoretic, language-independent notion of difference. We compare these vari-
ants, study their meta-properties, determine the computational complexity of the corresponding reasoning tasks, and
present decision algorithms. Moreover, we show that checking inseparability can be automated by means of encoding
into QBF satisfiability and using off-the-shelf general purpose QBF solvers.

Inseparability relations between ontologies are then used to develop a formal framework for (minimal) mod-
ule extraction. We demonstrate that different types of minimal modules induced by these inseparability relations
can be automatically extracted from real-world medium-size DL-Lite ontologies by composing the tractable syntac-
tic locality-based module extraction algorithm with non-tractable extraction algorithms using the multi-engine QBF
solver aqme. Finally, we explore the relationship between uniform interpolation (or forgetting) and inseparability
between ontologies.

Key words: Description logic, ontology, module extraction, entailment, computational complexity, uniform
interpolation, forgetting.

Contents

1 Introduction 2

2 The DL-Lite class of description logics 5

3 What is the difference? 8

4 Semantic criteria of Σ-entailment 14
4.1 Semantic criteria for DL-LiteNbool . 14
4.2 Semantic criteria for DL-LiteNhorn . 16
4.3 Σ-difference . 17

∗Corresponding author
Email addresses: roman@dcs.bbk.ac.uk (Roman Kontchakov), frank@csc.liv.ac.uk (Frank Wolter), michael@dcs.bbk.ac.uk

(Michael Zakharyaschev)

Preprint submitted to Elsevier July 28, 2009

5 Robustness properties 18
5.1 Robustness under definitorial extensions . 18
5.2 Robustness under vocabulary extensions . 19
5.3 Robustness under joins . 19
5.4 Robustness under language extensions . 20

6 Complexity of Σ-entailment 20
6.1 Lower bounds . 20
6.2 Complexity of language-dependent Σ-entailments . 21
6.3 Decidability of Σ-model entailment . 24

7 Inseparability modules 27

8 Forgetting and uniform interpolation 30

9 Experimental results 33
9.1 QBF encodings . 33
9.2 Experiments with Σ-entailment . 34
9.3 Practical module extraction . 35

10 Conclusion 38

A Appendix 38
A.1 Preliminaries . 38
A.2 Proofs of results from Section 4 . 40
A.3 Proofs of results from Section 5 . 43
A.4 Proofs of results from Section 6 . 44
A.5 Proofs of results from Section 8 . 51

1. Introduction

In computer science, ontologies are used to provide a common vocabulary (or, in logic parlance, signature) for
a domain of interest, together with a description of certain relationships between terms built from the vocabulary.
Ontology languages based on description logics represent ontologies as ‘TBoxes’ (terminological boxes) containing
inclusions between complex concepts over the vocabulary [1]. An increasingly important application of ontologies is
management of large amounts of data, where ontologies are used to provide flexible and efficient access to repositories
consisting of data sets of instances of concepts and relations. In description logics, such repositories are typically
modelled as ‘ABoxes’ (assertion boxes) [1].

Developing and maintaining ontologies for this and other purposes is a rather difficult task. When using description
logics (including the description logic based dialects of the Web Ontology Language OWL1), the ontology designer
is supported by efficient reasoning tools for classification, instance checking and a variety of other reasoning tasks.
However, this support is generally recognised to be insufficient when ontologies are developed not as ‘monolithic
entities’ but by means of importing, merging, combining, refining and extending already existing ontologies. In all
those cases, reasoning support for analysing the impact of the respective operation on the ontology would be extremely
useful. Typical examples of such ‘unorthodox’ reasoning services include the following:

Comparing versions of ontologies. The standard syntactic diff utility is an indispensable tool for comparing differ-
ent versions of text files, and it would be very helpful to have a similar versioning tool for ontologies. However,
a purely syntactic operation of computing the difference between ontologies is of little value [2] because our
concern now is not the syntactic form of the axioms, but their differing logical consequences. Moreover, instead

1http://www.w3.org/2007/OWL/

2

of comparing arbitrary logical consequences, it is more useful and informative to compare logical consequences
over the common vocabulary Σ of the versions, or even such consequences regarding a certain subject matter
corresponding to some subvocabulary of Σ. Thus, the reasoning service we need in this case should be able to
compare the logical consequences of different versions of ontologies over some vocabulary Σ.

Ontology refinement. When refining an ontology by adding new axioms, one usually wants to preserve the relation-
ships between terms of a certain part Σ of its vocabulary. The reasoning service required in such a case is to
check whether the refined ontology has precisely the same logical consequences over Σ as the original one.

Ontology re-use. When importing an ontology, one wants to use its vocabulary Σ as originally defined. However,
relationships between terms over Σ may change due to interaction with some axioms in the importing ontol-
ogy. So again we need a reasoning service capable of checking whether new logical consequences over Σ are
derivable (this service has been termed safety checking in [3]).

In all these and many other cases, we are interested in comparing logical consequences over some vocabulary Σ

that can be drawn from two different ontologies. This gives rise to the three main notions we investigate in this
paper: Σ-difference, Σ-entailment, and Σ-inseparability. Roughly, the Σ-difference between two ontologies is the set
of ‘formulas’ over Σ that are derivable from one ontology but not from the other; one ontology Σ-entails another one
if all Σ-formulas derivable from the latter are also derivable from the former; and two ontologies are Σ-inseparable if
they Σ-entail each other.

In the discussion so far, we have not specified the language from which the logical consequences over Σ are drawn.
This language depends on the application. For example, if one is mainly interested in terminological reasoning and
differences visible in applications that use relationships between concepts, then an appropriate language is the set of
all concept inclusions. The Σ-difference then consists of all concept inclusions over Σ derivable from one ontology
but not from the other. And one ontology Σ-entails another ontology if every concept inclusion over Σ derivable from
the latter is derivable from the former. If, however, one is mainly interested in using ontologies to query instance
data, then it is more appropriate to consider a language for consequences over Σ that reflects, in some way, answers to
queries in the signature Σ (or Σ-queries) over instance data in Σ. In this case, two ontologies should be Σ-inseparable
if, and only if, they give the same answers to every Σ-query for any instance data over Σ. Even this language may
be insufficient for applications where different versions of ontologies are imported into a context ontology, in which
case two ontologies should be deemed Σ-inseparable only if after importing them into another ontology over Σ, the
resulting extensions still give the same answers to Σ-queries.

The first aim of this paper is to give precise formalisations of five variants of Σ-difference, Σ-entailment and Σ-
inseparability for ontologies given in the DL-Lite logics DL-LiteNbool and DL-LiteNhorn. These variants of Σ-difference
and Σ-entailment are obtained by distinguishing between differences visible among concept inclusions, answers to
queries over ABoxes, by taking additional context ontologies into account, and by considering model-theoretic,
language-independent notions of Σ-difference and Σ-entailment.

The DL-Lite family of description logics [4, 5, 6, 7] has been originally designed with the aim of providing query
access to large amounts of data via a high-level conceptual (ontological) interface. Thus, the DL-Lite logics result
from various compromises between (i) the necessity of retaining the data complexity of query answering as close as
possible to the complexity of standard database query evaluation and (ii) the desire of having the expressive means
for representing various constraints of data modelling formalisms such as the ER model and UML class diagrams [8].
For example, the logic DL-LiteNbool [9] (containing many other DL-Lite logics) can express is-a hierarchies of con-
cepts, disjointness and covering constraints for concepts, and domain, range and cardinality constraints for binary
relations. Instance checking in DL-LiteNbool is in AC0 for data complexity (i.e., of the same complexity as database
query evaluation); however, answering conjunctive queries is coNP-complete. On the other hand, DL-LiteNhorn cannot
express covering constraints, but boasts AC0 query answering (under the unique name assumption) [10]. To simplify
presentation, in this paper we do not consider DL-Lite logics with role inclusions, focusing mainly on the impact of
the Boolean constructs in concept inclusions as well as number restrictions. We also note that the DL-Lite family
forms the basis of OWL 2 QL, one of the three profiles of the Web Ontology Language OWL 2.

For Σ-entailment and Σ-inseparability to be applicable in practice, one has to understand their basic meta-properties
and develop corresponding decision algorithms. The important meta-properties of Σ-entailment to be formalised and
investigated below specify the type of modifications of the signature Σ under which Σ-entailment is preserved, the

3

operations on TBoxes as well as the type of context ontologies that preserve Σ-entailment. Thus, the second aim
of this paper is to compare our notions of Σ-difference and Σ-entailment, study their meta-properties, determine the
computational complexity of deciding Σ-entailment and Σ-inseparability between DL-Lite ontologies, and develop
decision algorithms.

The notions of Σ-entailment and Σ-inseparability investigated in this paper can be employed to provide a formal
foundation for module extraction and forgetting.

Module extraction—the problem of finding a (minimal) subset of a given ontology that provides the same descrip-
tion of the relationships between terms over a given sub-vocabulary as the whole ontology—has recently become an
active research topic; see, e.g., the recent volume on ontology modularisation [11] and the WoMO workshop series
devoted to this problem [12, 13]. The reasons for this are manifold, with one of the most important being ontology
re-use. It is often impossible and not even desirable to develop an entirely new ontology for every new application;
a better methodology is to re-use appropriate existing ontologies. However, typically only a relatively small part of
the vocabulary of a possibly large ontology is required, that is, one only needs a subset, or module, of the ontology
that gives the same description of this sub-vocabulary. The phrase ‘gives the same description of the vocabulary’ is
rather vague. It has been interpreted in a variety of ways, ranging from structural approaches [14, 15] to logic-based
approaches [16, 17, 18]. It should not come as a surprise now that in this paper we propose to understand the claim
that ‘two ontologies give the same description of the vocabulary Σ’ as ‘the two ontologies are Σ-inseparable’ in one
of the senses described above. Thus, different variants of Σ-inseparability give rise to different modules and module
extraction problems, and we use the notion of Σ-inseparability to develop a framework for investigating such modules
and algorithms for their extraction.

Forgetting—the problem of constructing, given an ontology and a vocabulary Γ, a new ontology that results from
the original one by ‘forgetting’ Γ but retaining all the information about the remaining symbols (that are not in Γ)—has
been introduced and investigated in AI [19, 20, 21] and, under the name of uniform interpolation, in mathematical
logic [22, 23, 24, 25]. Forgetting is of interest to ontology engineering for a variety of reasons [26, 27]. For example,
similarly to module extraction it can be used to ‘extract’ from a given ontology another ontology that ‘provides the
same description of a certain vocabulary as the original one.’ However, in contrast to module extraction,

– the new ontology has to be formulated without using the ‘forgotten’ symbols in Γ, and

– the concept inclusions of the new ontology do not necessarily come from the original one.

In this paper, we propose to define an ontology OΓ to be a result of forgetting a vocabulary Γ in a given ontology
O if OΓ does not use any symbols from Γ and O and OΓ are Γ-inseparable for the vocabulary Γ that consists of all
remaining (i.e., non-Γ) symbols in O. So, like in the case of modules, different variants of Σ-inseparability induce
different variants of forgetting.

Thus, the third aim of this paper is to give formal definitions of modules, module extraction, and forgetting
using Σ-inseparability. We develop generic module extraction algorithms, which extract minimal modules using the
algorithms deciding Σ-inseparability as oracles. We also present first results on forgetting and uniform interpolation.

Finally, our fourth aim is to find out whether the logic-based approach to detecting inseparability relations between
DL-Lite ontologies can be used in practice, in particular, for minimal module extraction. With this aim in mind, we
have conducted a series of experiments with a number of ‘real-world’ medium-size DL-LiteNbool ontologies (containing
up to 1250 axioms). Instead of implementing dedicated algorithms for checking Σ-entailment, we have encoded the
semantic criteria of Σ-entailment to be developed in this paper by means of quantified Boolean formulas (QBFs, for
short) and then employed standard off-the-shelf general purpose QBF solvers governed by the self-adaptive multi-
engine QBF solver aqme [28].

The paper, which is an extended version [29] (containing also results of [30]), is structured in the following
way. We begin, in Section 2, by introducing the DL-Lite logics, discussing their properties we need in this paper
and giving an illustrative example of a DL-LiteNbool ontology. In Section 3, we introduce, motivate and illustrate five
different variants of Σ-entailment and its derivatives, Σ-difference and Σ-inseparability. We also start discussing the
relationships between these variants. In Section 4, we formulate semantic criteria for Σ-entailment. We introduce
and illustrate all the technical notions involved, but move the actual proofs to the appendix (apart from those that
can be used for illustrative purposes). In Section 5, we investigate the important ‘robustness’ meta-properties of Σ-
entailment mentioned above. In Section 6, we determine the computational complexity of deciding our Σ-entailment

4

relations between DL-Lite ontologies and present corresponding decision algorithms. Again, almost all the technical
proofs can be found in the appendix. In Section 7, we show how the notion of Σ-inseparability can be employed to
define modules, analyse relationships between modules, and design module extraction algorithms, while in Section 8,
we discuss the notion of forgetting. In Section 9, we describe our experiments and analyse their results. We draw
conclusions and discuss open problems and further directions of research in Section 10, which is followed by the
technical appendix.

2. The DL-Lite class of description logics

One of the most interesting and promising recent applications of description logics (DLs, for short) is to provide
access to large amounts of data through a high-level conceptual interface, which can be used in such areas as data
integration and ontology-based data access. The reasoning services required in this context include the traditional
knowledge base satisfiability and instance checking, as well as answering complex database-like queries by taking
into account both the terminological axioms and the data stored in the knowledge base. As the amount of data is
supposed to be large, the key property for this approach to be viable in practice is the efficiency of query evaluation,
with the ideal target being traditional database query processing. With this aim in mind the DL-Lite family of DLs has
been designed in [4, 5, 6, 7] and a supporting QuOnto system has been implemented [31, 32]. The DL-Lite family
forms the basis of OWL 2 QL, one of the three profiles of OWL 2.2 According to the current version of the official
W3C profiles document, the purpose of OWL 2 QL is to be the language of choice for applications that use very large
amounts of data and where query answering is the most important reasoning task. A detailed analysis of the impact of
various DL constructs on the computational behaviour of DL-Lite logics has been conducted in [10], which resulted
in a fine-grained classification of a more extensive class of DL-Lite related logics.

Two contradicting requirements have determined the shape of DL-Lite logics:

(i) answering conjunctive queries should be reducible to standard query evaluation in databases (in other words, it
should belong to the complexity class AC0 with respect to data complexity), and

(ii) the logics should be able to capture as much of typical conceptual modelling formalisms such as UML class
diagrams and ER models as possible.

Before defining the syntax and semantics of DL-Lite logics formally, let us consider the UML class diagram depicted
in Fig. 1 and representing (a portion of) a computer science department information system. For example, according
to this diagram, research and visiting staff are disjoint, project managers can only be from the visiting and academic
staff, each project is managed by one or two managers, and each researcher works on at least one project, and the other
way round. A crucial observation here is that the information about binary relations such as ‘manages’ or ‘works on’
provided by the UML class diagram concerns only their domains and ranges (the domain of ‘manages’ is a subset
of all project managers, while its range is the set of all projects) as well as multiplicity (each project is managed by
at most two managers). This observation motivates the following description logic called DL-LiteNbool in [10] (and
DL-Litebool in [9]).

The alphabet of DL-LiteNbool consists of three countably infinite sets: object names a1, a2, . . . , concept names
A1, A2, . . . , and role names P1, P2, Complex roles R and concepts C of DL-LiteNbool are defined inductively as
follows:

R ::= Pi | P−i ,
B ::= ⊥ | > | Ai | ≥ q R,
C ::= B | ¬C | C1 uC2,

where q is a positive integer (represented in binary). The concepts of the form B are called basic. Other standard con-
cept constructs such as ∃R, ≤ q R and C1tC2 can be introduced as abbreviations: ∃R for ≥ 1 R, ≤ q R for ¬(≥ q + 1 R),

2The OWL 2 profiles are fragments of the full OWL 2 that have been designed and standardised for specific application requirements; see
http://www.w3.org/TR/owl2-profiles/.

5

disj

cov

Staff

Research Visiting Academic

ProjectManager

a a

`
Project

?w
or

ks
O

n

1.
.*

1..*

6manages 1..2

Figure 1: A UML class diagram.

and C1 tC2 for ¬(¬C1 u¬C2). Concepts of the form ≤ q R and ≥ q R will be called number restrictions, and those of
the form ∃R and ≥ 1 R existential concepts.

A concept inclusion in DL-LiteNbool is of the form C1 v C2, where C1 and C2 are DL-LiteNbool concepts. A TBox in
DL-LiteNbool, denoted T , is a finite set of concept inclusions in DL-LiteNbool. As usual, we write C1 ≡ C2 instead of the
two inclusions C1 v C2 and C2 v C1.

We use `(C) to denote the length of a concept C—i.e., the number of symbols required to write it down. The
length (or size) `(T) of a TBox T is defined by taking

∑
CvD∈T (`(C) + `(D)).

Example 1. The UML class diagram in Fig. 1 can be represented by the following DL-LiteNbool TBox:

∃manages v ProjectManager, ∃worksOn v Research,

∃manages− v Project, ∃worksOn− v Project,

Project v ∃manages−, Research v ∃worksOn,

≥ 3 manages− v ⊥, Project v ∃worksOn−,

Research v Staff, Visiting v Staff,

Research u Visiting v ⊥, Academic v Staff,

Visiting v ProjectManager, Academic v ProjectManager,

ProjectManager v Academic t Visiting.

We will also consider a sub-language DL-LiteNhorn of DL-LiteNbool, called the Horn fragment of DL-LiteNbool. The
concept inclusions in DL-LiteNhorn are restricted to the form

B1 u · · · u Bk v B, (Horn)

where B and the Bi are basic concepts. Note that the inclusions
d

k Bk v ⊥ and > v B are legal in DL-LiteNhorn. A
TBox in DL-LiteNhorn is a finite set of concept inclusions in DL-LiteNhorn. In the context of this fragment of DL-LiteNbool,
basic concepts will also be called DL-LiteNhorn concepts. It is worth noting that in DL-LiteNhorn we can express both
global functionality of a role and local functionality (i.e., functionality restricted to a (basic) concept B) by means of
the concept inclusions ≥ 2 R v ⊥ and ≥ 2 R u B v ⊥.

Let L be one of the languages DL-LiteNbool or DL-LiteNhorn. An ABox in L, denoted A, is a finite set of assertions
of the form C(ai), R(ai, a j), ai = a j and ai , a j, where C is an L-concept, R a role, and ai, a j are object names. An L
knowledge base (L-KB, for short) is a pair K = (T ,A) with a TBox T and an ABoxA both in L.

By a signature we understand any finite set Σ of concept and role names. (As TBoxes in DL-LiteNbool do not
contain object names, we do not have to include them in signatures.) Given a concept, role, TBox, ABox, or any other
expression E in the alphabet of DL-LiteNbool, we denote by sig(E) the signature of E, that is, the set of concept and
role names that occur in E. It is to be noted that ⊥ and > are regarded as logical symbols, and so sig(⊥) = sig(>) = ∅.

6

A concept (role, TBox, ABox, etc.) E is called a Σ-concept (role, TBox, ABox, etc., respectively) if sig(E) ⊆ Σ. Thus,
P− is a Σ-role if, and only if, P ∈ Σ.

Given a signature Σ, we define a Σ-interpretation I as a structure of the form (∆I, ·I), where ∆I is a nonempty
set, the domain of interpretation, and ·I is an interpretation function that assigns to each concept name Ai ∈ Σ a subset
AIi ⊆ ∆I of the domain, to each role name Pi ∈ Σ a binary relation PIi ⊆ ∆I × ∆I over the domain, and to each object
name ai an element aIi ∈ ∆I. If I interprets all concept and role names or Σ is understood, then we usually drop
the modifier Σ and call I simply an interpretation. For an interpretation I and a signature Σ, we denote by I ↾Σ the
Σ-reduct of I to Σ, that is, the Σ-interpretation with domain ∆I in which AI↾Σ

i = AIi , for all concept names Ai ∈ Σ,
PI↾Σ

i = PIi , for all role names Pi ∈ Σ, and aI↾Σ

i = aIi , for all object names ai.
Complex roles and concepts are interpreted in I as follows:

(P−i)I = {(y, x) ∈ ∆I × ∆I | (x, y) ∈ PIi }, (inverse role)

>I = ∆I, (the whole domain)

⊥I = ∅, (the empty set)

(≥q R)I =
{
x ∈ ∆I |]{y ∈ ∆I | (x, y) ∈ RI} ≥ q

}
, (at least q R-successors)

(¬C)I = ∆I \CI, (not in C)

(C1 uC2)I = CI1 ∩CI2 , (both in C1 and C2)

where, for typographical reasons, we denote the cardinality of X by]X instead of the usual |X|.
The satisfaction relation |= is defined by taking:

I |= C1 v C2 iff CI1 ⊆ CI2 ,

I |= C(ai) iff aIi ∈ CI,

I |= R(ai, a j) iff (aIi , a
I
j) ∈ RI,

I |= ai = a j iff aIi = aIj ,

I |= ai , a j iff aIi , aIj ,

where C, C1, C2 are L-concepts, R a role, and ai, a j object names. An L-KB K = (T ,A) is said to be satisfiable (or
consistent) if there is an interpretation I satisfying all the members of T andA. In this case we write I |= K (as well
as I |= T and I |= A) and say that I is a model of K (and of T and A). A concept inclusion C1 v C2 follows from
(or is a logical consequence of) T , T |= C1 v C2 in symbols, if every model of T satisfies C1 v C2. A concept C is
T -satisfiable if there exists a model I of T with CI , ∅.

An (essentially positive) existential query q(x1, . . . , xn) in L (or simply a query, if L is understood) is a first-order
formula

∃y1 . . .∃ym ϕ(x1, . . . , xn, y1, . . . , ym),

where ϕ is constructed, using only ∧ and ∨, from atoms of the form C(t) and R(t1, t2), with C being an L-concept,
R a role, and ti being either an object name or a variable from the list x1, . . . , xn, y1, . . . , ym. The free variables of q
are called distinguished variables of q and the bound ones non-distinguished variables of q. We write q(x1, . . . , xn)
for a query with distinguished variables x1, . . . , xn. Given a query q(x) with x = x1, . . . , xn and an n-tuple a of object
names, we write q(a) for the result of replacing every occurrence of xi in q(x) with the ith member of a. Queries
containing no distinguished variables are called ground or Boolean.

Let I = (∆I, ·I) be an interpretation. An assignment a in ∆I is a function associating with every variable y an
element a(y) of ∆I. We will use the following notation: aI,ai = aIi and yI,a = a(y). The satisfaction relation for

7

existential queries with respect to a given assignment a is defined inductively by taking:

I |=a C(t) iff tI,a ∈ CI,

I |=a R(t1, t2) iff (tI,a1 , tI,a2) ∈ RI,

I |=a ϕ1 ∧ ϕ2 iff I |=a ϕ1 and I |=a ϕ2,

I |=a ϕ1 ∨ ϕ2 iff I |=a ϕ1 or I |=a ϕ2,

I |=a ∃yϕ iff I |=b ϕ, for some assignment b in ∆I that may differ from a on y.

For a ground query q(a), the satisfaction relation does not depend on the assignment a; so we write I |= q(a) instead
of I |=a q(a).

For a KB K = (T ,A), we say that a tuple a of object names from A is a certain answer to q(x) with respect to
K and write K |= q(a), if I |= q(a) whenever I |= K . A certain answer to a ground query q(a) with respect to K is
either ‘yes’ if K |= q(a) and ‘no’ otherwise. The query answering problem in L can be formulated as follows: given
an L-KB K = (T ,A), a query q(x) in L, and a tuple a of object names fromA, decide whether K |= q(a).

Remark 2. The reader must have probably noticed that the class of essentially positive existential queries in L we
deal with in this paper is larger than the standard class of positive existential queries which can be built, using ∧ and
∨, only from atoms of the form Ai(t) and P j(t1, t2) where the Ai and P j are concept and role names, respectively. In
particular, in the case of DL-LiteNbool, essentially positive existential queries may contain ‘complex atoms’ C(t) like
(¬(≥ 7 P−j) ∧ ¬Ai)(y). The reason why we consider more complex queries will be discussed in Section 5.1. Note,
however, that query answering for essentially positive existential queries in L can be reduced to query answering in
L using positive existential queries: given an L-KB K = (T ,A) and an essentially positive existential query q(x) in
L, one can replace every occurrence of a complex atom C(t) in q(x) with AC(t), for a fresh concept name AC , and add
to T the definition AC ≡ C, which clearly belongs to L. Denote the resulting positive existential query by q′(x) and
the resulting L-KB by K ′. It is readily seen that, for every tuple a of object names fromA, we have K |= q(a) if, and
only if, K ′ |= q′(a).

Remark 3 (on the unique name assumption). According to the definitions given above, we do not adopt here the
unique name assumption (UNA, for short), which can be formulated as follows. We say that an interpretation I is a
model of a KB K = (T ,A) under the UNA if I |= K and aIi , aIj , for any distinct object names ai and a j occurring
inA. Instead, we follow the more liberal approach taken in OWL: the UNA is dropped, but the user is provided with
means, = and ,, to say explicitly which object names must denote the same individual and which must be different.
Of course, we can always enforce the UNA by adding to each ABoxA the inequalities ai , a j for all pairs of distinct
object names ai and a j occurring in A. In fact, we shall see in Theorem 18 that for our purposes it does not matter
which of the two approaches is taken. However, the complexity of standard reasoning tasks like satisfiability checking
or query answering in the DL-Lite logics does depend on whether the UNA is adopted or not. We recall the following
complexity results from [9, 10] for our DL-Lite logics with and without the UNA:

With the UNA: the satisfiability problem for knowledge bases is NP-complete for DL-LiteNbool and P-complete for
DL-LiteNhorn with respect to combined complexity; answering existential queries is in AC0 for DL-LiteNhorn KBs
and coNP-complete for DL-LiteNbool KBs with respect to data complexity.

Without the UNA: satisfiability is NP-complete and query answering is coNP-complete for both DL-LiteNbool and
DL-LiteNhorn; by limiting number restrictions to global functionality constraints ≥ 2 R v ⊥ and existential con-
cepts ∃R only, we reduce the complexity of satisfiability and query answering for the Horn fragment to P; and
if the functionality constraints are also removed then the complexity of satisfiability becomes the same as in the
UNA case, while query answering for the Horn fragment drops to LogSpace (or even to AC0 if the use of = is
not allowed).

3. What is the difference?

In this section, we give precise definitions of various notions of difference, entailment, and inseparability between
ontologies with respect to a signature and discuss how these notions are related to each other.

8

Intuitively, an ontology T1 is inseparable from an ontology T2 with respect to a signature Σ if T1 and T2 cannot
be distinguished from each other by means of their consequences over Σ. To make this intuition precise, we have to
specify a language from which the consequences are drawn. As we consider ontologies formulated in the DL-Lite
logics L = DL-LiteNbool,DL-LiteNhorn, the most obvious language for consequences is probably the concept inclusions
in L. Thus, we can say that TBoxes T1 and T2 in L are Σ-inseparable if T1 and T2 imply the same Σ-concept
inclusions in L. The corresponding non-symmetric notion of Σ-entailment is formulated as follows: T1 Σ-entails
T2 if every Σ-concept inclusion in L that follows from T2 also follows from T1 (so T1 and T2 are Σ-inseparable if,
and only if, they Σ-entail each other). Finally, the Σ-difference between T1 and T2 can be defined as the set of all
Σ-concept inclusions in L that follow from T2 but not from T1. To indicate that we are interested in consequences of
ontologies in the form of concept inclusions, we prefix these notions of difference, entailment and inseparability with
the modifier concept. Here is a formal definition:

Definition 4. The Σ-concept difference between TBoxes T1 and T2 in L is the set cDiffL
Σ

(T1,T2) of all Σ-concept
inclusions C v D in L such that T1 6|= C v D and T2 |= C v D.
T1 Σ-concept entails T2 in L if cDiffL

Σ
(T1,T2) = ∅. T1 and T2 are Σ-concept inseparable in L if they Σ-concept

entail each other in L.

Σ-concept inseparability between T1 and T2 means that T1 can be replaced by T2 in any application that is only
concerned with Σ-concept inclusions in L (we elaborate on this claim below). An ontology developer who wants to
compare two versions T1 and T2 of an ontology with respect to a signature Σ can check whether they are Σ-concept
inseparable and, if this is not the case, further inspect cDiffL

Σ
(T1,T2) and cDiffL

Σ
(T2,T1) to analyse the Σ-differences

between these versions.

Remark 5. The notion of Σ-concept entailment between TBoxes is a generalisation of the notion of conservative
extension investigated in [24, 33] for expressive descriptions logics such as ALC and ALCQI. Namely, a TBox
T2 is a conservative extension of a TBox T1 if T1 ⊆ T2 and T1 Σ-concept entails T2 for Σ = sig(T1). The notion
of conservative extension originates from mathematical logic where it is used, e.g., for relative consistency proofs in
arithmetic and set theory; see [34] for more information. In computer science, conservative extensions have found
applications in modular software specification and verification [35, 36, 37, 38]. The first papers suggesting to use
conservative extensions (or variants thereof) for modular ontology engineering were [39, 16, 24]. In answer set
programming, modularity and variations of conservative extensions have been investigated in, e.g., [40, 41, 42, 43].

Concept inclusions are not the only interesting type of consequences of TBoxes. In the context of DL-Lite ontolo-
gies, answers to queries over ABoxes are probably of even greater importance than concept inclusions. The following
example shows that the ‘concept-based’ notions of difference and entailment introduced above are not appropriate for
applications that involve query answering. (The claims made in the examples below will be explained in a informal
way; strict proofs can be easily given using the semantic criteria to be discussed in Section 4.)

Example 6. Let Σ = {Lecturer,Course},

T1 = ∅ and T2 = {Lecturer v ∃teaches, ∃teaches− v Course}.

Intuitively, the only (non-tautological) consequence of T2 over Σ is ‘if there is a lecturer, then there is a course’,
which cannot be expressed by means of Σ-concept inclusions. Thus, T1 and T2 are Σ-concept inseparable (in both
DL-LiteNbool and DL-LiteNhorn). On the other hand, T1 and T2 become Σ-separable if they are used to query ABoxes.
For instance, letA = {Lecturer(a)} and q = ∃y Course(y). Although both sig(A) and sig(q) are in Σ, they nevertheless
separate T1 and T2 because (T1,A) 6|= q but (T2,A) |= q.

Thus, in applications where TBoxes are used to query ABoxes, T1 cannot be regarded as indistinguishable from
T2 with respect to Σ because one can find a Σ-ABox and a Σ-query in the presence of which T1 behaves differently
from T2.

To take into account the differences between TBoxes that can be detected by means of ABoxes and queries, we
propose the following definition:

9

Definition 7. The Σ-query difference between TBoxes T1 and T2 in L is the set qDiffL
Σ

(T1,T2) of pairs of the form
(A, q(x)), whereA is a Σ-ABox in L and q(x) a Σ-query in L such that (T1,A) 6|= q(a) and (T2,A) |= q(a), for some
tuple a of object names fromA.
T1 Σ-query entails T2 in L if qDiffL

Σ
(T1,T2) = ∅. T1 and T2 are Σ-query inseparable in L if they Σ-query entail

each other in L.

In the definition of Σ-query difference, we take into consideration arbitrary Σ-ABoxes in L. The reason for this
is that, during the ontology design phase, the data repositories to which the ontology will be applied are often either
completely unknown or are subject to more or less frequent changes. Thus, to assume that we have a fixed ABox is
unrealistic when checking Σ-query differences between ontologies, and that is why in our approach we regard ABoxes
as ‘black boxes’. This notion of Σ-query difference and entailment has been discussed in [25] and investigated for the
description logic EL in [44].

As we shall see later (cf. Theorem 24), for DL-LiteNhorn TBoxes, Σ-concept entailment in DL-LiteNhorn implies Σ-
concept entailment in DL-LiteNbool. However, this implication does not hold for Σ-query entailment, as shown by the
following example:

Example 8. Let Σ = {Lecturer},

T1 = ∅ and T2 = {Lecturer v ∃teaches, Lecturer u ∃teaches− v ⊥}.

Then T1 does not Σ-query entail T2 in DL-LiteNbool. Indeed, for A = {Lecturer(a)} and q = ∃y¬Lecturer(y), we have
(T1,A) 6|= q and (T2,A) |= q. On the other hand, as we do not allow negation in DL-LiteNhorn queries, one can show
that T1 Σ-query entails T2 in DL-LiteNhorn.

Similarly to Σ-concept inseparability, Σ-query inseparability between TBoxes T1 and T2 means that T1 can be
replaced by T2 in the applications where only answers to Σ-queries over Σ-ABoxes are of interest. However, this
informal explanation should be taken with caution. To see why, recall that one of the reasons for studying inseparabil-
ity and difference is ontology re-use: instead of constructing ontologies from scratch, it is often preferable to import
(parts of) already existing ontologies. In other words, ontologies are designed as the union

Tself ∪ Timp,

whereTself is an ontology developed specifically for the given application andTimp is an imported ontology. A problem
arises when we have a choice between different versions of such Timp or when it is preferable to import only a small
subset of Timp (later, in Section 7, called a module) that contains all the relevant information for the new application.
In these cases, we would like to be able to detect whether it makes any difference if we import a version T ′imp or a
version T ′′imp of Timp and, likewise, whether it makes any difference if Timp itself is imported or only its subsetM. In
other words, we would like to know whether

• Tself ∪ T
′
imp and Tself ∪ T

′′
imp are Σ-inseparable, and whether

• Tself ∪M and Tself ∪ Timp are Σ-inseparable,

where Σ is the signature required for the application. Now, instead of checking Σ-inseparability after taking the
union with Tself, it would be much more useful to be able to check Σ-inseparability independently of Tself and before
importing the ontologies we are interested in. Consider, for example, a situation when Tself is still evolving or subject
to frequent changes. Thus, it would be desirable to have a notion of Σ-inseparability with the following replacement
property:

(replace) if T1 and T2 are Σ-inseparable in L, then T ∪ T1 and T ∪ T2 are Σ-inseparable in L, for all Σ-TBoxes T
in L.

If a notion of Σ-inseparability has this property, then Σ-inseparability of T1 and T2 ensures that T1 can be replaced
by T2 within any context Σ-TBox T in the given language L. For further discussions of the replacement property,
we refer the reader to Section 7, where Σ-inseparability is used for module extraction, and to Section 5.4, where we
consider context TBoxes that are given in expressive DLs such as SHIQ.

Unfortunately, not all the notions of inseparability introduced so far enjoy the replacement property.
10

Example 9. Let again T1 = ∅ and T2 be the TBox from Example 8 saying that every lecturer teaches and that a
lecturer is not something that is taught. As before, consider Σ = {Lecturer}. Then T1 and T2 are Σ-concept inseparable
in DL-LiteNbool. But for T = {> v Lecturer}, we have T1 ∪ T 6|= > v ⊥ and T2 ∪ T |= > v ⊥, i.e., the former TBox
is consistent while the latter is not. Thus, no difference between T1 and T2 is visible if we only consider Σ-concept
inclusions; that the two TBoxes are indeed different becomes apparent in the presence of the extra Σ-TBox T .

To take such context ontologies into account, we introduce two stronger variants of Σ-inseparability that, by their
very definitions, enjoy the replacement property.

Definition 10. The strong Σ-concept difference in L between TBoxes T1 and T2 is the set scDiffL
Σ

(T1,T2) of pairs
(T ,C v D) where T is a Σ-TBox in L and C v D belongs to cDiffL

Σ
(T ∪ T1,T ∪ T2). T1 strongly Σ-concept entails

T2 in L if scDiffL
Σ

(T1,T2) = ∅. T1 and T2 are strongly Σ-concept inseparable in L if they strongly Σ-concept entail
each other in L.

The strong Σ-query difference inL between T1 and T2 is the set sqDiffL
Σ

(T1,T2) of triples (T ,A, q(x)) such that T
is a Σ-TBox in L and (A, q(x)) ∈ qDiffL

Σ
(T ∪T1,T ∪T2). T1 strongly Σ-query entails T2 in L if sqDiffL

Σ
(T1,T2) = ∅.

T1 and T2 are strongly Σ-query inseparable in L if they strongly Σ-query entail each other in L.

Thus, if two versions of ontologies are strongly Σ-inseparable for their shared signature Σ, then they can be
safely replaced by each other within any ontology T which only uses symbols from Σ; after such a replacement
no differences between the sets of derivable Σ-concept inclusions (or answers to Σ-queries) can be detected. In the
context of defining modules within ontologies, taking into account changes to ontologies and context ontologies has
been strongly advocated in [3], which inspired our definition; see also Section 7.

The notions of difference and inseparability introduced so far are language-dependent because the set of syntactic
objects collected in the difference between two ontologies depends on the description logic under consideration. We
have already seen in Example 8 that Σ-query entailment in DL-LiteNbool does not coincide with Σ-query entailment
in DL-LiteNhorn, even for DL-LiteNhorn TBoxes. Here is another example showing that strong Σ-concept entailment in
DL-LiteNhorn does not imply strong Σ-concept entailment in DL-LiteNbool.

Example 11. Consider the DL-LiteNhorn TBoxes

T1 =
{
Male u Female v ⊥, > v ∃ father, > v ∃mother, ∃ father− v Male, ∃mother− v Female

}
,

T2 =
{
> v ∃ id, Male u ∃ id− v ⊥, Female u ∃ id− v ⊥

}
,

and let Σ = {Male, Female, father,mother}. It follows from T2 that the range of the role id is disjoint from Male and
Female. Now let T = {> v Male t Female}. Then T ∪ T1 is consistent, but T ∪ T2 is inconsistent. Thus we have
T ∪ T2 |= > v ⊥, while T ∪ T1 6|= > v ⊥, and so T1 does not strongly Σ-concept entail T2 in DL-LiteNbool. However,
one can show that T2 is strongly Σ-concept entailed by T1 in DL-LiteNhorn. Intuitively, the reason for this is that in
DL-LiteNhorn we cannot express that Male and Female together cover the whole domain.

Language-dependence of the notions of difference between ontologies is unproblematic and justified if the lan-
guages involved in the application are known in advance. For example, if the application involves conceptual rea-
soning in DL-LiteNhorn or DL-LiteNbool, or query answering over ABoxes in these languages, the corresponding notions
introduced above are entirely appropriate. Moreover, if weaker descriptions logics or query languages than the ones
considered above are used, it is still sound to work with the notions of difference introduced so far as no relevant dif-
ferences are missed. In some cases, however, one might be interested in importing DL-Lite ontologies into ontologies
formulated in more expressive languages such as SHIQ [1] or even first-order logic. Or one might be interested in
querying DL-Lite ontologies in more expressive languages than essentially positive existential queries. In these cases,
our notions of difference can be incomplete because more expressive languages can potentially detect differences that
are not observable in DL-Lite. The following example illustrates this point.

Example 12. Let T1 = ∅, T2 = {> v (≥ 2P)} and Σ = ∅. The only difference between T1 and T2 with respect to the
empty signature Σ is that T1 has a model with domain of cardinality one, but T2 does not have such a model. Using
this observation, one can show that T1 Σ-entails T2 for all the notions of Σ-entailment introduced above. However,
the first-order Σ-sentence ϕ = ∃x∃y (x , y) distinguishes between T1 and T2 since T1 6|= ϕ and T2 |= ϕ.

11

Instead of defining and investigating Σ-entailment for other languages such as SHIQ or first-order logic, in
this paper we consider a language-independent, purely model-theoretic notion of difference which covers all the
differences detectable in standard description logics, first-order and even second-order logic. Apart from that, we will
show in Section 5 that strong Σ-query entailment in DL-LiteNbool is actually extremely robust in terms of language
extensions within the family of description logics (see Theorem 39).

Definition 13. The Σ-model difference between TBoxes T1 and T2 is the class mDiffΣ(T1,T2) of all Σ-interpretations
I for which there exists a model I1 of T1 with I1 ↾Σ= I but there is no model I2 of T2 with I2 ↾Σ= I. We say that
T1 Σ-model entails T2 if mDiffΣ(T1,T2) = ∅. T1 and T2 are Σ-model inseparable if they Σ-model entail each other.

Observe that, for T1, T2 and Σ from Example 12, mDiffΣ(T1,T2) consists of all isomorphic copies of the Σ-
interpretation whose domain has exactly one element. We give one more example illustrating our language-independent
notion of Σ-difference.

Example 14. Let T1 be a TBox in DL-LiteNhorn stating, using an auxiliary role name R, that concept B is nonempty:

T1 = { > v ∃R, ∃R− v B }.

Consider also a TBox T2 in DL-LiteNhorn stating that P is an injective function from A to B:

T2 = { A ≡ ∃P, ∃P− v B, ≥ 2 P v ⊥, ≥ 2 P− v ⊥ }.

Let Σ = {A, B}. Then mDiffΣ(T1,T2) is the set of Σ-interpretations I in which BI is nonempty and the cardinality of AI

is larger than the cardinality of BI (and so there cannot be an injection from AI to BI). As this set of interpretations is
nonempty, T1 does not Σ-model entail T2. One can show, however, that T1 Σ-entails T2 for all the language-dependent
notions of Σ-entailment introduced above (see Example 22 below).

The following proposition provides some basic implications between the variants of Σ-entailment introduced
above; a systematic investigation will be conducted in the next section.

Proposition 15. Let L be one of DL-LiteNbool or DL-LiteNhorn, T1 and T2 TBoxes in L, and Σ a signature.
(i) If T1 Σ-query entails T2 in L then T1 Σ-concept entails T2 in L. In other words, if cDiffL

Σ
(T1,T2) , ∅ then

qDiffL
Σ

(T1,T2) , ∅.
(ii) If T1 Σ-model entails T2 then T1 strongly Σ-query entails T2 in L. In other words, if sqDiffL

Σ
(T1,T2) , ∅ then

mDiffΣ(T1,T2) , ∅.

Proof. (i) To see that any difference between T1 and T2 detectable by means of concept inclusions can also be detected
by means of queries, suppose that we have T1 6|= C1 v C2 and T2 |= C1 v C2, for some Σ-concept inclusion C1 v C2
in L. Consider the ABox A = {C1(a)} and the query q = C2(a). Then (T2,A) |= q, while (T1,A) 6|= q. (Note that in
DL-LiteNhorn both the ABox and the query are defined correctly as C1 = B1 u · · · u Bk and C2 = B, where B, B1, . . . , Bk

are basic concepts, and soA = {B1(a), . . . , Bk(a)} and q = B(a).)
(ii) To see that any difference between T1 and T2 detectable by triples (T ,A, q(x)) can also be detected by means

of Σ-interpretations, suppose that (T ∪ T1,A) 6|= q(a) and (T ∪ T2,A) |= q(a), where T , A and q contain symbols
from Σ only. Take a model I of (T ∪ T1,A) such that I 6|= q(a). We show that I ↾Σ∈ mDiffΣ(T1,T2). Indeed,
otherwise we would have a model I′ of T2 such that I ↾Σ= I′ ↾Σ. But then, since T , A and q use symbols from Σ

only, I′ would also be a model of (T ∪ T2,A) and I′ 6|= q(a), contrary to (T ∪ T2,A) |= q(a). q

We conclude this section with two important observations. First we consider Σ-entailment between DL-Lite
TBoxes containing no role names—in essence, Σ-entailment between propositional theories—and show that in this
case all the variants of Σ-entailment introduced above coincide. And then we prove that our notions of Σ-entailment
do not depend on the unique name assumption (UNA), as promised in Section 2.

12

Example 16 (Σ-entailment in propositional logic). If a TBox T does not contain any role names then we can iden-
tify concept names with propositional variables and regard T as a finite set T ∗ of propositional (Boolean) formulas
(with the obvious correspondence between the concept construct u and Boolean conjunction ∧ and between concept
inclusion v and Boolean implication→). Moreover, if T is a DL-LiteNhorn TBox, then T ∗ is a finite set of propositional
Horn formulas. This brings us to Σ-entailment between propositional theories.

A propositional theory is just a finite set of propositional formulas, and a propositional signature is just a set of
propositional variables. Let Σ be such a signature. Say that a propositional theory Φ Σ-entails a propositional theory
Ψ if, for every propositional formula ϕ over Σ, we have Φ |= ϕ whenever Ψ |= ϕ. This notion can be characterised in
purely model-theoretic terms: Φ Σ-entails Ψ if, and only if, for every propositional model I (assigning truth-values to
propositional variables) of Φ, there exists a propositional model I′ of Ψ that coincides with I on the variables in Σ.
Indeed, the implication (⇐) is trivial. To show the converse, suppose that Φ Σ-entails Ψ, but there is a model I of Φ

such that no model of Ψ coincides with I on the variables from Σ. Consider the formula

χI,Σ = ¬
(∧

p∈Σ, I|=p

p ∧
∧

p∈Σ, I 6|=p

¬p
)
.

By our assumption, Ψ |= χI,Σ. But then we must have Φ |= χI,Σ, contrary to I |= Φ and I 6|= χI,Σ.
It is also well-known that a propositional Horn theory Φ Σ-entails a propositional Horn theory Ψ if, and only if, for

every Horn formula ϕ over Σ, Ψ |= ϕ implies Φ |= ϕ. In other words, for Horn theories it does not make any difference
whether one considers Horn or arbitrary formulas in the language-dependent notion of Σ-entailment (cf. Theorem 24
below).

Thus, in contrast to the notions of Σ-entailment between DL-Lite TBoxes, in the propositional case the canonical
language-dependent notion of Σ-entailment coincides with the model-theoretic notion of Σ-entailment.

Theorem 17. Let L be one of DL-LiteNbool or DL-LiteNhorn. Let T1, T2 be TBoxes in L without occurrences of role
names and Σ a signature. Then the following conditions are equivalent:

• T1 (strongly) Σ-concept entails T2 in L;

• T1 (strongly) Σ-query entails T2 in L;

• T1 Σ-model entails T2;

• T ∗1 Σ-entails T ∗2 (as propositional theories).

Proof. Since T1 and T2 do not contain role names, we may assume without loss of generality (see Theorem 32 below)
that Σ contains no role names. It should be clear from Example 16 that T1 Σ-concept entails T2 in L if, and only if,
T ∗1 Σ-entails T ∗2 . Thus, in view of Proposition 15, it suffices to show that if T1 Σ-concept entails T2 in L then T1
Σ-model entails T2. Suppose otherwise. Then there is a model I of T1 such that for no model I′ of T2 do we have
I ↾Σ= I′ ↾Σ. In fact, as T1 and T2 contain no role names, we can find such an I whose domain consists of a single
point, say x. Then, similarly to the argument in Example 16, we take the Σ-concept inclusion > v CI,Σ, where

CI,Σ = ¬
(l

Ai∈Σ, x∈AIi

Ai u
l

Ai∈Σ, x<AIi

¬Ai

)
.

By our assumption, T2 |= > v CI,Σ, and so T1 |= > v CI,Σ, contrary to I |= T1 and I 6|= > v CI,Σ. q

As mentioned in Section 2, there are two main paradigms for interpreting object names. One of them (typically
adopted in the DL community) treats different object names from a given ABox as denoting different objects in inter-
pretations; it is known as the unique name assumption (UNA). According to the other paradigm (which is standard in
the OWL community as well as in first-order logic), no assumption is made as to how object names can be interpreted
in general, but the users are provided with the ABox constructs = and , in order to impose any constraints on object
name interpretations they want. For example, to simulate the UNA, we can add to the ABoxes we are interested in the
inequalities ai , a j for all pairs of distinct object names ai and a j occurring in the ABoxes. Fortunately, in the context
of the present investigation, it does not matter which of the two paradigms is adopted.

13

Theorem 18. Let L ∈ {DL-LiteNbool,DL-LiteNhorn}. Let T1, T2 be TBoxes in L and Σ a signature. Then, for any variant
of Σ-entailment introduced above, T1 Σ-entails T2 in L under the UNA if, and only if, T1 Σ-entails T2 in L without
the UNA (but with = and ,).

Proof. The claim is clear for Σ-concept, strong Σ-concept and Σ-model entailments because no ABoxes are involved
in their definitions.

Consider Σ-query entailment. As was observed above, the case without the UNA covers the one with the UNA.
So suppose that T1 does not Σ-query entail T2 without the UNA and show that T1 still does not Σ-query entail T2
under the UNA. Let A be a Σ-ABox in L and q(x) a Σ-query in L such that (T2,A) |= q(a) but (T1,A) 6|= q(a) for
some tuple a from A. Let I be a model of (T1,A) (without the UNA) and a an assignment with a(xi) = ai such that
I 6|=a q(x). Define an equivalence relation ∼ on the set of object names by taking ai ∼ a j if, and only if, aIi = aIj . Take
a member aξ from each ∼-equivalence class ξ and define A′ and q′(x) to be the ABox and query that result from A
and q(x) by replacing every ai with aξ for the ∼-equivalence class ξ of ai. Then clearly I is a model of (T1,A

′) under
the UNA and I 6|= q′(a′), where a′ is the tuple obtained from a by replacing every ai with aξ for the ∼-equivalence
class ξ of ai. On the other hand, we immediately obtain from (T2,A) |= q(a) that q′(a′) holds in any model of (T2,A

′)
under the UNA. q

For technical reasons, it will be more convenient for us to adopt the UNA, or, which is the same, to assume that
every ABoxA contains inequalities ai , a j for all distinct ai, a j occurring inA.

4. Semantic criteria of Σ-entailment

In this section, we give semantic criteria for the language-dependent notions of Σ-entailment in DL-LiteNbool and
DL-LiteNhorn. These criteria will be used to classify the notions of Σ-entailment, investigate their robustness properties
in Section 5, provide tight complexity bounds for deciding Σ-entailment in Section 6, and design practical decision
procedures in Section 9. Detailed proofs of all the results are given in the appendix (Section A.2).

4.1. Semantic criteria for DL-LiteNbool

According to Proposition 15, Σ-model entailment implies all the language-dependent variants of Σ-entailment
considered in this paper. Thus, to develop model-theoretic characterisations of language-dependent notions of Σ-
entailment, we have to weaken the following condition characterising Σ-model entailment between TBoxes T1 and
T2:

(model) every model of T1 can be transformed into a model of T2 by changing the interpretation of non-Σ-symbols.

We will do this by means of additional modifications of models of T1 when transforming them into models of
T2. Our criteria have a somewhat syntactic flavour in the sense that they are formulated in terms of types—syntactic
abstractions of domain elements—realised in models. The advantage of such characterisations is that they can be
used directly for designing decision algorithms, despite the fact that the underlying models are often infinite, as
neither DL-LiteNbool nor DL-LiteNhorn has the finite model property [4]. Needless to say, however, that the correctness of
the type-based characterisations presented below requires model constructions, which can be found in the technical
appendix.

Let Σ be a signature and Q a set of positive natural numbers containing 1. A basic ΣQ-concept is any concept of
the form ⊥, >, Ai, ≥ q R, for some Ai ∈ Σ, Σ-role R and q ∈ Q, and by a ΣQ-literal we mean a basic ΣQ-concept or its
negation. A ΣQ-type is a set t of ΣQ-literals containing > and such that the following conditions hold:

• for every ΣQ-literal C, either C ∈ t or ¬C ∈ t,

• if the numbers q < q′ are both in Q and ≥ q′ R ∈ t then ≥ q R ∈ t,

• if the numbers q < q′ are both in Q and ¬(≥ q R) ∈ t then ¬(≥ q′ R) ∈ t.

14

Clearly, for every interpretation I and every point x ∈ ∆I, the set

tI(x) = {C | x ∈ CI, C a ΣQ-literal} (1)

is a ΣQ-type. Conversely, for each ΣQ-type t with ⊥ < t, there is an interpretation I with a point x such that x ∈ CI

for all C ∈ t. In this case we say that t is realised (at x) in I. Thus, ΣQ-types can indeed be regarded as abstractions
of domain elements.

Definition 19. Given a TBox T , we call a ΣQ-type T -realisable if it is realised in a model of T . A set Ξ of ΣQ-types
is said to be T -realisable if there is a model of T realising all the types from Ξ. We also say that Ξ is precisely
T -realisable if there is a model I of T realising all the types in Ξ, with every ΣQ-type realised in I being in Ξ.

Now, returning back to the characterisation (model) of Σ-model entailment, we see that if I ↾Σ= I′ ↾Σ—i.e., I′

is obtained from I by modifying the interpretation of non-Σ-symbols—then I and I′ realise the same ΣQ-types, for
every set Q of numerical parameters. Thus, if T1 Σ-model entails T2 then

– every T1-realisable ΣQ-type is T2-realisable; moreover,

– every precisely T1-realisable set of ΣQ-types is precisely T2-realisable.

These two conditions are much more flexible than (model): because of using types as abstractions of domain elements,
the domain of the model is not fixed anymore, and so we can manipulate the domain elements by removing some of
them or introducing new ones. The following two theorems state that these conditions indeed provide the semantic
characterisations of the Σ-entailments we are looking for.

For a TBox T , let QT denote the set of numerical parameters occurring in T , together with number 1.

Theorem 20. The following conditions are equivalent for TBoxes T1 and T2 in DL-LiteNbool and a signature Σ:

(ceb) T1 Σ-concept entails T2 in DL-LiteNbool;

(r) every T1-realisable ΣQT1∪T2 -type is T2-realisable.

Note that this equivalence is almost trivial if one considers Σℕ-types (i.e., types using arbitrary parameters) instead
of ΣQT1∪T2 -types. Thus, the message here is that it is sufficient to consider only the parameters from QT1∪T2 .

The next theorem characterises the remaining language-dependent variants of Σ-entailment for DL-LiteNbool TBoxes.

Theorem 21. The following conditions are equivalent for TBoxes T1 and T2 in DL-LiteNbool and a signature Σ:

(sceb) T1 strongly Σ-concept entails T2 in DL-LiteNbool;

(qeb) T1 Σ-query entails T2 in DL-LiteNbool;

(sqeb) T1 strongly Σ-query entails T2 in DL-LiteNbool;

(pr) every precisely T1-realisable set of ΣQT1∪T2 -types is precisely T2-realisable.

Comparing these two criteria, we see that Σ-concept entailment is ‘local’ in the sense that it refers to a single point
in a model, while Σ-query and strong Σ-concept/query entailments are ‘global’ because all points in a model have to
be considered.

Example 22. To illustrate the criteria, we re-use Examples 6 and 14.
(i) Consider first the TBoxes T1, T2 and the signature Σ = {Lecturer,Course} from Example 6. There are exactly

four ΣQT1∪T2 -types: {¬Lecturer,¬Course}, {Lecturer,¬Course}, {¬Lecturer,Course}, {Lecturer,Course}, and all of them
are T1-realisable. To see that T1 Σ-concept entails T2 it remains to check that all these types are T2-realisable. On
the other hand, the singleton {{Lecturer,¬Course}} is precisely T1-realisable but not precisely T2-realisable. Thus, T1
does not Σ-query entail T2.

15

(ii) Consider the TBoxes T1 and T2 from Example 14: the former states that B is nonempty, while the latter that
there is an injection from A to B. Let Σ = {A, B}. The four ΣQT1∪T2 -types {¬A,¬B}, {A,¬B}, {¬A, B}, {A, B} are all
Ti-realisable, for i = 1, 2. Thus, T1 Σ-concept entails T2. To see that T1 Σ-query entails T2, let Ξ be a precisely
T1-realisable set of ΣQT1∪T2 -types. Then there exists t ∈ Ξ with B ∈ t. Take a Σ-interpretation I precisely realising Ξ

and such that the set {d ∈ ∆I | t = tI(d)} is countably infinite, for every (of the at most four) t ∈ Ξ. Then there exists
an injection from AI into BI because BI is countably infinite and AI is either empty or countably infinite. Thus Ξ is
precisely T2-realisable.

It is of interest to observe that all models I of T2 precisely realising Ξ = {{A,¬B}, {A, B}} are infinite, because
AI = ∆I and BI is a proper subset of ∆I.

4.2. Semantic criteria for DL-LiteNhorn

The language of DL-LiteNhorn does not contain negation; it operates only with basic concepts. Like in the previous
section, we use the modifier ΣQ to indicate that a syntactic object is built up using concept and role names from Σ and
numerical parameters from Q. For example, a ΣQ-concept inclusion in DL-LiteNhorn is a concept inclusion of the form
B1 u · · · u Bk v B, where B1, . . . , Bk, B are basic ΣQ-concepts. As usual, the empty conjunction

d
i∈∅ Bi is understood

as >, which is a basic ΣQ-concept for any Σ and Q.
Given a ΣQ-type t, we define its ‘positive part’ t+, which does not include negative literals, by taking:

t+ = {B ∈ t | B a basic concept}.

Say that a ΣQ-type t1 is positively contained in a ΣQ-type t2 if t+
1 ⊆ t+

2 . Clearly, a ΣQ-type is uniquely determined by
its positive part. Thus, we can (and frequently will) define a ΣQ-type t by giving only its positive part t+. Here is a
first example of such a definition.

Given a TBox T in DL-LiteNhorn and a ΣQ-type t with Σ ⊆ sig(T) and QT ⊆ Q, we define the T -closure of t to be
the sig(T)Q-type, denoted clT (t), in which (clT (t))+ consists of all basic sig(T)Q-concepts B such that

T |=
d

Bk∈t+ Bk v B.

It is well-known that clT (t) can be computed in polynomial time in the size of T . The following lemma provides a
simple standard criterion for T -realisability of types when T is a TBox in DL-LiteNhorn.

Proposition 23. Let T be a TBox in DL-LiteNhorn. Then a ΣQ-type t is T -realisable if, and only if, t = clT (t) ↾Σ and
⊥ < t.

Here, for a Σ′Q-type t, we denote by t ↾Σ the restriction of t to Σ-concepts, that is, t ↾Σ= {C ∈ t | C a ΣQ-literal}.
Turning to type-based criteria for Σ-entailment in DL-LiteNhorn, we first observe that for Σ-concept entailment no

new criterion is required because it coincides with Σ-concept entailment for DL-LiteNbool. Thus, we generalise the
well-known result from propositional logic according to which two propositional Horn theories entail the same Horn
formulas if, and only if, these theories have the same consequences in the class of all propositional formulas.

Theorem 24. For any TBoxes T1, T2 in DL-LiteNhorn and any signature Σ, the following two conditions are equivalent:

(ceh) T1 Σ-concept entails T2 in DL-LiteNhorn;

(ceb) T1 Σ-concept entails T2 in DL-LiteNbool.

Proof. The implication (ceb) ⇒ (ceh) is obvious. To show the converse, suppose that T1 does not Σ-concept entail
T2 in DL-LiteNbool. Without loss of generality, we may assume that Σ ⊆ sig(T1 ∪ T2). If this is not the case, one can
add A v A and ∃P v ∃P to, say, T1, for all A, P ∈ Σ that are not in sig(T1 ∪ T2). By Theorem 20, there exists a
T1-realisable ΣQT1∪T2 -type t that is not T2-realisable. Consider now the T1- and T2-closures clT1 (t) and clT2 (t) of
t. Since t is T1-realisable, we have clT1 (t) ↾Σ= t by Proposition 23. On the other hand, as t is not T2-realisable,
Proposition 23 means that t is properly positively contained in clT2 (t) ↾Σ. Therefore, there is B ∈ clT2 (t) ↾Σ \clT1 (t) ↾Σ

such that
T1 6|=

d
Bk∈t+ Bk v B and T2 |=

d
Bk∈t+ Bk v B,

16

DL-LiteNbool: Σ-concept ⇐ Σ-query ⇔ strong Σ-concept ⇔ strong Σ-query ⇐ Σ-model
m ⇓ ⇓ ⇓ m

DL-LiteNhorn: Σ-concept ⇐ Σ-query ⇐ strong Σ-concept ⇔ strong Σ-query ⇐ Σ-model

Table 1: Comparing the notions of Σ-entailment in DL-LiteNbool and DL-LiteNhorn.

and so T1 does not Σ-concept entail T2 in DL-LiteNhorn. q

Examples 8 and 11 show that this theorem does not hold for the stronger notions of Σ-entailment. Moreover, for
neither DL-LiteNhorn nor DL-LiteNbool, none of the stronger notions is equivalent to Σ-concept entailment.

The following definition will be used to characterise other Σ-entailments in DL-LiteNhorn:

Definition 25. A set Ξ of ΣQ-types is said to be sub-precisely T -realisable if there is a model I of T such that I
realises all the types from Ξ, and every ΣQ-type realised in I is positively contained in a type from Ξ. We also say
that Ξ is meet-precisely T -realisable if there is a model I of T such that, for every ΣQ-type t realised in I, Ξt , ∅
and t+ =

⋂
ti∈Ξt t+

i , where Ξt = {ti ∈ Ξ | t+ ⊆ t+
i }.

The notion of meet-precise T -realisability is stronger than the notion of sub-precise T -realisability. Indeed, if Ξ

is meet-precisely T -realisable then, for each t ∈ Ξ, we have Ξt , ∅ and so there is t′ ∈ Ξt with t+ ⊆ t′+. Therefore Ξ

is sub-precisely T -realisable.

Theorem 26. For any TBoxes T1 and T2 in DL-LiteNhorn and any signature Σ, the following conditions are equivalent:

(qeh) T1 Σ-query entails T2 in DL-LiteNhorn;

(spr) every precisely T1-realisable set of ΣQT1∪T2 -types is sub-precisely T2-realisable.

Theorem 27. For any TBoxes T1 and T2 in DL-LiteNhorn and any signature Σ, the following conditions are equivalent:

(sceh) T1 strongly Σ-concept entails T2 in DL-LiteNhorn;

(sqeh) T1 strongly Σ-query entails T2 in DL-LiteNhorn;

(mpr) every precisely T1-realisable set of ΣQT1∪T2 -types is meet-precisely T2-realisable.

Example 28. Consider the TBoxes and signature from Example 8. The T1-realisable ΣQT1∪T2 -types are {¬Lecturer}
and {Lecturer}, and both of them are T2-realisable. Hence T1 Σ-concept entails T2 in DL-LiteNbool (and, therefore, in
DL-LiteNhorn). The singleton {{Lecturer}} is precisely T1-realisable, but not precisely T2-realisable. Hence T1 does
not Σ-query entail T2 in DL-LiteNbool. However, {{Lecturer}} is sub-precisely T1-realisable and, therefore, T1 Σ-query
entails T2 in DL-LiteNhorn. On the other hand, {{Lecturer}} is not meet-precisely T2-realisable, and so T1 does not
strongly Σ-concept entail T2 in DL-LiteNhorn.

Table 1 shows the relative ‘strength’ of the variants of Σ-entailment introduced in Section 3 for the languages
DL-LiteNbool and DL-LiteNhorn: ⇔ stands for ‘the two notions are equivalent’, m for ‘the two notions are equivalent for
TBoxes formulated in the smaller language’, and⇐ and ⇓ mean that one notion is properly weaker than the other (for
TBoxes in the smaller language in case of ⇓).

4.3. Σ-difference
The semantic criteria formulated above can be used to approximate different variants of Σ-difference between

ontologies. When comparing two ontologies with respect to a signature, the ontology engineer needs not only a ‘yes’
or ‘no’ answer, but also some informative representation of the difference if the ontologies are different. It is not
hard to see that each of the sets cDiffL

Σ
(T1,T2), qDiffL

Σ
(T1,T2), scDiffL

Σ
(T1,T2), sqDiffL

Σ
(T1,T2) and mDiffΣ(T1,T2) of

Σ-differences defined in Section 3 is either infinite or empty. Thus, only approximations of these sets can be computed
17

in practice. One possibility to obtain such approximations is to exploit the semantic criteria provided above. For
example, by the criterion of Theorem 20 for Σ-concept difference, the ΣQT1∪T2 -types that are T1-realisable but not
T2-realisable are the obvious candidates for inclusion in such an approximation. For each basic ΣQT1∪T2 -concept B,
these types contain either B itself or its negation. Of course, as there are exponentially many types in the size of Σ and
T1 ∪ T2, this method can be unfeasible in practice because there can be too many types to analyse and the resulting
list can be incomprehensible. For stronger versions of Σ-difference, one has to consider sets of ΣQT1∪T2 -types; cf. the
criteria of Theorems 21, 26 and 27. A detailed investigation of this approach to representing Σ-differences between
ontologies is beyond the scope of this paper; we leave it for future research.

5. Robustness properties

The results on Σ-difference and Σ-entailment can be easily misinterpreted if they are not considered in the context
of certain robustness properties; moreover, the notions of Σ-difference and Σ-entailment themselves are of limited
use if they do not enjoy these properties. In this section, we discuss four types of robustness conditions. First, we
consider robustness under definitorial extensions of TBoxes and justify our decision to work with essentially positive
existential queries rather than seemingly more natural positive existential queries. Second, we consider preservation
results for Σ-entailment under the addition of fresh symbols to Σ and analyse robustness of Σ-inseparability and
entailment under taking unions of TBoxes. These two robustness properties are closely related to the interpolation
theorem and Robinson’s joint consistency property from mathematical logic. Finally, we consider robustness under
extensions of the description logic in question with new constructs (which means extensions of the TBox, ABox and
query languages). Rather surprisingly, it turns out that in some important cases one can extend the ‘lightweight’ DL
DL-LiteNbool to the very expressive SHIQ and still preserve Σ-entailment.

5.1. Robustness under definitorial extensions

Recall from Section 2 that in both essentially positive existential queries and ABoxes in DL-LiteNbool we allow
negated concepts (although negated concepts are not allowed in the case of DL-LiteNhorn, where we have proper positive
existential queries). An alternative approach would be to allow only positive concepts (as in DL-LiteNhorn) or even
concept names. As mentioned in Remark 2, these two ways are essentially equivalent in the presence of TBoxes. Yet,
they give rise to different notions of Σ-query entailment. Indeed, if only positive concepts are allowed in queries then
the TBox T2 from Example 8 is Σ-query entailed by T1 = ∅, even in DL-LiteNbool. We argue, however, that it is the
essentially positive existential queries that should be considered in the context of this investigation. The reason is that,
with only positive queries allowed, the addition of the definition A ≡ ¬Lecturer to both T1 and T2 and A to Σ would
result in the TBoxes T ′1 , T ′2 and signature Σ′ such that T ′1 does not Σ′-query entail T ′2 in DL-LiteNbool. This kind of
non-robust behaviour of Σ-query entailment is clearly undesirable.

To be able to speak about all of our (and perhaps some other) notions of entailment and inseparability at the same
time, we introduce the following notation. Given a DL L, we use ⊩ to denote a ternary entailment relation in L,
whose arguments are two ontologies T1 and T2 in L, and a signature Σ. Thus, T1 ⊩Σ T2 is a shorthand for ‘T1
Σ-entails T2 in L’. In other words, ⊩ is the collection of the respective Σ-entailment relations for all signatures Σ.
Likewise, we use ≡ to denote a ternary inseparability relation inL: T1 ≡Σ T2 if, and only if, T1 ⊩Σ T2 and T2 ⊩Σ T1.

Definition 29. An entailment relation ⊩ in a DL L is called robust under definitorial extensions if, for any signature
Σ, T1 ⊩Σ T2 implies T1 ∪ {A ≡ C} ⊩Σ∪{A} T2 ∪ {A ≡ C} whenever A < sig(T1 ∪ T2) and C is a Σ-concept in L.

The proof of the following result is straightforward and left to the reader.

Theorem 30. All the entailment relations from Section 3 are robust under definitorial extensions in DL-LiteNbool and
DL-LiteNhorn.

18

5.2. Robustness under vocabulary extensions

Clearly, all our entailment relations are preserved under removing symbols from Σ: T1 ⊩Σ T2 implies T1 ⊩Σ′ T2,
for any Σ′ ⊆ Σ. Obviously, the converse implication does not (and should not) hold in general. However, it turns out
that it holds if only fresh symbols are added to the signature.

Definition 31. An entailment ⊩ in L is robust under vocabulary extensions if T1 ⊩Σ T2 implies T1 ⊩Σ′ T2, for any Σ

and Σ′ with Σ′ ∩ sig(T2) ⊆ Σ.

Robustness under vocabulary extensions is of particular importance for Σ-query entailment and the strong versions
of Σ-entailment. For example, it means that if T1 strongly Σ-query entails T2 then, for any ABox A, TBox T and
query q containing, apart from symbols in Σ, some arbitrary symbols not occurring in T2, we have (T1∪T ,A) |= q(a)
whenever (T2 ∪T ,A) |= q(a). This property is critical for applications, as it is hardly possible to restrict ABoxes and
context ontologies to a fixed signature Σ and not permit the use of fresh symbols.

Theorem 32. All the entailment relations from Section 3 are robust under vocabulary extensions in DL-LiteNbool and
DL-LiteNhorn.

Remark 33. Robustness under vocabulary extensions has important consequences for our investigation of the com-
putational complexity of deciding whether a TBox T1 Σ-entails another TBox T2 below. Namely, since T1 Σ-entails
T2 if, and only if, T1 Σ′-entails T2 for Σ′ = sig(T2) ∩ Σ, we can always assume that Σ ⊆ sig(T2). Thus, we can take
`(T1) + `(T2) as the size of the input (and neglect the size of Σ) when measuring the size of the input of the decision
problem ‘does T1 Σ-entail T2?’

Sometimes we will also assume that Σ ⊆ sig(T1) or even Σ = sig(T1). The assumption Σ ⊆ sig(T1) is justified
because we can always add A v A and ∃P v ∃P to T1 for all A, P ∈ Σ. We can even work with Σ = sig(T1) because
we can uniformly rename all occurrences of concept and role names from sig(T1) \ Σ in T2 by fresh concept and,
respectively, role names, and work with the resulting TBox T ′2 instead of T2.

5.3. Robustness under joins

Apart from the addition of fresh symbols, it is also important to guarantee robustness under certain joins of
ontologies.

Definition 34. An inseparability relation ≡ in L is robust under joins if, for any TBoxes T , T1 and T2 in L and any
signature Σ, we have T ≡Σ T1 ∪ T2 whenever T ≡Σ T1, T ≡Σ T2 and sig(T1) ∩ sig(T2) ⊆ Σ.

Robustness under joins is of interest for collaborative ontology development. This property means that if two (or
more) ontology developers extend an ontology T independently and do not use common symbols apart from those in
a certain signature Σ then they can safely form the union of their extensions T1 ∪T2, provided that they are safe for Σ.

Note that, for robustness under joins, Σ-inseparability between T and the Ti is required; as shown in the following
example, it is not the case that if T Σ-concept entails Ti, then T Σ-concept entails T1 ∪ T2.

Example 35. Let T1 = {A v ∃R,∃R− v B}, T2 = T = {B v ⊥}, and Σ = {A, B}. Then T Σ-concept entails Ti,
i = 1, 2, but T1 ∪ T2 |= A v ⊥, and so T does not Σ-concept entail T1 ∪ T2.

Theorem 36. All the inseparability relations from Section 3 are robust under joins in DL-LiteNbool and DL-LiteNhorn.

Remark 37. Robustness under vocabulary extensions and robustness under joins have been first introduced in [25].
That paper investigates in detail the relationship between these properties and the well-known Robinson consistency
lemma and Craig interpolation property (see, e.g., [45]). For the description logic EL, both robustness conditions
are investigated in [44]; and for expressive description logics such asALC and its extensions as well first-order logic
they are investigated in [25]. Rather interestingly, both robustness properties as well as interpolation typically fail for
description logics with nominals and/or role inclusions [46, 25].

19

5.4. Robustness under language extensions

As we have already seen, in general, language-dependent notions of Σ-entailment do depend on the underlying
logic: a stronger logic may induce more differences. So it would be natural to expect that our language-dependent
notions of Σ-entailment are not robust under extending DL-LiteNbool to more expressive description logics such as
ALC or SHIQ. Rather surprisingly, it turns out that Σ-query entailment in DL-LiteNbool (and, therefore, strong Σ-
query entailment) is robust under extending the DL-LiteNbool language of queries, ABoxes, and context TBoxes to that
of SHIQ. In fact, this result will be proved in the appendix for all DLs for which the class of models of TBoxes is
closed under disjoint unions (see Section A.1 in the appendix for a definition of disjoint unions). We note that typical
DLs for which the class of models of TBoxes is not closed under disjoint unions are DLs with nominals and Boolean
operators on roles.

We remind the reader that, compared to DL-LiteNbool, SHIQ allows qualified number restrictions of the form
≥ q R.C, role inclusion axioms R1 v R2, and transitivity constraints stating that certain roles are to be interpreted by
transitive relations; see [1] for more details. An ABox in SHIQ consists of assertions of the form C(a), where C is
a SHIQ-concept, and an (essentially positive existential) query in SHIQ can contain atoms C(t) such that C is a
SHIQ-concept. With these auxiliary definitions at hand we can repeat Definition 10 for L = SHIQ:

Definition 38. Let T1 and T2 be TBoxes and Σ a signature. We say that T1 strongly Σ-query entails T2 in SHIQ if,
for all TBoxes T , ABoxesA and queries q in SHIQ with sig(T ∪A∪{q}) ⊆ Σ and all tuples a of object names from
A, (T2 ∪ T ,A) |= q(a) implies (T1 ∪ T ,A) |= q(a).

The following result will be proved in the appendix (Section A.3):

Theorem 39. For any TBoxes T1 and T2 in DL-LiteNbool and any signature Σ, if T1 Σ-query entails (or, equivalently,
strongly Σ-concept entails) T2 in DL-LiteNbool, then T1 strongly Σ-query entails T2 in SHIQ.

6. Complexity of Σ-entailment

Now we investigate the computational complexity of deciding Σ-entailment (and so Σ-inseparability) between
DL-LiteNbool and DL-LiteNhorn TBoxes. A first impression of what one can expect is given by Theorem 17 and the
known complexity results for deciding Σ-entailment between propositional theories.

6.1. Lower bounds

We remind the reader that the complexity class Π
p
2 , also denoted coNPNP, consists of those problems that can be

solved by coNP Turing machines with an NP oracle. A typical example of a Π
p
2 -complete problem is determining

the truth of quantified Boolean formulas (QBFs, for short) of the form ∀p∃qϕ(p, q), where ϕ(p, q) is a propositional
formula built from propositional variables in the lists p and q (see, e.g., [47, 48]). For example, a propositional
formula ϕ(p, q) Σ-entails a propositional formula ψ(r, q) with disjoint p, q, r and Σ = q, if, and only if, the QBF
∀q∀p∃r (ϕ(p, q)→ ψ(r, q)) is true.

The following theorem is a consequence of the model-theoretic criterion of Example 16; for details and further
discussions consult [49].

Theorem 40. Deciding Σ-entailment between propositional theories is Π
p
2 -complete. Deciding Σ-entailment between

propositional Horn theories is coNP-complete.

As every propositional theory Φ can trivially be encoded (in linear time) by means of a TBox T such that Φ and
T ∗ are logically equivalent (with T being in DL-LiteNhorn whenever Φ is a Horn theory), by Theorems 40 and 17 we
obtain the following complexity lower bounds:

Theorem 41. Deciding Σ-entailment in DL-LiteNbool is Π
p
2 -hard for all of our variants of Σ-entailment; deciding Σ-

entailment in DL-LiteNhorn is coNP-hard.

20

It turns out that these lower bounds actually coincide with the upper bounds for deciding language-dependent Σ-
entailments (and inseparability) in DL-LiteNbool and DL-LiteNhorn; we will prove this in Section 6.2. Deciding Σ-model
entailment turns out to be a much harder problem. In Section 6.3, we will discuss how to establish decidability of
Σ-model entailment in DL-LiteNbool and show that this problem is coNExpTime-hard.

Remark 42. For many expressive DLs as well as EL, the computational complexity of certain notions of Σ-entailment
and inseparability is known. Interestingly, even for EL deciding Σ-entailment is typically much harder than for DL-
Lite. For example, Σ-concept entailment and Σ-query entailment are both ExpTime-complete for EL [50, 44]. When
moving to more expressive DLs such as ALC and ALCQI, Σ-query entailment becomes 2ExpTime-complete; and
forALCQIO Σ-concept entailment becomes undecidable [24, 33].

Σ-model entailment is undecidable for EL (and all its extensions) [50].

6.2. Complexity of language-dependent Σ-entailments

As we mentioned in Section 2, the satisfiability problem for DL-LiteNbool KBs is NP-complete, while for DL-LiteNhorn
KBs it is P-complete (under the UNA). It follows that the problem of deciding whether a type t is T -realisable—that
is, whether the KB (T , {C(a) | C ∈ t}) is satisfiable—is NP-complete for DL-LiteNbool and P-complete for DL-LiteNhorn.
We employ this result and the criterion of Theorem 20 to prove the following:

Theorem 43. Deciding Σ-concept entailment between DL-LiteNbool TBoxes is Π
p
2 -complete. Deciding Σ-concept en-

tailment between DL-LiteNhorn TBoxes is coNP-complete.

Proof. Let T1, T2 be TBoxes in DL-LiteNbool and Σ a signature. By Remark 33, we may assume without loss of
generality that Σ ⊆ sig(T1 ∪ T2). By Theorem 20, the following algorithm decides whether T1 does not Σ-concept
entail T2:

1. Guess a ΣQT1∪T2 -type t. (Observe that the size of t is linear in the size of T1 ∪ T2.)
2. Check, by calling an NP-oracle, whether (i) t is T1-realisable and whether (ii) t is not T2-realisable.
3. Return ‘T1 does not Σ-concept entails T2’ if the answers to (i) and (ii) are both positive.

It should be clear that this algorithm runs in Σ
p
2 , and so the problem of deciding whether T1 does Σ-concept entail T2

is in Π
p
2 .

The same algorithm, calling a P-oracle for DL-LiteNhorn TBoxes, runs in NP and so the problem of deciding, given
DL-LiteNhorn TBoxes T1 and T2, whether T1 Σ-concept entails T2 is in coNP. q

To check the criterion of Theorem 21 for the other language-dependent variants of Σ-entailment, we should be
able to establish precise realisability of sets of types. The following simple example illustrates the intuition behind
the notions we need to do this.

Example 44. Let Σ = {A, B}, Q = {1}, T = {A ≡ ∃P, ∃P− v B, ∃R− v B, B v ∃R}, and suppose that we want to
know whether the set Ξ = {t′0, t′1} of the ΣQ-types t′0 = {A,¬B} and t′1 = {¬A, B} is T -realisable. In other words, we
would like to know whether there is a model I of T with points x0 and x1 such that t′i ⊆ ti = tI(xi), i = 0, 1, where
tI(xi) is the sig(T)Q-type of xi defined by (1). If such I and the xi do exist then, clearly, ∃P ∈ t0 and ∃R ∈ t1, which
means that a P-arrow starts from x0 and an R-arrow starts from x1. But then there must exist ‘witness types’ for the
ends of these arrows, that is, some sig(T)Q-types t∃P− and t∃R− containing ∃P− and ∃R−, respectively. By the axioms
of T , both of these types must contain B and ∃R, which again requires a witness type for ∃R−, e.g., the same t∃R− .
In fact, the types t0, t1, t∃P− and t∃R− are all we need to construct an infinite forest-like model of T realising Ξ and
precisely realising the set {t0, t1, t∃P− , t∃R− }. This construction known as ‘unravelling’ (of the appropriate part of I) is
shown in Fig. 2.

It is not hard to see that in general, for a TBox with m role names, this unravelling procedure, having started with
k types, will produce a model with at most k + 2m distinct types. More precisely, a set Ξ′ of ΣQ-types is T -realisable
(with Σ ⊆ sig(T) and QT ⊆ Q) if, and only if, there is a precisely T -realisable set Ξ of sig(T)Q-types such that (i)
|Ξ| ≤ |Ξ′| + 2m, where m is the number of role names in T , and (ii) each type in Ξ′ can be extended to a type in Ξ.

21

.

.

t′0 ⊆ t0

t′1 ⊆ t1

t∃R−

t∃R

t∃P−
t∃P−

t∃R− t∃R−

t∃R−

t∃P

Figure 2: The first three steps of constructing a model realising {t′0, t′1} by means of unravelling.

This example motivates the following definition. Let T be a TBox in DL-LiteNbool, Σ a signature and Q a set of
natural numbers with Σ ⊆ sig(T) and QT ⊆ Q.

Definition 45. Given a set Ξ = {t′0, . . . , t′k} of (k+1) ΣQ-types, a pair of sequences ΞT = ((t0, . . . , tk), (tk+1, . . . , tk+2m))
of (not necessarily distinct) sig(T)Q-types is called a T -witness for Ξ if m is the number of role names in T and the
following conditions are satisfied:

(w1) t′i = ti ↾Σ, for 0 ≤ i ≤ k;

(w2) each type in the sequence t0, . . . , tk, tk+1, . . . , tk+2m is T -realisable;

(w3) for each role name Pi in T (1 ≤ i ≤ m), the types tk+2i−1 and tk+2i are witnesses for ∃Pi and ∃P−i , respectively;
more precisely,

∃Pi ∈ tk+2i−1 and ∃P−i ∈ tk+2i whenever {∃P−i ,∃Pi} ∩ t j , ∅, for some 0 ≤ j ≤ k + 2m.

A T -witness ΞT is called a precise T -witness for Ξ if

(w-pr) for every type ti in the sequence tk+1, . . . , tk+2m, there is a type t′j ∈ Ξ such that ti ↾Σ= t′j.

It follows from the definition and the unravelling construction of Example 44 (see also [9]) that we have:

Proposition 46. (i) A set Ξ of ΣQ-types is T -realisable if, and only if, there is a T -witness for Ξ.
(ii) A set Ξ of ΣQ-types is precisely T -realisable if, and only if, there is a precise T -witness for Ξ.

Recall now that, by Theorem 21, to check whether T1 Σ-query entails T2, we have to verify the condition:

(pr) every precisely T1-realisable set of ΣQT1∪T2 -types is precisely T2-realisable.

The unravelling construction illustrated in Example 44 and Proposition 46 indicate, however, that instead of consider-
ing arbitrary T1-realisable sets of ΣQT1∪T2 -types, we can deal with T1-witnesses generated by a single ΣQT1∪T2 -type
only. More precisely, we can simplify (pr) to the following criterion:

Theorem 47. T1 Σ-query entails T2 in DL-LiteNbool if, and only if, the following condition holds, where m1 is the
number of role names in T1:

(pr′) for every ΣQT1∪T2 -type t, if there is a T1-witness ((t0), (t1, . . . , t2m1)) for {t}, then there is a precise T2-witness
for the set {t0 ↾Σ, t1 ↾Σ, . . . , t2m1 ↾Σ}.

22

Proof. (pr) ⇒ (pr′). If ((t0), (t1, . . . , t2m1)) is a T1-witness for {t} then, clearly, the set {t0 ↾Σ, t1 ↾Σ, . . . , t2m1 ↾Σ}

is precisely T1-realisable. By (pr), this set is precisely T2-realisable, and so, by Proposition 46, it has a precise
T2-witness.

(pr′) ⇒ (pr). Suppose now that a set Ξ = {t′0, . . . , t′k} of ΣQT1∪T2 -types is precisely T1-realisable. By Proposi-
tion 46, there exists a precise T1-witness ΞT1 = ((t0, . . . , tk), (tk+1, . . . , tk+2m1)) for Ξ. Then, clearly, the sequences
((ti), (tk+1, . . . , tk+2m1)) are T1-witnesses for the singletons {ti}, 0 ≤ i ≤ k. According to (pr′) and Proposition 46, there
are models Ji of T2 precisely realising the sets Ξi = {ti ↾Σ, tk+1 ↾Σ, . . . , tk+2m1 ↾Σ} ⊆ Ξ. Now, define an interpretation I
as the disjoint union of the Ji (a precise definition is given in the appendix, Section A.1). As

⋃k
i=0 Ξi = Ξ, it is easy

to see that I is a model of T2 precisely realising Ξ. q

Note that the size of witnesses mentioned in condition (pr′) is linear in the size of T1 and T2: the size of the T1-
witness is 1+2m1 and the size of the T2-witness is 1+2m1 +2m2, where mi is the number of roles names in Ti, i = 1, 2.
We will use this observation to construct a Π

p
2 algorithm deciding Σ-query and the strong forms of entailment between

DL-LiteNbool TBoxes. But before that let us see how to modify the notions of witnesses for DL-LiteNhorn TBoxes.

Definition 48. Given a TBox T in DL-LiteNhorn and a set Ξ of ΣQ-types, by a sub-precise T -witness for Ξ we under-
stand any T -witness ΞT = ((t0, . . . , tk), (tk+1, . . . , tk+2m)) for Ξ satisfying the following condition:

(w-spr) for every type ti in the sequence tk+1, . . . , tk+2m, there is a type t′j ∈ Ξ such that t+
i ↾Σ⊆ (t′j)

+.

A meet-precise T -witness for Ξ is any T -witness ΞT = ((t0, . . . , tk), (tk+1, . . . , tk+2m)) for Ξ such that

(w-mpr) for every type ti in tk+1, . . . , tk+2m, the set Ξti = {t′j ∈ Ξ | t+
i ↾Σ⊆ (t′j)

+} is nonempty and t+
i ↾Σ=

⋂
t′j∈Ξti

(t′j)
+.

It follows from the definition and the unravelling construction that we have:

Proposition 49. (i) A set Ξ of ΣQ-types is sub-precisely T -realisable if, and only if, there is a sub-precise T -witness
for Ξ.

(ii) A set Ξ of ΣQ-types is meet-precisely T -realisable if, and only if, there is a meet-precise T -witness for Ξ.

Since realisability of a single type with respect to a TBox in DL-LiteNhorn can be checked in deterministic polyno-
mial time and the number of types in witnesses is linear in the number of roles (and thus, in the length of the TBox),
one can check whether a given set has a precise (or sub- or meet-precise) witness and compute it in polynomial time
(a proof can be found in the technical appendix, Section A.4):

Lemma 50. There is an algorithm which, given a TBox T in DL-LiteNhorn and a set Ξ of ΣQ-types with Q ⊇ QT , de-
cides in deterministic polynomial time whether Ξ has a precise, sub-precise or meet-precise T -witness and constructs
such a witness if it exists.

Similarly to Theorem 47, conditions (spr) and (mpr) of Theorems 26 and 27 can be equivalently reformulated in
terms of sub- and meet-precise witnesses:

Theorem 51. (i) T1 Σ-query entails T2 in DL-LiteNhorn if, and only if, the following condition holds, where m1 is the
number of role names in T1:

(spr′) for every ΣQT1∪T2 -type t, if there is a T1-witness ((t0), (t1, . . . , t2m1)) for {t} then there is a sub-precise T2-
witness for the set {t0 ↾Σ, t1 ↾Σ, . . . , t2m1 ↾Σ};

(ii) T1 strongly Σ-query entails T2 in DL-LiteNhorn if, and only if, the following condition holds:

(mpr′) for every ΣQT1∪T2 -type t, if there is a T1-witness ((t0), (t1, . . . , t2m1)) for {t} then there is a meet-precise
T2-witness for the set {t0 ↾Σ, t1 ↾Σ, . . . , t2m1 ↾Σ}.

We are now in a position to obtain the following tight complexity results:

23

Theorem 52. (i) Deciding Σ-query (and so strong Σ-concept and strong Σ-query) entailment between DL-LiteNbool
TBoxes is Π

p
2 -complete.

(ii) Deciding Σ-query, strong Σ-concept and strong Σ-query entailments between DL-LiteNhorn TBoxes is coNP-
complete.

Proof. (i) Let T1, T2 be TBoxes in DL-LiteNbool and Σ a signature. By Remark 33, we may assume without loss of
generality that Σ ⊆ sig(T1∪T2). By Theorem 47, the following algorithm decides whether T1 does not Σ-query entail
T2:

1. Guess a ΣQT1∪T2 -type t. (Observe that the size of types is linear in the size of T1 ∪ T2.)
2. Check, by calling an NP-oracle, whether (a) there is a precise T1-witness ((t0), (t1, . . . , t2m1)) for {t} and (b)

there is no precise T2-witness for {t0 ↾Σ, t1 ↾Σ, . . . , t2m1 ↾Σ}.
3. Return ‘T1 does not Σ-query entails T2’ if the answers to (a) and (b) are both positive.

This algorithm runs in Σ
p
2 , and so the problem of deciding whether T1 Σ-query entails T2 is in Π

p
2 .

(ii) Here we use a similar algorithm, calling a P-oracle of Lemma 50 to compute for a given set of types a sub-
precise or meet-precise witness. This algorithm clearly runs in NP. q

6.3. Decidability of Σ-model entailment
In this section, we show that Σ-model entailment between TBoxes in DL-LiteNbool and DL-LiteNhorn is decidable, but

coNExpTime-hard. The decidability proof is by embedding in the two-sorted first-order theory of Boolean algebras
(BA) combined with Presburger arithmetic (PA) for representing cardinalities of sets. The decidability of this theory,
called BAPA, has been first proved in [51]. The computational complexity and practical algorithms for BAPA have
been investigated in [52]. The coNExpTime lower bound is proved by a reduction of the model conservativity problem
for the modal logic S5, which is known to be coNExpTime-complete [53]. As reasoning in BAPA is known to be
harder than coNExpTime and our encoding is exponential in the worst case, the precise computational complexity of
Σ-model entailment remains open. We will provide a brief discussion of the feasibility of using Σ-model entailment
in practice at the end of this section.

Let us begin by expanding Example 14 and showing that uncountable models have to be considered when deciding
Σ-model entailment.

Example 53. Let T1 be a DL-LiteNhorn TBox stating, using auxiliary role names R and RB, that a concept B is infinite:

T1 = {> v ∃R, ∃R− v ∃RB, ∃R− u ∃R−B v ⊥, ∃R−B v B, B v ∃RB, ≥ 2 R−B v ⊥}.

For T2 we take the same TBox as in Example 14 stating that P is an injection from A to B:

T2 = {A ≡ ∃P, ∃P− v B, ≥ 2 P v ⊥, ≥ 2 P− v ⊥}.

Let Σ = {A, B}. There exists an uncountable model I of T1 with uncountable AI and countable BI. Thus, there is no
injection from AI to BI, and so I ↾Σ∈ mDiffΣ(T1,T2) and T1 does not Σ-model entail T2. It is of interest to observe,
however, that if I is an at most countably infinite model of T1, then there is always an injection from AI to BI. Thus,
in this case there exists a model I′ of T2 that coincides with I on Σ. Using our semantic criteria, it is readily checked
that T1 Σ-entails T2 for any of the language-dependent notions of Σ-entailment.

This example shows that to decide Σ-model entailment we have to reason effectively about (possibly infinite)
cardinalities of sets and, of course, basic set-theoretic operations such as intersection and complement. BAPA is a
two-sorted first-order language designed precisely for this purpose.

Formally, the language of BAPA is defined as follows. Its terms of sort set are constructed from variables
X1, X2, . . . and constants 0 (the empty set) and 1 (the whole set) using the binary function symbols ∩ (intersection),
∪ (union), and the unary function symbol · (complement). The terms of sort number are constructed from variables
x1, x2, . . . , constants from the set K = {0, 1, 2, . . .} for natural numbers, and expressions |B|, for B a term of sort set,
using the binary function symbol +. As usual, we prefer the infix notation for the binary function symbols and write,
e.g., X ∩ Y instead of ∩(X,Y). Atomic BAPA formulas are of the form:

24

– B1 = B2 and B1 ⊆ B2, where B1 and B2 are terms of sort set;

– |B| = k and |B| ≥ k, where B is a term of sort set and k a term of sort number;

– k1 ≤ k2, where k1 and k2 are of sort number.

BAPA formulas are now constructed in the standard way using first-order quantification (for variables of sort set and
number), conjunction and negation.

We are interested in the validity of BAPA formulas in two-sorted relational structures, called BAPA structures, of
the form

A = ((2∆,∩,∪, ·, ∅,∆), (card(∆),+, 0, 1, 2, . . .), | · |),

where (2∆,∩,∪, ·, ∅,∆) is the Boolean algebra of subsets of a nonempty set ∆, card(∆) is the set of cardinal numbers
{κ | κ ≤ |∆|}, and |B| is the cardinality of a subset B of ∆. A BAPA model M consists of a BAPA structure A, an
interpretation XM

i ⊆ ∆ of the variables Xi of sort set as subsets of ∆, and an interpretation xMi ∈ {n | n ≤ |∆|} of the
variables xi of sort number as cardinal numbers that are not greater than the cardinality of ∆. (The overloading of
symbols here is deliberate.)

Decidability of validity of BAPA formulas follows from [51]:

Theorem 54. The problem whether a BAPA sentence is true in all BAPA models is decidable.

In fact, it follows from [52] that the validity problem for BAPA sentences is in 2ExpSpace. We now give a reduction
of Σ-model entailment in DL-LiteNbool to validity of BAPA sentences. As BAPA does not have binary relation symbols,
the main problem is to encode the truth conditions for number restrictions ≥ q R as BAPA sentences.

Suppose that TBoxes T1 and T2 in DL-LiteNbool and a signature Σ are given. By Remark 33, we may assume
without loss of generality that Σ = sig(T1).

For every basic concept B occurring in T1∪T2, we take a BAPA variable XB of sort set and then, for every concept
C in the signature of T1 ∪ T2, define inductively a BAPA term C s of sort set:

Bs = XB, ⊥s = 0, >s = 1,

(¬C)s = (C)s, (C1 uC2)s = C s
1 ∩C s

2.

We also set, for i = 1, 2,
T s

i = {C s
1 ⊆ C s

2 | C1 v C2 ∈ Ti}.

As a first approximation, we can try and translate the problem whether T1 Σ-model entails T2 as the validity
problem for the BAPA sentences of the form

∀X
(∧
α∈T s

1

α → ∃Y
∧
α∈T s

2

α
)
, (2)

where X is the sequence of variables of sort set occurring inT s
1 and Y is the sequence of variables of sort set that occur

in T s
2 but not in T s

1 . This sentence is supposed to convey the meaning of ‘T1 Σ-model entails T2’ for Σ = sig(T1):
every Σ-model of T1 can be extended to a model of T2 (cf. Definition 13). The problem, however, is that our encoding
does not take into account the semantics of number restrictions.

Let qmax be the maximal numerical parameter occurring in T1 ∪ T2; if there are no such parameters then we set
qmax = 0. For every role name P in T1 ∪ T2, we introduce two sets of additional fresh variables of sort set: for R = P
and R = P−, set

XR = {X=q R | 0 ≤ q ≤ qmax} ∪ {X>qmax R}.

Intuitively, we want X=q R to stand for the set of points with precisely q R-successors, and X>qmax R for the set of points
with more than qmax R-successors. To ensure this, we first add to T s

i the following (obviously sound) equations, for
every role name P in Ti and R ∈ {P, P−}:

– X ∩ X′ = 0, for any two distinct X, X′ ∈ XR;

25

– X=0 R ∪ · · · ∪ X=qmax R ∪ X>qmax R = 1;

– X≥q R = X=q R ∪ X=(q+1) R ∪ · · · ∪ X=qmax R ∪ X>qmax R, for every ≥ q R in Ti.

The resulting sets will be still denoted by T s
i . It remains to formulate relationships between the cardinality of the

interpretations of variables in XP and XP− . For a binary relation %, define the %-outdegree o%(d) of a point d as
o%(d) = |{d′ | (d, d′) ∈ %}|; the %-indegree of d is i%(d) = |{d′ | (d′, d) ∈ %}|.

Definition 55. A set-system
S = (A1, . . . , Aqmax , A∞), (B1, . . . , Bqmax , B∞)

for T1 and T2 consists of two finite sequences of sets such that the sets in each sequence are mutually disjoint. A
binary relation % is called a solution to S if

– Aq is the set of points of %-outdegree q, for 1 ≤ q ≤ qmax, A∞ is the set of points of %-outdegree > qmax;

– Bq is the set of points of %-indegree q, for 1 ≤ q ≤ qmax, B∞ is the set of points of %-indegree > qmax.

The following result will be proved in the appendix, Section A.4.

Lemma 56. For every role name P and every number qmax ≥ 1, one can construct a BAPA formula ϕP,qmax with free
variables

X=1 P, . . . , X=qmax P, X>qmax P, X=1 P− , . . . , X=qmax P− , X>qmax P−

such that, for every BAPA model M, the following conditions are equivalent:

(i) M |= ϕP,qmax ;

(ii) the set-system (XM
=1 P, . . . , X

M
=qmax P, X

M
>qmax P), (XM

=1 P− , . . . , X
M
=qmax P− , X

M
>qmax P−) has a solution.

Given this lemma, we can rectify (2) in a straightforward way. Let X be the sequence of variables of sort set
occurring in T s

1 or XP ∪ XP− , for P in T1, and let Y be the sequence of variables of sort set occurring in T s
2 or

XP ∪ XP− , for P in T2, but not in X. Then we define a BAPA formula ϕT1,T2 by taking

ϕT1,T2 = ∀X
((∧
α∈T s

1

α ∧
∧

P∈sig(T1)

ϕP,qmax

)
→ ∃Y

(∧
α∈T s

2

α ∧
∧

P∈sig(T2)

ϕP,qmax

))
,

where qmax is the maximal numerical parameter occurring in T1 ∪ T2 (if qmax = 0 then ϕT1,T2 has the form (2)). Now,
it is straightforward to prove the following result:

Theorem 57. Let Σ = sig(T1). Then T1 Σ-model entails T2 if, and only if, ϕT1,T2 is valid.

It follows from Remark 33 and the decidability of BAPA that Σ-model entailment is decidable. The formula ϕP,qmax

constructed in the proof of Lemma 56 is exponential in the size of qmax, and so the upper bound for the computational
complexity of deciding Σ-model entailment is ‘disappointing’ 3ExpSpace. In the appendix (Section A.4) we establish,
using a reduction of the model conservativity problem for modal logic S5, the following lower bound:

Theorem 58. Deciding Σ-model entailment for TBoxes in DL-LiteNhorn with maximal numerical parameter qmax = 3
is coNExpTime-hard.

Finding tight complexity bounds for deciding Σ-model entailment remains an open problem that is beyond the
scope of this paper. As the encoding of Σ-model entailment into BAPA uses only very little arithmetic (exhibited in the
construction of ϕP,qmax in the proof of Lemma 56), we conjecture that the complexity is actually between coNExpTime
and ExpSpace. It is important to note that the formula ϕP,qmax constructed in Lemma 56 is of polynomial size if the
maximal parameter qmax is fixed. This appears to be a natural assumption, as in many cases number restrictions are
only used to introduce functional roles. It would be of interest to conduct experiments for such TBoxes and Σ-model
entailment using the encoding into BAPA above and, say, the BAPA reasoner introduced in [52].

26

7. Inseparability modules

In this section, we discuss how the notions of Σ-inseparability can be employed to define modules, analyse rela-
tionships between modules, and design module extraction algorithms. Intuitively, a module of a TBox T is a subsetM
of T that says the same about a certain subject matter as the whole T . Assuming that subject matters are represented
by signatures Σ and that ‘saying the same about Σ’ is formalised as being Σ-inseparable, we come to modules that are
Σ-inseparable from the TBoxes containing them.

Many interesting properties of such modules and even module extraction algorithms can be described without
referring to a particular notion of Σ-inseparability, but only using certain properties of inseparability relations. So, like
in Section 5, we will consider some abstract notion ≡ of inseparability relation in a DLL, which covers all the variants
of Σ-inseparability introduced above, and develop the corresponding notions of modules within this framework. One
obvious property of ≡ we need is that it is an equivalence relation. As before, we assume that L is one of the logics
DL-LiteNbool or DL-LiteNhorn.

Definition 59. We call an inseparability relation ≡ in L monotone if it satisfies the following two conditions, for all
TBoxes T1 and T2 in L and all signatures Σ:

(Msig) for any Σ′ ⊆ Σ, if T1 ≡Σ T2 then T1 ≡Σ′ T2;

(MT) for any TBox T in L, if T1 ⊆ T ⊆ T2 and T1 ≡Σ T2, then T ≡Σ T1.

Condition (Msig) formalises the intuition that if two TBoxes are Σ-inseparable then they are Σ′-inseparable for any
smaller signature Σ′; (MT) demands that any TBox sandwiched between two inseparable TBoxes should be inseparable
from either of them. The following statement is left to the reader as an easy exercise.

Theorem 60. All the inseparability relations in DL-LiteNbool and DL-LiteNhorn from Section 3 are monotone.

We now introduce and discuss three notions of modules induced by an inseparability relation. The first one
formalises the intuition discussed above, whereas the other two take into account some additional properties one
might want modules to have.

Definition 61. Let ≡ be an inseparability relation in L, T a TBox in L,M ⊆ T , and Σ a signature. We say thatM is

– a ≡Σ-module of T ifM ≡Σ T ;

– a self-contained ≡Σ-module of T ifM ≡Σ∪sig(M) T ;

– a depleting ≡Σ-module of T if ∅ ≡Σ∪sig(M) T \M.

M is a minimal (self-contained, depleting) ≡Σ-module of T ifM is a (self-contained, depleting) ≡Σ-module of T , but
no proper subset ofM is such a (self-contained, depleting) ≡Σ-module of T .

The main feature of self-contained ≡Σ-modules is that they are indistinguishable from the original TBox not only
with respect to Σ but also with respect to their own signature. Such a module is self-contained in the sense that the
original TBox does not imply any extra consequences for the module’s signature. It follows from the definition that if
≡ satisfies (Msig) then every self-contained ≡Σ-module is also a ≡Σ-module. Depleting modules emphasise a different
aspect of modularity: to be a depleting module, it is required that the TBox without the module does not imply any
non-tautological consequences for Σ and the module’s signature. We will see below that under certain conditions for
the inseparability relation this implies being a self-contained module.

However, in general, no non-trivial inclusions between these types of modules exist.

Example 62. (i) If T is consistent and does not contain symbols from Σ then anyM ⊆ T is clearly a ≡Σ-module of T ,
for any inseparability relation ≡ introduced in Section 3, except model inseparability. On the other hand, suchM are
not necessarily self-contained (i.e., not necessarily ≡sig(M)-modules of T). Thus, not all ≡Σ-modules are self-contained
≡Σ-modules.

(ii) To show that not all self-contained ≡Σ-modules are depleting ≡Σ-modules, consider T = {A v B, A v B u B}
and Σ = {A, B}. ThenM1 = {A v B} andM2 = {A v B u B} are self-contained ≡Σ-modules, but T itself is the only
depleting ≡Σ-module of T , for any inseparability relation ≡ introduced in Section 3.

27

A more interesting example is needed to show that not all depleting ≡c
Σ
-modules are (self-contained) ≡c

Σ
-modules,

where ≡c
Σ

is the Σ-concept inseparability relation in DL-LiteNbool.

Example 63. Consider the following modification of Example 6. Let Σ = {Lecturer,Course} and

T = {Lecturer v ∃teaches, ∃teaches− v Course, Course v ⊥}.

ThenM = {Course v ⊥} is a depleting ≡c
Σ
-module of T . However,M is not a ≡c

Σ
-module (and so not a self-contained

≡c
Σ
-module) of T because T |= Lecturer v ⊥.

Before investigating the relationship between self-contained and depleting modules further, we present a straight-
forward algorithm extracting one minimal ≡Σ-module from a given TBox, using an oracle deciding the inseparability
relation ≡.

Theorem 64. Let ≡ be an inseparability relation in L satisfying (MT), T a TBox in L and Σ a signature. Then the
following algorithm computes a minimal ≡Σ-module of T :

input T ,Σ
M := T
for each α ∈ M do

if M\ {α} ≡Σ M then M :=M\ {α}
end for

output M

Proof. The algorithm computes a ≡Σ-moduleM of T such thatM \ {α} is not an ≡Σ-module of T , for any α ∈ M.
By (MT), no proper subset of such anM is a ≡Σ-module. q

Note that the minimal ≡Σ-module extracted by this algorithm depends on the order of picking the axioms α and
that in principle there may be exponentially many distinct minimal ≡Σ-modules of the same TBox.

Example 65. Consider the following generalisation of the TBox from Example 62: for n < ω, let

Tn = {Ai v Bi, Ai v Bi u Bi | i ≤ n},

and let Σn = {Ai, Bi | i ≤ n}. Then anyM ⊆ T containing either Ai v Bi or Ai v Bi u Bi, for each i ≤ n, is clearly a
minimal ≡c

Σ
-module of T , and the number of such modules is 2n.

We now investigate modules which are induced by inseparability relations that satisfy the replacement property (re-
place) considered in Section 3. For the convenience of the reader, we give the definition again.

Definition 66. An inseparability relation ≡ inL is robust under replacement if, for all TBoxes T , T1 and T2 inL and
all signatures Σ, we have T1 ∪ T ≡Σ T2 ∪ T whenever T1 ≡Σ T2 and sig(T) ⊆ Σ.

As explained in Section 3, robustness under replacement is fundamental for ontology re-use. Taken together with
robustness under vocabulary extensions and having defined the notion of a module, its importance can now be justified
in a succinct and precise way. Suppose that an ontology developer imports a ≡Σ-moduleM of a TBox T into her own
TBox O. If ≡ is robust under replacement and vocabulary extensions, then O ∪ T ≡Σ′ O ∪M, for every signature Σ′

such that Σ′ ∩ sig(T) ⊆ Σ and sig(T) ∩ sig(O) ⊆ Σ′. Thus, these robustness properties ensure that it does not make
any difference, as far a such a signature Σ′ is concerned, whether she imports the whole T or some ≡Σ-moduleM of
T into O. Moreover, these properties do not depend on O and can be checked by considering only T andM.

The following result summarises what has been shown already in Examples 8 and 9 or follows from the corre-
sponding theorems on the equivalence of inseparability notions.

Theorem 67. (i) The following inseparability relations are not robust under replacement: Σ-concept inseparability
in DL-LiteNbool, and Σ-concept and Σ-query inseparability in DL-LiteNhorn.

(ii) The following inseparability relations are robust under replacement: Σ-query inseparability in DL-LiteNbool,
strong Σ-concept and strong Σ-query inseparability in DL-LiteNbool and DL-LiteNhorn as well as Σ-model inseparability.

28

We now give two more reasons explaining the importance of robustness under replacement.

Theorem 68. If an inseparability relation ≡ in L is robust under replacement, then every depleting ≡Σ-module is a
self-contained ≡Σ-module.

Proof. If T \M ≡Σ∪sig(M) ∅, robustness under replacement implies T = (T \M) ∪M ≡Σ∪sig(M) ∅ ∪M =M. q

Thus, the reason why depleting ≡c
Σ
-modules are not always self-contained ≡c

Σ
-modules (cf. Example 63) is that the

inseparability relation ≡c is not robust under replacement.

Theorem 69. Let ≡ be a monotone inseparability relation in L that is robust under replacement, T a TBox in L and
Σ a signature. Then there is a unique minimal depleting ≡Σ-module of T , which can be computed by the following
algorithm:

input T, Σ

M := ∅; W := ∅
while (T \M) ,W do

choose α ∈ (T \M) \W
W :=W∪ {α}
if W .Σ∪sig(M) ∅ then

M :=M∪ {α}; W := ∅
endif

end while

output M

Proof. LetM be a depleting ≡Σ-module of T , i.e., T \M ≡Σ∪sig(M) ∅. We first prove the following:

Claim. For all signatures Σ′ with Σ ⊆ Σ′ ⊆ Σ ∪ sig(M), ifM0 ⊆ T is a minimal set withM0 .Σ′ ∅, thenM0 ⊆ M.

Proof of claim. Suppose the claim does not hold, i.e.,M0 ⊈M. Then we must haveX ≡Σ′ ∅, whereX =M∩M0 (for
otherwise X is a proper subset ofM0 with X .Σ′ ∅, contrary to the minimality ofM0). AsM is a depleting Σ-module
and sig(X) ⊆ sig(M), by robustness under replacement, (T \M)∪X ≡Σ∪sig(M) X. Using Σ′ ⊆ Σ∪ sig(M), (Msig), and
transitivity of ≡Σ′ , we obtain from X ≡Σ′ ∅ that (T \M)∪X ≡Σ′ ∅. By (MT), we obtain from ∅ ⊆ M0 ⊆ (T \M)∪X
thatM0 ≡Σ′ ∅, which is a contradiction.

Using this claim, one can easily prove by induction that each M computed during a run of the algorithm of
Theorem 69 on input T and Σ is contained in every depleting ≡Σ-module of T . Hence, its output M is contained
in every depleting ≡Σ-module of T . On the other hand, by the termination condition of the algorithm, this M is a
depleting ≡Σ-module of T . Consequently,M is the uniquely determinable minimal depleting ≡Σ-module of T . q

The algorithm above computes the minimal depleting ≡Σ-module in quadratic time by calling the oracle deciding
the inseparability relation ≡ at most |T |2 times.

It follows that minimal depleting modules have the advantage of being uniquely determined (under mild condi-
tions), which sharply contrasts with the behaviour of the other types of modules. Another advantage is that depleting
modules support modular ontology development in the following sense. SupposeM is a depleting ≡Σ-module of T
and ≡ is robust under replacement and vocabulary extensions. Then one can import into the ontology T \ M any
module M′ such that sig(M′) ∩ sig(T) ⊆ Σ ∪ sig(M) and be sure that T \ M does not interfere with M′—i.e.,
(T \M) ∪M′ ≡Σ′ M

′ whenever Σ′ ∩ sig(T \M) ⊆ Σ ∪ sig(M). The importance of this property was first pointed
out in [17].

In the following illustrative example we compute three kinds of modules in DL-LiteNbool:

– minimal Σ-concept inseparability modules (MCM),

– minimal Σ-query inseparability modules (MQM), and

– minimal depleting Σ-query inseparability modules (MDQM).
29

These abbreviations will be also used in Section 9.

Example 70. Consider the following DL-LiteNbool TBox T :

(1) Publisher v ∃pubHasDistrib (8) Publisher v ∃pubAdmedBy (15) User v ¬Publisher

(2) ∃pubHasDistrib− v Distributor (9) ∃pubAdmedBy− v AdmUser t BookUser (16) Role v ¬User

(3) Publisher v ¬Distributor (10) AdmUser v User (17) User v ∃userAdmedBy

(4) ∃pubHasDistrib v Publisher (11) BookUser v User (18) ∃userAdmedBy− v AdmUser

(5) Publisher v ≤ 1 pubHasDistrib (12) User v ∃hasRole (19) ∃userAdmedBy v User

(6) Role v ¬Distributor (13) ∃hasRole− v Role (20) ∃pubAdmedBy v Publisher

(7) User v ¬Distributor (14) Role v ¬Publisher

(which is part of the larger Core ontology to be discussed in Section 9), and let Σ = {Publisher}. Observe that the
MCM of T is empty, which is typical of singleton signatures and Σ-concept inseparability, as no interesting concept
inclusions over a singleton signature exist. In contrast, there are three different MQMs of T :

MD = {(1), (2), (3)}, MR = {(8), (9), (10), (11), (12), (13), (14)}, MU = {(8), (9), (10), (11), (15)}.

First, they are indeed Σ-query inseparable from T , which can be verified via the semantic criterion of Theorem 21.
Second, they are minimal. For consider the ABox A = {Publisher(a)} and the query q = ∃x¬Publisher(x). Clearly,
we have (T ,A) |= q, while (T ′,A) 6|= q, for any proper subset T ′ ofMD,MR orMU . In contrast to this finding, the
MDQM of T is T itself. To illustrate that this is indeed the case, consider the TBox T ′ with axioms (17)–(19) and
show thatM = T \ T ′ is not a MDQM of T . In other words, we show that T ′ is sig(M)-query separable from ∅.
(Note that sig(M) = sig(T) \ {userAdmedBy}.) LetA = {User(a)} and q = ∃x AdmUser(x). Then clearly (T ′,A) |= q.

Consider now Σ′ = {Publisher, pubHasDistrib}. Then the only MCM-module of T with respect to Σ′ consists of
axioms (1)–(5), and there are two MQMs with respect to Σ′:

M′R =MD ∪MR ∪ {(4), (5), (6)} and M′U =MD ∪MU ∪ {(4), (5), (7)}.

8. Forgetting and uniform interpolation

When extracting a subset M from an ontology T that ‘says the same about a signature Σ’ as T , one typically
has to include intoM a large number of axioms from T that contain non-Σ-symbols. Example 70 above shows that
even for Σ of size one or two, many additional symbols occur in the module. In this section, we aim at ‘extracting’
new ontologies from a given ontology that ‘say the same about Σ’ as the original ontology and, in addition, do not
use non-Σ-symbols. Often, this can only be achieved by introducing new axioms that do not occur in the original
ontology. In mathematical logic parlance such an ontology would be called a uniform interpolant of the original
ontology [22, 23], whereas in artificial intelligence, computing the new ontology is known as forgetting (the non-Σ-
symbols) [19, 20, 27]. The advantage of forgetting over module extraction is that it does not depend on the way the
original ontology is formulated: whereas modules are subsets of the original ontology, forgetting can (and will) be
defined independently from the axiomatisation of the ontology. Of course, this can also be regarded as a disadvantage
because the ontology engineer is not familiar with the new axioms, which can be hard to understand and process.

To formalise forgetting/uniform interpolation, we employ again our notions of Σ-inseparability and say that a
TBox TΣ is a uniform interpolant of a TBox T with respect to Σ if the signature of TΣ is included in Σ and T
and TΣ are Σ-inseparable. Of course, the problems whether such a TBox TΣ exists, its size, and whether it can be
constructed effectively, depend on the available language constructs, the signature Σ, and the type of Σ-inseparability
one is interested in. In this section, we consider the notions of uniform interpolation corresponding to Σ-concept
inseparability in DL-LiteNhorn and DL-LiteNbool and Σ-query inseparability in DL-LiteNbool. A more systematic study of
how inseparability relations can be used to define forgetting is beyond the scope of this paper (see [26] for such a
study for extensions of the description logic EL).

We start by defining forgetting and uniform interpolation based on Σ-concept inseparability in DL-LiteNbool and
DL-LiteNhorn.

30

Definition 71. Let L ∈ {DL-LiteNhorn,DL-LiteNbool}. We say that L admits forgetting (or has uniform interpolation) if,
for every TBox T in L and every signature Σ, there exists a TBox TΣ in L with sig(TΣ) ⊆ Σ such that T and TΣ are
Σ′-concept inseparable in L for all Σ′ with sig(T) ∩ Σ′ ⊆ Σ. In this case, TΣ is called a uniform interpolant of T with
respect to Σ in L.

Note that this definition appears to be more restrictive than what was indicated in the informal discussion above:
instead of demanding that TΣ and T are Σ-concept inseparable, we require that TΣ and T are Σ′-concept inseparable
for every Σ′ with sig(T) ∩ Σ′ ⊆ Σ. It is readily seen, however, that the two definitions are actually equivalent because
Σ-concept entailment is robust under vocabulary extensions.

Example 72. Let T = {Hand v BodyPart, BodyPart v PhysicalObject} and Σ = {Hand,PhysicalObject}. Then the TBox
TΣ = {Hand v PhysicalObject} is a uniform interpolant of T with respect to Σ in both DL-LiteNbool and DL-LiteNhorn.

Note that if L has uniform interpolation, then in principle we can use uniform interpolants to check Σ-concept
entailment in L. Indeed, suppose that we are given TBoxes T and T ′ in L and that we want to see whether T Σ-
concept entails T ′ in L. To this end, we compute a uniform interpolant T ′

Σ
of T ′ with respect to Σ in L. And then we

have the following:

– T Σ-concept entails T ′ if, and only if, T |= C1 v C2, for all (C1 v C2) ∈ T ′
Σ
.

Thus, checking Σ-concept entailment can be reduced to computing uniform interpolants and checking subsumption in
L. The following theorem states that DL-LiteNbool and DL-LiteNhorn do enjoy uniform interpolation. (It will be proved
in Section A.1 of the appendix and subsequently used to establish some results stated earlier in this paper.)

Theorem 73. Let L ∈ {DL-LiteNbool,DL-LiteNhorn}. Then L has uniform interpolation, and a uniform interpolant of a
TBox T with respect to Σ in L can be constructed effectively.

In the worst case, the uniform interpolants given in the proof of this theorem are exponential in the size of T .
Note that even in propositional logic all known algorithms for computing uniform interpolants return, in the worst
case, interpolants of exponential size. In fact, it is known that, unless P = NC (i.e., unless every polynomial-time
problem can be solved in polylogarithmic time on a parallel computer with a polynomial number of processors),
which is regarded as rather unlikely, there do not always exist uniform interpolants of polynomial size in propositional
logic [54].

Example 74. For DL-LiteNhorn, one can give a simple example showing that minimal uniform interpolants are, in the
worst case, of exponential size. Indeed, let

Tn = {A ≡ B1 u · · · u Bn} ∪ {Ai
j v Bi | 1 ≤ i ≤ n, j = 1, 2} and Σn = {A} ∪ {Ai

j | 1 ≤ i ≤ n, j = 1, 2}.

Then
TΣn = {A1

j1 u · · · u An
jn v A | 1 ≤ j1, . . . , jn ≤ 2}

is a uniform interpolant of Tn with respect to Σn in DL-LiteNhorn. It is of size 2n, and there is no smaller uniform
interpolant in DL-LiteNhorn. It is worth mentioning, however, that there exists a uniform interpolant of Tn with respect
to Σn in DL-LiteNbool which is of polynomial size:

T ′Σn
=

{ l

1≤i≤n

(Ai
1 t Ai

2) v A
}
.

Of course, these worst case lower bounds do not imply that in practice it is unfeasible to compute uniform in-
terpolants; for example, it would be interesting to conduct experiments on deciding Σ-concept entailment using The-
orem 73 and compare the performance of this approach with the one based on the QBF encoding to be discussed
below. For experimental results on computing uniform interpolants for TBoxes in the description logic EL we refer
the reader to [26].

31

The notion of uniform interpolation considered above reflects the interpretation of ‘saying the same about a vo-
cabulary Σ’ as being Σ-concept inseparable. How can this notion of uniform interpolation be modified when we
are interested not in Σ-concept inseparability but, say, in Σ-query inseparability? The straightforward modification
of Definition 71 by replacing concept inseparability with query inseparability (or any other notion of inseparability
introduced above) is unsatisfactory, as shown by the following example.

Example 75. Let L ∈ {DL-LiteNbool,DL-LiteNhorn}. Consider the TBox

T = { Lecturer v ∃teaches, ∃teaches− v Course }

from Example 6, and let Σ = {Lecturer,Course}. Then TΣ = ∅ is a uniform interpolant of T with respect to Σ in L
because, as we have already seen, the empty TBox and T are Σ-concept inseparable in L. Equivalently, we know that

{C v D ∈ DL-LiteNbool | T |= C v D, sig(C v D) ∈ Σ }

consists of tautologies only. We also know that no Σ-TBox consisting of tautologies is Σ-query inseparable in L from
T . Thus, there does not exist a Σ-TBox T ′

Σ
in DL-LiteNbool such that T ′

Σ
and T are Σ-query inseparable. Hence, the

straightforward modification of Definition 71 by replacing concept inseparability with query inseparability leads to a
definition which allows very simple TBoxes in DL-LiteNbool and signatures Σ without uniform interpolants.

The example above shows that to obtain a satisfactory notion of forgetting and uniform interpolation that reflects
Σ-query inseparability, apart from replacing Σ-concept inseparability with Σ-query inseparability in Definition 71, we
also have to increase the expressive power of the description logic in which uniform interpolants are axiomatised.

Denote by DL-Liteu
bool the extension of DL-LiteNbool with the universal role U, where the DL-Liteu

bool concepts are
defined as follows

D ::= C | ∃U.C | D1 u D2 | ¬D

where C are DL-LiteNbool concepts. Given an interpretation I, we set (∃U.C)I = ∆I if CI , ∅, and (∃U.C)I = ∅

otherwise. The remaining model-theoretic notions are defined exactly as for DL-LiteNbool. Using the construction
from [9] one can show that the subsumption problem ‘T |= C1 v C2?’ is still coNP-complete for TBoxes T in
DL-Liteu

bool and concept inclusions C1 v C2 in DL-Liteu
bool. It is important that we regard U as a logical symbol, so

that sig(∃U.C) = sig(C).

Definition 76. Let T be a TBox in DL-LiteNbool and Σ a signature. A TBox TΣ in DL-Liteu
bool is called a uniform query

interpolant of T with respect to Σ in DL-Liteu
bool if T |= α for all α ∈ TΣ, sig(TΣ) ⊆ Σ, and T and TΣ are Σ-query

inseparable.

Example 77. Consider again the TBox

T = { Lecturer v ∃teaches, ∃teaches− v Course } and Σ = {Lecturer,Course}.

Then TΣ = {Lecturer v ∃U.Course} is a uniform query interpolant of T with respect to Σ in DL-Liteu
bool.

To analyse and justify this definition of uniform query interpolants, we first show that one can use uniform query
interpolants to understand Σ-query entailment in the same way as uniform interpolants can be used to understand
Σ-concept entailment.

Theorem 78. Let T and T ′ be TBoxes in DL-LiteNbool and Σ a signature. And let T ′
Σ

be a uniform query interpolant of
T ′ with respect to Σ in DL-Liteu

bool. Then T Σ-query entails T ′ if, and only if, T |= C1 v C2, for every (C1 v C2) ∈ T ′
Σ
.

Finally, one can show that uniform query interpolants always exist.

Theorem 79. For every TBox T in DL-LiteNbool and every signature Σ, one can construct a uniform query interpolant
TΣ of T with respect to Σ in DL-Liteu

bool.

32

We close this section with a brief discussion of open problems and related work on forgetting and uniform in-
terpolation. We have proposed notions of forgetting and uniform interpolation induced by concept inseparability in
DL-LiteNbool and DL-LiteNhorn as well as query inseparability in DL-LiteNbool. We have seen that the latter case is not
straightforward, as we had to enrich the underlying description logic DL-LiteNbool by the universal role so as to obtain
a notion for which query uniform interpolants always exist. Developing uniform interpolants based on the remaining
Σ-inseparability relations is an interesting problem, but it goes beyond the scope of this paper.

Forgetting concepts (but not roles) in DL-Lite was studied in [27] using a resolution-based technique. It is also
worth mentioning that, for many standard DLs such as ALC and even EL, uniform interpolants do not always exist
[24, 25, 26].

9. Experimental results

In order to see whether the logic-based approach to checking inseparability relations between and extracting
minimal modules from DL-Lite ontologies is feasible in practice, we conducted a series of experiments with a number
of ‘typical’ medium-size DL-LiteNbool ontologies. Instead of developing and implementing algorithms for checking the
Σ-concept and Σ-query entailment criteria of Theorems 20, 21 and 47, we encoded these criteria by means of quantified
Boolean formulas (QBFs, for short) and then employed standard off-the-shelf general purpose QBF solvers. In this
section, we discuss some details of the encodings and the results of the experiments.

9.1. QBF encodings

We begin by showing how the conditions of Proposition 46 for (precise) realisability of sets of types can be
encoded by means of QBFs. To represent ΣQ-types, we will use ΣQ-type variables b, which are lists of propositional
variables of the form Bb, where B is a basic ΣQ-concept different from ⊥ and >. This notation is extended then
inductively to arbitrary concepts built from basic ΣQ-concepts: given a ΣQ-type variable b, we set

⊥b = ⊥, >b = >, (¬C)b = ¬Cb, (C1 uC2)b = (C1)b ∧ (C2)b.

Let T be a TBox in DL-LiteNbool, m the number of role names in T , and Q ⊇ QT . To encode the notion of a
T -witness for a set of (k + 1)-many sig(T)Q-types, which is used in Proposition 46, we take sig(T)Q-type variables
b0, . . . , bk+2m and consider the propositional formula

Φk
T

(b0, . . . , bk+2m) =

k+2m∧
j=0

∧
C1vC2 ∈T

(
(C1)b j → (C2)b j

)
∧

m∧
i=1

[(k+2m∨
j=0

(∃P−i)b j → (∃Pi)bk+2i−1

)
∧

(k+2m∨
j=0

(∃Pi)b j → (∃P−i)bk+2i

)]
.

The meaning of this formula, encoding conditions (w2) and (w3) of Definition 45, is explained by the following
proposition:

Proposition 80. A pair ΞT = ((t0, . . . , tk), (tk+1, . . . , tk+2m)) of sequences of sig(T)Q-types is a T -witness for a set
Ξ = {t0, . . . , tk} of sig(T)Q-types if, and only if, Φk

T
(b0, . . . , bk+2m) is true under the following assignment a of the

truth-values to the propositional variables Bb j , for all basic sig(T)Q-concepts B and 0 ≤ j ≤ k + 2m:

a(Bb j) = T if, and only if, B ∈ t j.

Using the formulas Φk
T

(b0, . . . , bk+2m) and Propositions 46 and 80, we can now represent the problem of deciding
whether T1 Σ-concept entails T2 as the truth problem for certain QBFs.

Let mi be the number of role names in Ti, i = 1, 2, and Q = QT1∪T2 . Take, a ΣQ-type variable b, a (sig(Ti) \ Σ)Q-

type variable b̂i
0 and sig(Ti)Q-type variables bi

1, . . . , b
i
2mi

, for i = 1, 2, and consider the following QBF:

∀ b
[
∃ b̂1

0, b
1
1, . . . , b

1
2m1

Φ1
T1

(b · b̂1
0, b

1
1, . . . , b

1
2m1

) → ∃ b̂2
0, b

2
1, . . . , b

2
2m2

Φ1
T2

(b · b̂2
0, b2

1, . . . , b
2
2m2

)
]
, (3)

33

ResearchStaff u Visiting v ⊥ Academic v ∃teaches u ¬≥ 2 teaches

∃teaches v Academic t ResearchStaff ∃writes v Academic t ResearchStaff

ResearchStaff v ∃worksIn ∃worksIn− v Project

Project v ∃manages− ∃manages v Academic t Visiting

Figure 3: A fragment T1 of the ‘department ontology’.

where b · b̂i
0 is the sig(Ti)Q-type variable which is the concatenation of b and b̂i

0, i = 1, 2. Informally, this QBF

says the following: for every ΣQ-type t (represented by b), if t can be extended to a sig(T1)Q-type (by means of b̂1
0)

for which there exist 2m1-many sig(T1)Q-types (represented by b1
1, . . . , b

1
2m1

) such that the resulting set of 2m1 + 1

types is T1-realisable (as stated by Φ1
T1

(b · b̂1
0, b

1
1, . . . , b

1
2m1

)), then t can be also extended to a sig(T2)Q-type for which
2m2-many sig(T2)Q-types can be found such that the resulting set of these 2m2 + 1 types is T2-realisable. In other
words, QBF (3) is true if, and only if, T1 Σ-concept entails T2 (in DL-LiteNbool or DL-LiteNhorn). Note, by the way, that
together with the known results on the complexity of classes of QBFs [49, 55], this encoding provides an alternative
proof of the upper complexity bounds deciding Σ-concept entailment for both DL-LiteNbool and DL-LiteNhorn.

In a similar manner we can encode the criterion of Theorem 47 for Σ-query entailment between DL-LiteNbool

TBoxes. Take ΣQ-type variables b0, . . . , b2m1 , (sig(Ti) \ Σ)Q-type variables b̂i
0, . . . , b̂

i
2m1 , for i = 1, 2, and sig(T2)Q-

type variables b3
1, . . . , b

3
2m2

, and consider the QBF

∀ b0, . . . , b2m1

[
∃ b̂1

0, . . . , b̂
1
2m1 Φ1

T1
(b0 · b̂1

0, . . . , b2m1 · b̂
1
2m1) →

∃ b̂2
0, . . . , b̂2

2m1∃ b3
1, . . . , b

3
2m2

(
Φ

1+2m1
T2

(b0 · b̂2
0, . . . , b2m1 · b̂

2
2m1 , b

3
1, . . . , b

3
2m2

) ∧
2m2∧
i=1

2m1∨
j=0

χ(b3
i , b j)

)]
, (4)

where χ(b3
i , b j) is the conjunction of equivalences (Bb3

i
↔ Bb j), for all basic ΣQ-concepts (which is required to

encode condition (w-pr) of Definition 45). It can be seen that QBF (4) is true if, and only if, T1 Σ-query entails T2 in
DL-LiteNbool.

Although the QBFs (3) and (4) look similar, belong to the same class of ∀∃ QBFs and the same complexity class,
in practice they behave quite differently. In (3), we take a ΣQ-type t, (i) extend t to a sig(T1)Q-type, (ii) check whether
there are ‘witnesses’ for all the roles in that type and the types providing those witnesses, and if this is the case, we
repeat (i) and (ii) again for T2 in place of T1. QBF (4) is much more complex not only because now we have to
start with a set of (1 + 2m1) ΣQ-types rather than a single type. More importantly, the T2-witnesses we choose for
these types are not arbitrary but must have Σ-restrictions that coincide with some of the original (1 + 2m1) ΣQ-types.
This last condition, represented by a formula with 2m2 × (1 + 2m1)-many occurrences of χ(b3

i , b j), makes QBF (4)
computationally much more costly in practice.

9.2. Experiments with Σ-entailment

To evaluate the performance of QBF solvers when checking Σ-concept and Σ-query entailment, we used an exten-
sion of the DL-LiteNbool approximation of the standard ‘department ontology’ (cf. http://swat.cse.lehigh.edu/
projects/lubm/). The reader can appreciate the complexity of the problems the QBF solvers were facing by trying
to check whether the ontology T1 in Fig. 3 (which is a tiny part of our department ontology) Σ-concept and Σ-query
entails the ontology T2 = T1 ∪ {Visiting v ≥ 2 writes}, for Σ = {teaches}.

As our benchmarks, we considered three series of instances of the form (T1,T2,Σ). In the NN-series, T1 does
not Σ-concept entails T2; in the YN-series, T1 Σ-concept but not Σ-query entails T2; and in the YY-series, T1 Σ-query
entails T2. The sizes of the instances are uniformly distributed over the intervals given in the table below:

34

no. of no. of axioms no. of basic concepts
series instances T1 T2 T1 T2 Σ

NN 840 59–308 74–396 47–250 49–300 5–103
YN 504 56–302 77–382 44–246 58–298 6–89
YY 624 43–178 43–222 40–158 40–188 5–64

The next table illustrates the sizes of the QBF translations of our instances for both Σ-concept and Σ-query entailment:

Σ-concept entailment QBF Σ-query entailment QBF
series no. of variables no. of clauses no. of variables no. of clauses
NN 1,469–48,631 2,391–74,621 1,715–60,499 5,763–1,217,151
YN 1,460–46,873 2,352–71,177 1,755–59,397 7,006–1,122,361
YY 1,006–16,033 1,420–23,363 1,202–20,513 2,963–204,889

Note the large difference between the sizes of the QBF translations for Σ-concept and Σ-query entailment (say, 74,621
v. 1,217,151 clauses in the same instance), which reflects the difference between QBFs (3) and (4) discussed above.
Although of the same worst-case complexity, in practice Σ-concept entailment turns out to be much easier to check
than Σ-query entailment; see Fig. 4, where the graphs in the left (right) column show the percentage of solved instances
for Σ-concept (respectively, Σ-query) entailment.

We experimented with four standard QBF solvers: Skolemisation-based sKizzo [56] and search-based 2clsQ [57],
yQuaffle [58, 59] and QuBE [60]. The tests were conducted on a 3GHz P4 machine with 2GB RAM.

It turned out that none of the four solvers was better than the others on all instances: for example, QuBE performed
much stronger than sKizzo on the NN and YN series, but was outperformed by sKizzo on the (much harder) YY
series. Moreover, none of the solvers could cope single-handedly with all of the tests and, even when the solver was
successful, the runtime was quite unpredictable and could range from a few seconds to a few hours.

To select ‘the best’ QBF solver for each given instance, we employed the self-adaptive multi-engine system
aqme [28], a tool capable of learning and choosing a QBF engine with ‘more chances’ to solve a given input. An
important property of aqme is that it can update its learned policies when the usage scenario changes substantially
by using an adaptation schema called retraining. Prior to the experiments, aqme computed a selection of syntactic
features (characterising the particular problems in question) from a pool of suitable QBF instances. A typical run of
aqme is as follows. First, it leverages its inductive model (built using 1-nearest neighbour) to predict the best engine
for a given input QBF. If the engine solves the QBF, aqme terminates and returns the answer. Otherwise, it starts
its self-adaptive mechanism. It calls a different engine to solve the input formula. If it is successful, the retraining
procedure is called and the inductive model is updated. Which engine is called for retraining and how much CPU time
is granted to each engine are critical points for aqme’s performance. As follows from Fig. 4, aqme indeed managed to
select the best solver in all the cases, which was absolutely crucial for our module extraction experiments.

9.3. Practical module extraction

We extracted minimal modules from DL-LiteNbool encodings of two real-world commercial software applications
called ‘Core’ and ‘Umbrella’. The Core ontology is based on a supply-chain management system used by the book-
store chain Ottakar’s, now rebranded as Waterstone’s. It contains 1283 axioms, 83 concept names and 77 role names,
and features numerous functionality constraints, covering and disjointness constraints, and quite a few concepts of
the form ≥ q R with q > 2. The Umbrella ontology is based on a specialised research data validation and processing
system used by the Intensive Care National Audit and Research Centre (http://www.icnarc.org). It contains 1247
axioms, 79 concept names and 60 role names. Both ontologies are representations of the relevant data structures and
were constructed by analysing the data model, database schema and application-level business logic. The ‘publisher
ontology’ in Example 70 is part of Core.

We have conducted experiments with three types of minimal module extraction: for a DL-LiteNbool TBox T and a
signature Σ, extract some minimal Σ-concept inseparability module (MCM) ofT , some minimal Σ-query inseparability
module (MQM), and the minimal depleting Σ-query inseparability module (MDQM) of T . As we have seen above,
these extraction problems can be solved by the algorithms of Theorems 64 and 69 together with the ‘QBF oracle’ for
deciding the Σ-concept and Σ-query inseparability relations. Unfortunately, a naı̈ve implementation of this approach

35

.

.

bc bc bc bc bc bc bc bc
bc bc bc

u

u
u

u
u

u
u

u

u
u

u

rs

rs

rs

rs

rs

rs

rs
rs

rs

rs
rs

+

+
+

+

+
+

+
+

+
+ +

q q
q

q

q

q

q

q

q

q q

bc
bc bc bc bc

bc bc bc bc bc bc

u u u u
u u

u
u

u
u

u

rs

rs

rs

rs

rs

rs

rs
rs

rs
rs

rs

+

+
+

+

+
+ + +

+
+

+

q q
q

q

q

q
q

q

q
q q

bc

bc
bc bc

bc
bc bc bc

bc bc bc

u

u
u

u
u

u

u
u

u
u

u

rs

rs

rs
rs

rs
rs

rs

rs
rs

rs rs

+

+
+

+
+

+
+

+ + + +

q q

q

q

q

q

q
q

q q q

bc

bc bc bc bc
bc bc bc

bc bc bc

u

u
u

u
u

u
u

u
u

u
u

rs

rs

rs

rs
rs

rs

rs
rs

rs
rs

rs

+

+
+

+

+
+

+
+

+
+ +

q q

q

q

q

q

q

q

q
q q

bc bc bc bc bc bc bc bc bc bc
bc

u
u

u u
u

u
u

u
u

u

u

rs rs rs rs rs rs rs rs rs rs rs+
+

+
+

+

+
+

+
+

+ +

q q
q

q

q

q

q

q

q

q
q

bc bc bc bc bc bc bc bc bc bc bcu
u

u u
u

u
u

u
u

u

u

rs rs rs rs rs rs rs rs rs rs rs+
+

+
+

+

+

+

+
+

+ +

q q
q

q

q

q

q

q

q

q q

bc bc bc bc
bc

bc
bc

bc

bc

bc
bc

u u u u u u u u u u urs rs rs rs rs rs rs rs rs rs rs+ + + + + + + + + + +q q q q
q

q
q

q

q
q q

bc bc bc bc bc bc bc bc
bc

bc
bc

u
u u u

u
u

u
u

u
u

u

rs rs rs rs rs rs rs rs rs rs rs+ + +
+

+
+

+
+

+
+ +

q q
q

q

q

q

q

q

q

q q

bc

u

rs

+

q

sKizzo

2clsQ

yQuaffle

QuBE

aqme

%

0

10

20

30

40

50

60

70

80

90

100

0 1 2 4 8 16 32 64 128 256 512 s

0

10

20

30

40

50

60

70

80

90

100

0 1 2 4 8 16 32 64 128 256 512 s

0

10

20

30

40

50

60

70

80

90

100

0 1 2 4 8 16 32 64 128 256 512 s

0

10

20

30

40

50

60

70

80

90

100

0 1 2 4 8 16 32 64 128 256 512 s

%

0

10

20

30

40

50

60

70

80

90

100

0 1 2 4 8 16 32 64 128 256 512 s

0

10

20

30

40

50

60

70

80

90

100

0 1 2 4 8 16 32 64 128 256 512 s

0

10

20

30

40

50

60

70

80

90

100

0 1 2 4 8 16 32 64 128 256 512 s

0

10

20

30

40

50

60

70

80

90

100

0 1 2 4 8 16 32 64 128 256 512 s

NN

YN

YY

total

Σ-concept entailment Σ-query entailment

Figure 4: Percentage of solved instances.

turns out to be hopelessly inefficient because to extract a minimal module from an ontology with, say, 1K axioms,
even for ‘typical’ real-world examples the algorithm would call the oracle about 500K times. To reduce the numbers
of such calls, we optimised the algorithms by checking a group of axioms rather than a single axiom at a time (in
practice, this reduced the number of calls to 1–3K for a 1K ontology). On the other hand, to reduce the size of
the original ontology, we ‘pre-processed’ it by means of the tractable syntactic locality-based algorithm from [17]
extracting the so-called >⊥-module (>⊥M), which is a (not necessarily minimal) module with respect to the Σ-model
inseparability relation, and so contains all the minimal modules we are interested in. In fact, we have the following
inclusions:

MCM ⊆ MQM ⊆ MDQM ⊆ >⊥M,

where the first ⊆ should be read as ‘every MQM contains some MCM’, the second as ‘every MQM is contained in the
MDQM’, and the third ⊆ as ‘the MDQM is contained in the >⊥M’. Thus we can use these inclusions by computing
modules from right to left.

Modules for |Σ| = 1. Our first experiment was to extract the modules of all three types, for all singleton signatures,
from the full Core and Umbrella ontologies and from the corresponding pre-computed >⊥Ms. For instance, the

36

extracted MCM, MQM, and MDQM of Core for Σ = {Publisher} are given in Example 70 and contain 0, 3, and 20
axioms, respectively, whereas the corresponding >⊥M has 228 axioms.

Table 2 summarises the results of the experiments (on average per module) in terms of module sizes. It also con-
tains the average sizes of the segments extracted using the approaches described in [15] (SR), [14] (Prompt), and [16]
(E-conn). Since these approaches do not support role names in the initial signature, we have only extracted modules
for concept names in these cases. Furthermore, SR and Prompt are not logic-based and do not, in general, preserve
entailments. (The Publisher-segments for SR, Prompt, and E-conn contain 19, 189, and 349 axioms, respectively.)

Core Umbrella
ontology 1283 1247
>⊥M 226 69
MDQM 80 57
MQM 5 5
MCM 2 2
SR-segment 37 14
Prompt segment 162 102
E-conn module 243 47

Table 2: Ontology and average module sizes for singleton signatures.

Table 3 compares the average extraction time and distribution of QBF engines calls for extracting MDQMs from
the >⊥M and the full ontology. The distribution of calls to the QBF engines changes notably if MDQMs are extracted
from the whole ontology rather than from the >⊥Ms: in the former case, the majority of calls is issued to sKizzo,
while QuBE handles most of the calls in the latter case. This complies with the observation that, in general, QuBE
tends to solve easy instances more quickly, and sKizzo performs more successfully on harder instances.

Core Umbrella
>⊥M full >⊥M full

extraction time 126s 2233s 60s 2488s
total aqme calls 385 565 254 463

sKizzo 14% 76% 4% 74%
2clsQ 2% 17% 1% 14%
QuBE 84% 7% 95% 12%

Table 3: Extraction time and distribution of calls for MDQM extracted from the >⊥M and the full ontology.

Modules for |Σ| = 10. Then, for each of our ontologies, we randomly generated 30 signatures of 10 concept names
each and extracted all possible modules; their average sizes are shown in Fig. 5. MCMs and MQMs were extracted
from MDQMs, which in turn were extracted from >⊥Ms. Again, in most of the aqme calls (1302/1694 for MDQMs
and 152/181 for MCMs, on average) QuBE was invoked. The average runtime for MDQMs (MCMs) was around 30
(1.5) minutes.

It is to be noted that we have only been able to extract 15 MQMs for Umbrella and 5 MQMs for Core because
the runtime for certain instances increases to a couple of days. One of the reasons is the growth of the QBF instances
generated whenever the algorithm needs to test inseparability between module candidates and the original ontology.
In the case of MDQMs, a candidate’s complement needs to be compared with the empty TBox, which can be done
rather efficiently. The case of MCMs and MQMs involves many comparisons of two very similar TBoxes, which, for
MQMs, leads to the generation of QBF instances that are quadratic in the number of roles involved (as opposed to
linear for MCMs; see Section 9.1).

37

34

M
CM

54
M

Q
M

294

M
D

Q
M

465

⊤⊥
M

206

SR
S

598

Pr
om

pt

393

E-
m

od

Core (1283)

39

M
CM

66

M
Q

M

319

M
D

Q
M

351

⊤⊥
M

117

SR
S

509

Pr
om

pt

191

E-
m

od

Umbrella (1247)

0

200

400

600

Figure 5: Module sizes for |Σ| = 10 and standard deviation.

10. Conclusion

We have introduced and analysed a framework for signature-based notions of difference, entailment and insepara-
bility between ontologies in the description logics DL-LiteNbool and DL-LiteNhorn. These notions can be used to compare
two versions of an ontology, to check whether importing one ontology into another has (possibly unwanted) side-
effects, and to study and define refinements of a given ontology. We have also demonstrated that Σ-inseparability can
be used as a framework for both module extraction and forgetting. Finally, we have presented promising experimental
results of using QBF solvers to decide Σ-inseparability and extract (minimal) modules.

Many open problems remain. For example, it should be investigated how the Σ-difference between ontologies can
be approximated in practice in such a way that the approximation provides the developers and users of ontologies with
sufficient information to decide how different versions of ontologies can be reconciled and whether the differences are
relevant for a certain application. Another open problem is to establish the precise computational complexity of Σ-
model entailment and understand its practical applicability. We conjecture that, for DL-LiteNbool TBoxes corresponding
to UML class diagrams or ER models used in practice, typically rather small counterexamples to Σ-model entailment
exist and that discovering and computing them is often feasible. Finally, forgetting and uniform interpolation has
not been developed for (strong) query-inseparability in DL-LiteNhorn, and experiments showing the size of uniform
interpolants for real-world ontologies would be very desirable.

A. Appendix

Here we provide the omitted proofs of the statements from the previous sections. We begin by establishing a
number of basic results that will be required in these proofs.

A.1. Preliminaries

The aim of this section is to introduce, in Lemma 81, an operation which allows us to amalgamate interpretations
in a ‘truth-preserving’ way. We will need two simple definitions.

Given a signature Σ, we say that two interpretations I and J are Σ-isomorphic and write I ∼Σ J if there is
a bijection f : ∆I → ∆J such that f (aI) = aJ , for every object name a, x ∈ AI if, and only if, f (x) ∈ AJ , for
every concept name A in Σ, and (x, y) ∈ PI if, and only if, (f (x), f (y)) ∈ PJ , for every role name P in Σ. Clearly,
Σ-isomorphic interpretations cannot be distinguished by Σ-TBoxes, Σ-ABoxes or Σ-queries.

Given a family of interpretations Ii, for i ∈ I, with 0 ∈ I, define the interpretation

J =
⊕

i∈I

Ii,

where ∆J = {(i,w) | i ∈ I,w ∈ ∆Ii }, aJ = (0, aI0), for an object name a, AJ = {(i,w) | i ∈ I,w ∈ AIi }, for a concept
name A, and PJ = {((i,w1), (i,w2)) | i ∈ I, (w1,w2) ∈ PIi }, for a role name P. J will be called the disjoint union of

38

the Ii. The disjoint union of ω copies of an interpretation I, that is, the disjoint union of the family Ii, for i ∈ ω and
Ii = I, will be denoted by Iω:

Iω =
⊕
i∈ω

Ii.

It should be clear that Σ-TBoxes, Σ-ABoxes or Σ-queries (for any signature Σ) cannot distinguish between I and Iω.
The following lemma provides an important model-theoretic property of DL-LiteNbool that will be frequently used

to establish model-theoretic characterisations of various notions of Σ-entailment.

Lemma 81. Let T1 and T2 be TBoxes in DL-LiteNbool, Σ a signature, and let Ξ be both T1- and T2-precisely realisable
set of ΣQT1∪T2 -types. Then, for every at most countable model I1 of T1 precisely realising Ξ and every signature Σ′

with Σ′ ∩ sig(T2) ⊆ Σ, there is a model I∗ of T2 such that

(i) I∗ ∼Σ′ I
ω
1 ;

(ii) I∗ precisely realises Ξ;

In particular, if sig(T1) ⊆ Σ′ then I∗ is a model of T1 ∪ T2.

Proof. Let I2 be an at most countable model ofT2 precisely realising Ξ. As both Iω1 and Iω2 realise each ΣQT1∪T2 -type
from Ξ at countably infinitely many points, there is a bijection f : ∆I

ω
2 → ∆I

ω
1 which is invariant under ΣQT1∪T2 -types.

Define I∗ by taking ∆I
∗

= ∆I
ω
2 and, for all object names a, concept names A and role names P,

aI
∗

= f −1(aI
ω
1), AI

∗

=

{x | f (x) ∈ AI
ω
1 }, if A ∈ Σ ∪ Σ′,

AI
ω
2 , otherwise,

PI
∗

=

{(x, y) | (f (x), f (y)) ∈ PI
ω
1 }, if P ∈ Σ ∪ Σ′,

PI
ω
2 , otherwise.

By definition, I∗ ∼Σ∪Σ′ I
ω
1 . Therefore, I∗ ∼Σ′ I

ω
1 and I∗ precisely realises Ξ.

Observe that each point x in ∆I
∗

has the same sig(T2)QT1∪T2 -type in Iω2 and I∗. Indeed, as f is invariant under
ΣQT1∪T2 -types, for a basic ΣQT1∪T2 -concept B, we have x ∈ BI

ω
2 if, and only if, f (x) ∈ BI

ω
1 if, and only if, x ∈ BI

∗

.
And, for a basic (sig(T2) \ Σ)QT1∪T2 -concept B, BI

∗

= BI
ω
2 by definition. Therefore, I∗ |= T2.

Finally, sig(T1) ⊆ Σ′ and I∗ ∼Σ′ I
ω
1 give I∗ |= T1. q

Next, we establish an analogue of Lemma 81 for TBoxes in DL-LiteNhorn and sub-precise realisability. Given a
signature Σ and interpretations I and J , a map f : ∆I → ∆J is called a Σ-homomorphism if aJ = f (aI), for every
object name a, x ∈ AI implies f (x) ∈ AJ , for every concept name A in Σ and x ∈ ∆I, and (x, y) ∈ PI implies
(f (x), f (y)) ∈ PJ , for every role name P in Σ and x, y ∈ ∆I. Queries in DL-LiteNhorn are positive existential formulas
and therefore, if there is a Σ-homomorphism from I to J then I |= q(a) implies J |= q(a), for every Σ-query q(x) in
DL-LiteNhorn and every tuple a.

Lemma 82. Let T1 and T2 be TBoxes in DL-LiteNhorn, Σ a signature, and let Ξ be a set of precisely T1-realisable
ΣQT1∪T2 -types that is also sub-precisely T2-realisable. Then, for every countable model I1 of T1 precisely realising
Ξ and every signature Σ′ with Σ′ ∩ sig(T2) ⊆ Σ, there exist a model I∗ of T2 realising all the types from Ξ and a
Σ′-homomorphism from I∗ onto I1. In particular, I∗ sub-precisely realises Ξ.

Proof. Let I2 be a countable model of T2 sub-precisely realising Ξ. Without loss of generality we may assume that
the interpretations of all symbols not in sig(T2) are empty. We construct a sequence of pairs (∆i, hi), i ∈ ω, where
∆i ⊆ ∆I

ω
2 and hi : ∆i → ∆I1 is a Σ-homomorphism from the ∆i part of Iω2 onto I1, such that

∆i ⊆ ∆i+1, for all i ∈ ω and
⋃

i∈ω ∆i = ∆I
ω
2 .

To start with, choose ∆0 ⊆ ∆I
ω
2 and a bijection h0 : ∆0 → ∆I1 in such a way that h0 is invariant under ΣQT1∪T2 -types

and each ΣQT1∪T2 -type realised in Iω2 is realised by countably infinitely many points in ∆I
ω
2 \ ∆0. Such a bijection

exists because Iω2 realises every ΣQT1∪T2 -type from Ξ countably infinitely many times.
Assume that an ordering < of ∆I

ω
2 is isomorphic to ω, and suppose that (∆k, hk) have already been constructed. To

construct (∆k+1, hk+1), we apply one of the following two rules to x ∈ ∆I
ω
2 , provided that neither is applicable to any

y ∈ ∆I
ω
2 with y < x.

39

• If x ∈ ∆k and the ΣQT1∪T2 -type of x in Iω2 contains ≥ q R such that RI
ω
2 ∩ (∆k ×∆k) has fewer than q pairs (x, xi),

pick a point y ∈ ∆I
ω
2 \ ∆k that has the same ΣQT1∪T2 -type as a point z ∈ ∆I1 with (hk(x), z) ∈ RI1 (this can be

done since the ΣQT1∪T2 -type of x in Iω2 is positively contained in the ΣQT1∪T2 -type of hk(x) in Iω1). Then we set
∆k+1 = ∆k ∪ {y} and hk+1 = hk ∪ {(y, z)}.

• If x ∈ ∆I
ω
2 \∆k, select z ∈ ∆I1 such that the ΣQT1∪T2 -type of x in Iω2 is positively contained in the ΣQT1∪T2 -type

of z in I1. Set ∆k+1 = ∆k ∪ {x} and hk+1 = hk ∪ {(x, z)}.

Let h =
⋃

i∈ω hi. Define an interpretation I∗ by taking ∆I
∗

= ∆I
ω
2 and, for all object names a, concept names A and

role names P,

aI
∗

= h−1
0 (aI1), AI

∗

=

{x | f (x) ∈ AI
ω
1 }, if A ∈ Σ ∪ Σ′,

AI
ω
2 , otherwise,

PI
∗

=

{
(x, y) | (h(x), h(y)) ∈ PI1

}
, if P ∈ Σ ∪ Σ′,

PI
ω
2 , otherwise.

Clearly, the function h is a Σ ∪ Σ′-homomorphism from I∗ onto I1 (recall that in I2 the interpretations of symbols
from Σ′ \ sig(T2) are empty) and the sig(T2)QT1∪T2 -type of each x is the same in I∗ and Iω2 . Hence I∗ is a model of
T2. q

We are now in a position to apply Lemma 81 and prove Theorem 73.

Theorem 73. Let L ∈ {DL-LiteNbool,DL-LiteNhorn}. Then L has uniform interpolation, and a uniform interpolant of a
TBox T with respect to Σ in L can be constructed effectively.

Proof. Let T be a TBox in DL-LiteNbool and Σ a signature. Let TΣ be the set of all concept inclusions
d

C∈t C v ⊥
such that t is a ΣQT -type which is not T -realisable. We show that TΣ is a uniform interpolant for T with respect to
Σ in DL-LiteNbool. Clearly TΣ |= C v D implies T |= C v D for all concept inclusions C v D. Conversely, assume
that TΣ 6|= C v D and sig(C v D) ⊆ Σ′, for a signature Σ′ with Σ′ ∩ sig(T) ⊆ Σ. Let I1 be a model of TΣ such
that I1 6|= C v D. We may assume that I is at most countable and realises the set Ξ of all TΣ-realisable ΣQT -types.
By the definition of TΣ, Ξ coincides with the set of all T -realisable ΣQT -types. Thus, Ξ is both T and TΣ-precisely
realisable. So, by Lemma 81, we have a model I∗ ∼Σ′ I

ω
1 of T . It follows that I∗ 6|= C v D. Thus T 6|= C v D, as

required.
Assume now that T is a DL-LiteNhorn TBox. We define T ′

Σ
as the set of all concept inclusions

d
B∈t+ B v B0 that

follow from T , where t is a ΣQT -type that is not T -realisable and ¬B0 ∈ t \ t+. It follows that T ′
Σ

implies TΣ. Indeed,
TΣ consists of concept inclusions of the form

d
C∈t C v ⊥, or, equivalently,

d
B∈t+ B v

⊔
¬B∈t\t+ B. As Horn KBs enjoy

the disjunction property, this means that there is ¬B0 ∈ t \ t+ such that T ′
Σ
|=

d
B∈t+ B v B0. So t is not T -realisable

and
d

B∈t+ B v B0 ∈ T
′
Σ
. Thus, T ′

Σ
is as required. q

A.2. Proofs of results from Section 4

Now we use the technique developed in the previous section in order to prove the claims made in Section 4.
Throughout this section we use the fact that if a type is realised then it is realised in an at most countable model (and
similarly, if a set of types is precisely realisable then it is precisely realisable in an at most countable model).

Theorem 20. The following conditions are equivalent for TBoxes T1 and T2 in DL-LiteNbool and a signature Σ:

(ceb) T1 Σ-concept entails T2 in DL-LiteNbool;

(r) every T1-realisable ΣQT1∪T2 -type is T2-realisable.

Proof. (ceb)⇒ (r) Suppose that t is a T1-realisable ΣQT1∪T2 -type which is not T2-realisable. Then T2 |=
d

C∈t C v ⊥
but T1 6|=

d
C∈t C v ⊥, contrary to T2 being Σ-concept entailed by T1.

(r) ⇒ (ceb) Suppose otherwise. Then there is C1 v C2 with sig(C1 v C2) ⊆ Σ such that T2 |= C1 v C2 and
T1 6|= C1 v C2. Take the uniform interpolant T2Σ of T2 with respect to Σ provided by Theorem 73. As T2 and T2Σ

are Σ-concept inseparable, we can find C′1 v C′2 ∈ T2Σ such that T1 6|= C′1 v C′2. And as C′1 v C′2 is a ΣQT2 -concept

40

inclusion in DL-LiteNbool, we can find a T1-realisable ΣQT1∪T2 -type that is not T2-realisable. Indeed, let I be a model
of T1 with a point x such that x ∈ (C′1 u ¬C′2)I. Then the ΣQT1∪T2 -type realised at x in I is not T2-realisable. q

Theorem 21. The following conditions are equivalent for TBoxes T1 and T2 in DL-LiteNbool and a signature Σ:

(sceb) T1 strongly Σ-concept entails T2 in DL-LiteNbool;

(qeb) T1 Σ-query entails T2 in DL-LiteNbool;

(sqeb) T1 strongly Σ-query entails T2 in DL-LiteNbool;

(pr) every precisely T1-realisable set of ΣQT1∪T2 -types is precisely T2-realisable.

Proof. The implications (sqeb)⇒ (qeb) and (sqeb)⇒ (sceb) follow immediately from definitions.
(pr)⇒ (sqeb) Suppose there are a Σ-TBox T , Σ-ABoxA and Σ-query q(a) in DL-LiteNbool with (T2∪T ,A) |= q(a)

and (T1 ∪ T ,A) 6|= q(a). Take a model I1 of (T1 ∪ T ,A) such that I1 6|= q(a) and let Ξ be the set of ΣQT1∪T2 -types
realised in I1. By (pr), Ξ is precisely T2-realisable. Then, by Lemma 81, there exists a model I∗ of T2 such that
I∗ ∼Σ I

ω
1 , and so I∗ |= (T ,A) and I∗ 6|= q(a), contrary to (T2 ∪ T ,A) |= q(a).

(qeb) ⇒ (pr) Let Ξ be the set of ΣQT1∪T2 -types realised in a model I of T1, and letAΞ = {C(at) | C ∈ t, t ∈ Ξ},
where at is a fresh object name for each t ∈ Ξ. It follows that I |= (T1,AΞ). Suppose that Ξ is not precisely
T2-realisable. Then two cases are possible:

1. If, for every model I′ of T2, there is some t ∈ Ξ that is not realised in I′, i.e., I′ 6|= AΞ, then consider the query
q = ⊥: we have (T2,AΞ) |= q but (T1,AΞ) 6|= q, which is a contradiction.

2. Otherwise, every model of T2 must realise a ΣQT1∪T2 -type that is not in Ξ. Let Θ be the set of all T2-realisable
ΣQT1∪T2 -types that are not in Ξ. As Θ , ∅, we can take q = ∃x

∨
t∈Θ

∧
C∈t C(x). Then we have (T2,AΞ) |= q

but (T1,AΞ) 6|= q, which is again a contradiction.

(sceb)⇒ (pr) Let Ξ be a set of precisely T1-realisable ΣQT1∪T2 -types, and let TΞ =
{
> v

⊔
t∈Ξ

d
C∈t C

}
. Then, for

every t ∈ Ξ, we have T1 ∪TΞ 6|=
d

C∈t C v ⊥. Therefore, by (sceb), T2 ∪TΞ 6|=
d

C∈t C v ⊥, and thus there is a model
It of T2 ∪ TΞ realising t. Clearly,

⊕
t∈Ξ It is a model of T2 precisely realising the types in Ξ. q

Theorem 26. For any TBoxes T1 and T2 in DL-LiteNhorn and any signature Σ, the following conditions are equivalent:

(qeh) T1 Σ-query entails T2 in DL-LiteNhorn;

(spr) every precisely T1-realisable set of ΣQT1∪T2 -types is sub-precisely T2-realisable.

Proof. (spr)⇒ (qeh) Suppose there are a Σ-ABoxA and a Σ-query q(a) in DL-LiteNhorn such that (T2,A) |= q(a) and
(T1,A) 6|= q(a). Let I1 be a model of (T1,A) with I1 6|= q(a), and let Ξ be the set of ΣQT1∪T2 -types realised in I1.
By (spr), Ξ is sub-precisely T2-realisable. By Lemma 82, there is a model I∗ of T2 and a Σ-homomorphism from I∗

onto I1. But then I∗ |= A and I∗ 6|= q(a), from which (T2,A) 6|= q(a), contrary to our assumptions.
(qeh)⇒ (spr) Let Ξ be the set of ΣQT1∪T2 -types realised in a model I of T1, and letAΞ = {B(at) | B ∈ t+, t ∈ Ξ},

where at is a fresh object name for each t ∈ Ξ. It follows that I |= (T1,AΞ). Suppose that Ξ is not sub-precisely
T2-realisable. Then two cases are possible:

1. If, for every model I′ of T2, there is t ∈ Ξ with (
d

B∈t+ B)I
′

= ∅, i.e., I′ 6|= AΞ, then consider the query q = ⊥:
we have (T1,AΞ) 6|= q but (T2,AΞ) |= q, which is a contradiction.

2. Otherwise, every model I′ of T2 satisfying AΞ must realise a ΣQT1∪T2 -type that is not positively contained in
any type from Ξ. Let Θ be the set of all such ΣQT1∪T2 -types. As Θ , ∅, we can take q = ∃x

∨
t∈Θ

∧
B∈t+ B(x).

Then (T2,AΞ) |= q but (T1,AΞ) 6|= q, which is again a contradiction.

This completes the proof of the theorem. q

The following model-theoretic property of TBoxes in DL-LiteNhorn is standard in Horn logic; see, e.g., [9].
41

Lemma 83. Let T be a TBox in DL-LiteNhorn and t a T -realisable ΣQ-type. Then there exists a countable model
JT (t) of T such that JT (t) realises t and, for every model I of T realising t, there exists a Σ-homomorphism from
JT (t) to I.

In what follows we fix some model JT (t) mentioned in the formulation of the lemma and call it the minimal
model of T realising t.

Given a realisable set Ξ of ΣQ-types, let the TBox TΞ contain all the ΣQ-concept inclusions

B1 u · · · u Bk v B

in DL-LiteNhorn such that B ∈ t+ whenever B1, . . . , Bk ∈ t+, for all t ∈ Ξ. We will call TΞ the TBox induced by Ξ. Note
that (i) if, for distinct ΣQ-concepts B1, . . . , Bk, there is no t ∈ Ξ with B1, . . . , Bk ∈ t+ then B1 u · · · u Bk v ⊥ is in TΞ,
and (ii) if B ∈ t+, for all t ∈ Ξ, then > v B ∈ TΞ. The following lemma establishes a useful criterion for deciding
meet-precise T -realisability of a set Ξ in terms of T ∪ TΞ-realisability:

Lemma 84. Let Ξ be a set of ΣQ-types and t a ΣQ-type. Let Ξt = {ti ∈ Ξ | t+ ⊆ t+
i }. Then t is TΞ-realisable if, and

only if, Ξt , ∅ and t+ =
⋂

ti∈Ξt t+
i .

In particular, Ξ is meet-precisely T -realisable, for a TBox T , if, and only if, every type in Ξ is T ∪TΞ-realisable.

Proof. (⇒) If Ξt = ∅ then
d

B∈t+ B v ⊥ is in TΞ, and so t cannot be TΞ-realisable. If Ξt , ∅ then, for every
B′ ∈

⋂
ti∈Ξt t+

i , we have
d

B∈t+ B v B′ in TΞ. So t+ ⊇
⋂

ti∈Ξt t+
i .

(⇐) If there is no model of TΞ realising t, then TΞ |=
d

B∈t+ B v
⊔
¬B∈t\t+ B, whence, by Theorem 24, there is

¬B′ ∈ t \ t+ such that TΞ |=
d

B∈t+ v B′, and so
d

B∈t+ B v B′ is in TΞ. Therefore, B′ ∈ t+, which is impossible. q

Lemma 85. Let Ξ be a T -realisable set of ΣQ-types. If a ΣQ-type t is TΞ-realisable then t is T -realisable.

Proof. By Lemma 84, there are t1, . . . , tk ∈ Ξ such that t+ =
⋂

i t+
i . As the ti are all realised in some model I of T

and the intersection of models is a model for a Horn KB, t is T -realisable. q

We are now in a position to prove the following criterion:

Theorem 27. For any TBoxes T1 and T2 in DL-LiteNhorn and any signature Σ, the following conditions are equivalent:

(sceh) T1 strongly Σ-concept entails T2 in DL-LiteNhorn;

(sqeh) T1 strongly Σ-query entails T2 in DL-LiteNhorn;

(mpr) every precisely T1-realisable set of ΣQT1∪T2 -types is meet-precisely T2-realisable.

Proof. The implication (sqeh)⇒ (sceh) is trivial.
(mpr) ⇒ (sqeh) Suppose there are a Σ-TBox T , a Σ-ABox A and a Σ-query q(a) in DL-LiteNhorn such that

(T2 ∪ T ,A) |= q(a) but (T1 ∪ T ,A) 6|= q(a). Let I be a model of (T1 ∪ T ,A) with I 6|= q(a), and let Ξ be the set
of ΣQT1∪T2 -types realised in I. Since I |= TΞ, every type in Ξ is TΞ-realisable. Let Ξ∗ be the set of all TΞ-realisable
ΣQT1∪T2 -types. Consider

J = I ⊕
⊕
t∈Ξ∗
JTΞ

(t).

As Ξ is T1 ∪T -realisable, by Lemma 85, every TΞ-realisable type is T1 ∪T -realisable, and so J |= T1 ∪T . Clearly,
we have J |= A and, as there is a Σ-homomorphism from J onto I, J 6|= q(a). Also, observe that J precisely
realises Ξ∗: indeed, J realises every TΞ-realisable ΣQT1∪T2 -type and, conversely, every ΣQT1∪T2 -type realised in J
is TΞ-realisable. By (mpr) and Lemma 84, there exists a model I′ of T2 realising all the types in Ξ∗ and such that
each ΣQT1∪T2 -type realised in I′ is TΞ∗ -realisable. In fact, I′ realises precisely the set Ξ∗: since Ξ∗ is TΞ-realisable,
by Lemma 85, every TΞ∗ -realisable type t is TΞ-realisable, and so t ∈ Ξ∗. We then apply Lemma 81 to J and Ξ∗ and
find a model I∗ of T2 such that I∗ ∼Σ J

ω. It follows that I∗ is a model of (T2 ∪ T ,A) such that I∗ 6|= q(a), which is
a contradiction.

42

(sceh) ⇒ (mpr) Let Ξ be a set of precisely T1-realisable ΣQT1∪T2 -types. Then T1 ∪ TΞ 6|=
d

B∈t+ B v
⊔
¬B∈t\t+ B,

for each t ∈ Ξ. Therefore, for each t ∈ Ξ and each ¬B′ ∈ t \ t+, we have T1 ∪ TΞ 6|=
d

B∈t+ B v B′, whence,
by (sceh), T2 ∪ TΞ 6|=

d
B∈t+ B v B′. As an intersection of models of a Horn KB is also a model of this KB, we obtain

T2 ∪ TΞ 6|=
d

B∈t+ B v
⊔
¬B∈t\t+ B, and thus t is T2 ∪ TΞ-realisable, for each t ∈ Ξ. Take the disjoint union J of all

models It of T2 ∪TΞ realising t, for t ∈ Ξ. Clearly, J realises all the types in Ξ and each ΣQT1∪T2 -type realised in J
is T2 ∪ TΞ-realisable. Therefore, by Lemma 84, Ξ is meet-precisely T2-realisable. q

A.3. Proofs of results from Section 5

Theorem 32. All the entailment relations from Section 3 are robust under vocabulary extensions in DL-LiteNbool and
DL-LiteNhorn.

Proof. We go through the different notions of Σ-entailment.
(a) Σ-concept entailment in DL-LiteNbool. This case follows from uniform interpolation of DL-LiteNbool, as proved in

Theorem 73 above. Suppose that T1 Σ-concept entails T2, sig(T2) ∩ Σ′ ⊆ Σ, T2 |= C1 v C2, and sig(C1 v C2) ⊆ Σ′.
We have to show that T1 |= C1 v C2. Let T2,Σ be a uniform interpolant of T2 with respect to Σ in DL-LiteNbool. Then
T1 |= T2.Σ and T2,Σ |= C1 v C2, by the definition of uniform interpolants. Hence T1 |= C1 v C2, as required.

(b) Σ-concept entailment in DL-LiteNhorn. This case follows from uniform interpolation of DL-LiteNhorn in the same
way as in (a).

(c) Σ-query entailment in DL-LiteNbool (and, equivalently, strong Σ-concept entailment and strong Σ-query entail-
ment). Suppose that T1 Σ-query entails T2 and Σ′ is a signature with sig(T2) ∩ Σ′ ⊆ Σ. We use the criterion of Theo-
rem 21. Assume that there is a model I1 of T1 precisely realising a set Ξ of Σ′QT1∪T2 -types. Let Ξ ↾Σ= {t ↾Σ| t ∈ Ξ}.
As Ξ ↾Σ is T1-precisely realisable, it is also precisely T2-realisable. By Lemma 81, we then obtain a model I∗ of T2
such that I∗ ∼Σ′ I

ω
1 . Therefore, I∗ precisely realises Ξ.

(d) Σ-query entailment in DL-LiteNhorn. Suppose T1 Σ-query entails T2 and Σ′ is a signature with sig(T2) ∩ Σ′ ⊆ Σ.
We use the criterion of Theorem 26. Assume that there is a model of T1 precisely realising a set Ξ of Σ′QT1∪T2 -types.
Let Ξ ↾Σ= {t ↾Σ| t ∈ Ξ}. As Ξ ↾Σ is T1-precisely realisable, it is also sub-precisely T2-realisable. By Lemma 82, we
then obtain a model I∗ of T2 realising all the types in Ξ and a Σ′-homomorphism from I∗ onto I1. Therefore, I∗

sub-precisely realises Ξ.
(e) Strong Σ-query entailment in DL-LiteNhorn (and, equivalently, strong Σ-concept entailment). Suppose that T1

strongly Σ-concept entails T2 and Σ′ is a signature with sig(T2) ∩ Σ′ ⊆ Σ. We use the criterion of Theorem 27.
Assume that a set Ξ of Σ′QT1∪T2 -types is precisely T1-realisable. Consider the set Ξ∗ of all TΞ-realisable Σ′QT1∪T2 -
types (constructed in the proof of Theorem 27, (mpr) ⇒ (sceh)). It is precisely realised in some model J . Let
Ξ∗ ↾Σ= {t ↾Σ| t ∈ Ξ∗}. As Ξ∗ ↾Σ is precisely T1-realisable (e.g., in J), there exists a model I2 of T2 meet-precisely
realising Ξ∗ ↾Σ. By Lemma 84, every type in Ξ∗ ↾Σ is T2 ∪ TΞ∗↾Σ

-realisable, and by Lemma 85, TΞ↾Σ
-realisable. Thus,

J and I2 precisely realise the same set Ξ ↾Σ of ΣQT1∪T2 -types. By Lemma 81, we obtain a model I∗ of T2 such
that I∗ ∼Σ′ J

ω, and thus precisely realising Ξ∗. As Ξ ⊆ Ξ∗ and every Σ′QT1∪T2 -type in Ξ is T2 ∪ TΞ-realisable, by
Lemma 84, Ξ is meet-precisely T2-realisable.

(f) Σ-model entailment. Suppose that T1 Σ-model entails T2 and Σ′ is a signature with sig(T2) ∩ Σ′ ⊆ Σ. Let I be
a model of T1. Then there exists a model I′ of T2 that coincides with I on Σ. As sig(T2) ∩ Σ′ ⊆ Σ, we may actually
assume that I′ coincides with I of Σ′. Hence T1 Σ-model entails T2. q

Theorem 36. All the inseparability relations from Section 3 are robust under joins in DL-LiteNbool and DL-LiteNhorn.

Proof. (a) Σ-concept inseparability in DL-LiteNbool. Suppose that T and Ti are Σ-concept inseparable in DL-LiteNbool,
for i = 1, 2. Consider a T -realisable ΣQ-type t with Q = QT∪T1∪T2 . By Theorem 20, it is sufficient to show that t is
T1∪T2-realisable. Let Ξ be the set of all T -realisable ΣQ-types. As T and Ti are Σ-concept inseparable, Ξ is also the
set of all Ti-realisable ΣQ-types, for i = 1, 2. It follows that Ξ is precisely Ti-realisable, for i = 1, 2. Using Lemma 81
with Σ′ = sig(T1), we obtain a model for T1 ∪ T2 precisely realising Ξ. This model realises t.

(b) Σ-concept inseparability in DL-LiteNhorn. This case follows from (a) by Theorem 24.
43

(c) Σ-query inseparability in DL-LiteNbool (and, equivalently, strong Σ-concept inseparability and strong Σ-query
inseparability). Suppose that T and Ti are Σ-query inseparable in DL-LiteNbool, for i = 1, 2, and let Ξ be a precisely
T -realisable set of ΣQ-types, where Q = QT∪T1∪T2 . By Theorem 21, it is sufficient to show that Ξ is precisely T1∪T2-
realisable. By Theorem 21, Ξ is precisely Ti-realisable, for i = 1, 2. Using Lemma 81, we obtain a model for T1 ∪T2
precisely realising Ξ.

(d) Σ-query inseparability in DL-LiteNhorn. Suppose that T and Ti are Σ-query inseparable in DL-LiteNhorn, for
i = 1, 2, and let Ξ be a precisely T -realisable set of ΣQ-types, where Q = QT∪T1∪T2 . By Theorem 26, it is sufficient to
show that Ξ is sub-precisely T1∪T2-realisable. As T and Ti are Σ-query inseparable, we obtain a set Ξ′ ⊇ Ξ which is
precisely T -, T1-, and T2-realisable and such that each t ∈ Ξ′ is positively contained in a type from Ξ. By Lemma 81,
we obtain a model for T1 ∪ T2 precisely realising Ξ′. But then Ξ is sub-precisely T1 ∪ T2-realisable.

(e) Strong Σ-query inseparability in DL-LiteNhorn (and, equivalently, strong Σ-concept inseparability). Suppose that
T and Ti are strongly Σ-query inseparable in DL-LiteNhorn, for i = 1, 2, and let Ξ be a precisely T -realisable set of
ΣQ-types, where Q = QT∪T1∪T2 . Let I be a model of T precisely realising Ξ. Consider the set Ξ∗ of all TΞ-realisable
ΣQ-types as in the proof of Theorem 27, (mpr) ⇒ (sceh). As follows from that proof, the set Ξ∗ is precisely Ti-
realisable, for i = 1, 2. Hence, by Lemma 81, there exists a model for T1 ∪ T2 precisely realising Ξ∗, and thus
meet-precisely realising Ξ.

(e) Σ-model inseparability. Suppose that T and Ti are Σ-model inseparable and sig(T1) ∩ sig(T2) ⊆ Σ. Let
I be a model of T . Then there are models I1 and I2 of T1 and T2, respectively, that coincide with I on Σ. As
sig(T1) ∩ sig(T2) ⊆ Σ, we may assume that I1 = I2. Thus I1 is a model of T1 ∪ T2 coinciding with I on Σ. q

Theorem 39. If T1 Σ-query entails (or, equivalently, strongly Σ-concept entails) T2 in DL-LiteNbool, then T1 strongly
Σ-query entails T2 in SHIQ.
Proof. Suppose (T1 ∪ T ,A) 6|= q(a). Take a model J of (T1 ∪ T ,A) such that J 6|= q(a). By Lemma 81, we can
find a model I∗ of T2 such that I∗ ∼Σ J

ω. But then I∗ is a model of (T ∪ T2,A) such that I∗ 6|= q(a). Hence
(T2 ∪ T ,A) 6|= q(a). q

A.4. Proofs of results from Section 6

Lemma 50. There is an algorithm which, given a TBox T in DL-LiteNhorn and a set Ξ of ΣQ-types with Q ⊇ QT , de-
cides in deterministic polynomial time whether Ξ has a precise, sub-precise or meet-precise T -witness and constructs
such a witness if it exists.
Proof. First we observe that, given a TBox T in DL-LiteNhorn and a ΣQ-type t with Q ⊇ QT , clT (t) can be computed
in polynomial time: just extend t with all the basic sig(T)Q-concepts B such that B1 u · · · u Bk v B ∈ T and the Bi

are already in the computed extension of t.
Let Ξ = {t′0, . . . , t′k}. In all three algorithms we first extend the types of Ξ to sig(T)Q-types and check whether

they are T -realisable (cf. (w1) and (w2) in Definition 45):

1. For each 0 ≤ i ≤ k, compute ti = clT (t′i) and check whether ti ↾Σ= t′i and ⊥ < ti. If this is not the case for some i,
stop with answer ‘no’ (see Proposition 23).

The types t0, . . . , tk will form the first sequence of sig(T)Q-types in a T -witness of Ξ (provided that it exists). So, it
remains to construct the second sequence (and actually find all required witnesses for nonempty roles). The algorithm
is iterative. To start with, we let t j = t0, for k < j ≤ k + 2m, where m is the number of role names in T (note that the
choice of t0 is arbitrary). Also, let the set Ω0 of ‘processed’ roles be empty.

Suppose we are at step n. Select a role name Pi from T that is nonempty and has not been processed yet (cf. (w3)),
i.e., some Pi < Ωn such that

{∃Pi,∃P−i } ∩ t j , ∅, for 0 ≤ j ≤ k + 2m.

If no such role exists we terminate: ((t0, . . . , tk), (tk+1, . . . , tm+2k)) is the requiredT -witness for Ξ. Otherwise, compute
tk+2i−1 = clT (t∃Pi) and tk+2i = clT (t∃P−i), where tB is the sig(T)Q-type such that t+

B = {B}. Terminate with answer ‘no’
if either ⊥ ∈ tk+2i−1 or ⊥ ∈ tk+2i (for these types are not T -realisable, see Proposition 23 and (w1)). The next step of
the algorithm depends on the particular type of witness: for t being both tk+2i−1 and tk+2i, we check

44

2-a. whether t ↾Σ= t′ for some t′ ∈ Ξ, if we need a precise T -witness;

2-b. whether t+ ↾Σ⊆ t′+ for some t′ ∈ Ξ, if we need a sub-precise T -witness;

2-c. whether Ξt , ∅ and t+ ↾Σ=
⋂

ti∈Ξt t′+i , where Ξt = {t′i ∈ Ξ | t+ ↾Σ⊆ t′i}, if we need a meet-precise T -witness.

Terminate with answer ‘no’ if the test fails. Otherwise, we update the types tk+2i−1 and tk+2i of the sequence with the
just computed ones and set Ωn+1 = Ωn ∪ {Pi}.

Clearly, the algorithm runs in polynomial time. q

Next, we provide proofs of Lemma 56 and Theorem 58. For Lemma 56, we have to construct a BAPA formula
ϕP,qmax stating that a set-system S has a solution. For the construction we require, in addition to the notion of solution
to S, the following notion of left solution. Let

S = (A1, . . . , Aqmax , A∞), (B1, . . . , Bqmax , B∞)

be a set-system. A relation ρ is called a left solution to S if

– Aq is the set of points of ρ-outdegree q, for 1 ≤ q ≤ qmax; A∞ is the set of points of ρ-outdegree > qmax;

– every point in Bq has ρ-indegree ≤ q, for 1 ≤ q ≤ qmax; B∞ is the set of points of ρ-indegree > qmax.

Thus, the only difference between a left solution and a solution is that, in the former, points in Bq do not necessarily
have ρ-indegree q, but can have ρ-indegree ≤ q. First, we establish necessary and sufficient conditions for a set-system
to have a (left) solution in some special case:

Lemma 86. Let qmax < ω and S = (A1, . . . , Aqmax , ∅), (B1, . . . , Bqmax , ∅) be a set-system.

(B) If S has a solution then
qmax∑
q=1

q · |Aq| =

qmax∑
q=1

q · |Bq|. (5)

Conversely, if
qmax∑
q=1

|Aq| ≥ q2
max or

qmax∑
q=1

|Bq| ≥ q2
max, then (5) implies that S has a solution.

(BL) If S has a left solution then
qmax∑
q=1

q · |Aq| ≤

qmax∑
q=1

q · |Bq|. (6)

Conversely, if
qmax∑
q=1

|Aq| ≥ q2
max or

qmax∑
q=1

|Bq| ≥ q2
max, then (6) implies that S has a left solution.

Proof. (B): It should be clear that (5) holds if S has a solution. Now suppose that (5) holds and
∑qmax

q=1 |Aq| ≥ q2
max. If

the sums in (5) are infinite (i.e., at least one of the |Aq| and one of the |Bq| is an infinite cardinal), then a solution ρ is
readily constructed. So we concentrate on the case where the sums are finite. Let A =

⋃qmax
q=1 Aq and B =

⋃qmax
q=1 Bq. We

first show that there exists a map
f : A × B→ ℕ

such that, for each 1 ≤ q ≤ qmax,∑
d∈B

f (a, d) = q, for every a ∈ Aq, and
∑
d∈A

f (d, b) = q, for every b ∈ Bq. (7)

Assume that such a map does not exist. Take a map f : A × B→ ℕ such that, for 1 ≤ q ≤ qmax,∑
d∈B

f (a, d) ≤ q, for every a ∈ Aq, and
∑
d∈A

f (d, b) ≤ q, for every b ∈ Bq (8)

45

(the set of such maps is nonempty, e.g., f (x, y) = 0 satisfies (8)) and
∑

(x,y)∈A×B f (x, y) is maximal. By our assumption
and (5), ∑

(x,y)∈A×B

f (x, y) <

qmax∑
q=1

q · |Aq| =

qmax∑
q=1

q · |Bq|.

Thus, there exist q1, q2 and a ∈ Aq1 , b ∈ Bq2 such that
∑

d∈B f (a1, d) < q1 and
∑

d∈A f (d, b) < q2. Define f ′ by setting
f ′(a, b) = f (a, b) + 1 and f ′(x, y) = f (x, y) for all (x, y) ∈ A × B distinct from (a, b). Then (8) still holds for f ′ but∑

(x,y)∈A×B f (x, y) <
∑

(x,y)∈A×B f ′(x, y) contrary to f having the maximal
∑

(x,y)∈A×B f (x, y).
We now show that there actually exists a map with (7) into {0, 1}. Suppose such a map does not exist. Take a map

f with (7) such that
∑

f (x,y)>1 f (x, y) > 1 is minimal and find a, b with f (a, b) > 1. We have
∑qmax

q=1 |Aq| ≥ q2
max, and so

there exists (a′, b′) ∈ A × B such that f (a′, b′) > 0, f (a, b′) = 0, and f (a′, b) = 0. Indeed, let C = {c | f (a, c) > 0} and
D = {d | there is c ∈ C with f (d, c) > 0}. We have |C| < qmax, and so |D| < q2

max. As |A| ≥ q2
max, there exists a′ ∈ A \D

and, by (7), there exists b′ ∈ B with f (a′, b′) > 0. By construction, f (a, b′) = f (a′, b) = 0. Define a new map f0 which
coincides with f except that

f0(a, b′) = 1, f0(a, b) = f (a, b) − 1, f0(a′, b) = 1, and f0(a′, b′) = f (a′, b′) − 1.

Then f0 still has (7) and
∑

f0(x,y)>1 f0(x, y) <
∑

f (x,y)>1 f (x, y), contrary to
∑

f (x,y)>1 f (x, y) being minimal. The case
when

∑qmax
q=1 |Bq| ≥ q2

max is considered analogously.
Let f : A × B→ {0, 1} satisfy (7). Then the relation ρ = {(a, b) ∈ A × B | f (a, b) = 1} is a solution to S.

(BL) is proved in the same way as (B) and is left to the reader. q

Note that the existence of a (left) solution to a set-system S does not depend on the sets themselves but only on
their cardinalities. Thus, we can (and will) equivalently represent a set-system S in the form

S = (n1, . . . , nqmax , n∞), (m1, . . . ,mqmax ,m∞),

where the ni and mi are cardinal numbers. In what follows, we will choose the representation most convenient for our
purposes. The following lemma will be used to prove Lemma 56. It covers all four possible combinations and reduces
the problem whether S has a solution to the special cases mentioned in Lemma 86.

Lemma 87. Let qmax < ω. For a set-system S = (A1, . . . , Aqmax , A∞), (B1, . . . , Bqmax , B∞), one of the four cases holds:

(C0) If |A∞| > qmax and |B∞| > qmax then S has a solution.

(C1) If |A∞| > qmax and |B∞| ≤ qmax then S has a solution if, and only if, the following holds:

– if |B∞| = 0 then S′1 = (A1, . . . , Aqmax , A∞, ∅), (B1, . . . , Bqmax , ∅, ∅) has a left solution;

– if |B∞| > 0 then S′2 = (A|B∞ |+1, . . . , Aqmax , A∞, ∅, . . . , ∅︸ ︷︷ ︸
|B∞ |

), (B1, . . . , Bqmax , ∅) has a left solution.

(C2) If |A∞| ≤ qmax and |B∞| > qmax then S has a solution if, and only if, the following holds:

– if |A∞| = 0 then S′1 = (B1, . . . , Bqmax , B∞, ∅), (A1, . . . , Aqmax , ∅, ∅) has a left solution;

– if |A∞| > 0 then S′2 = (B|A∞ |+1, . . . , Bqmax , B∞, ∅, . . . , ∅︸ ︷︷ ︸
|A∞ |

), (A1, . . . , Aqmax , ∅) has a left solution.

(C3) If |A∞| ≤ qmax and |B∞| ≤ qmax then S has a solution if, and only if, there are numbers nD
q , for D ⊆ B∞ and

1 ≤ q ≤ qmax, and mD
q , for D ⊆ A∞ and 1 ≤ q ≤ qmax, such that the following holds:

–
∑

D⊆B∞

nD
q = |Aq| and

∑
D⊆A∞

mD
q = |Bq|, for all 1 ≤ q ≤ qmax;

– for all e ∈ B∞,
qmax∑
q=1

∑
D⊆B∞
e∈D

nD
q > qmax − |A∞| and, for all e ∈ A∞,

qmax∑
q=1

∑
D⊆A∞
e∈D

mD
q > qmax − |B∞|;

46

– and S′ = (n′1, . . . , n
′
qmax

, 0), (m′1, . . . ,m
′
qmax

, 0) has a solution, where

n′k =

qmax∑
q=1

∑
D⊆B∞

q−|D|=k

nD
q and m′k =

qmax∑
q=1

∑
D⊆A∞

q−|D|=k

mD
q , for 1 ≤ k ≤ qmax.

Proof. Let A =
⋃qmax

q=1 Aq and B =
⋃qmax

q=1 Bq.
(C0): |A∞| > qmax and |B∞| > qmax. For every a ∈ Aq, take a set Ya ⊆ B∞ of cardinality q, and, for every a ∈ A∞,
take a set Ya ⊆ B∞ of cardinality qmax + 1. Such sets exist because |B∞| > qmax. Similarly, for every b ∈ Bq, take a set
Xb ⊆ A∞ of cardinality q, and for every b ∈ B∞, take a set Xb ⊆ A∞ of cardinality qmax + 1. Such sets exist because
|A∞| > qmax. Then the relation ρ =

⋃
a∈A∪A∞ ({a} × Ya) ∪

⋃
b∈B∪B∞ (Xb × {b}) is clearly a solution to S.

(C1): |A∞| > qmax and |B∞| ≤ qmax. Consider first |B∞| = 0. Let ρ be a solution to S. For every a ∈ A∞ such that
oρ(a) > qmax + 1, we remove (oρ(a)− qmax − 1)-many pairs (a, b) from ρ and denote the resulting binary relation by ρ′.
Then oρ′ (a) = qmax + 1 for all a ∈ A∞, and so ρ′ is a left solution to S′1. Conversely, assume that S′1 has a left solution
ρ. For any q ≤ qmax and b ∈ Bq such that iρ(b) < q, take (q − iρ(b))-many points a ∈ A∞ such that (a, b) < ρ and add
the pairs (a, b) to ρ. This is possible because |A∞| > qmax. Then the resulting relation ρ′ is a solution to S.

The claim for |B∞| > 0 is proved similarly and left to the reader.
(C2): |A∞| ≤ qmax and |B∞| > qmax. This is a mirror image of (C1).
(C3): |A∞| ≤ qmax and |B∞| ≤ qmax. Suppose that S has a solution ρ. Define AD

q , for D ⊆ B∞, 1 ≤ q ≤ qmax, and BD
q ,

for D ⊆ A∞, 1 ≤ q ≤ qmax, by taking

AD
q =

{
a ∈ Aq | ∀b ∈ B∞

(
(a, b) ∈ ρ↔ b ∈ D

)}
,

BD
q =

{
b ∈ Bq | ∀a ∈ A∞

(
(a, b) ∈ ρ↔ d ∈ D

)}
.

Thus, e.g., AD
q are the points in Aq that are ρ-related to exactly the points in D ⊆ B∞. We show that the numbers

nD
q = |AD

q | and mD
q = |BD

q | satisfy the (in)equalities of (C3) and that S′ has a solution. The equality
∑

D⊆B∞ nD
q = |Aq|

follows from the fact that each a ∈ Aq is in exactly one set of the form AD
q . Let e ∈ B∞. Then

∑qmax
q=1

∑
e∈D⊆B∞ nD

q is
the number of points a with (a, e) ∈ ρ such that a < A∞. This number must be greater than (qmax − |A∞|) because
iρ(a) > qmax and there are at most |A∞| points a ∈ A∞ with (a, e) ∈ ρ. The numbers mD

q are considered in the same
way. Consider now the restriction ρ′ of ρ to A × B. Then the number of points a ∈ A with oρ(a) = k is n′k and the
number of points b ∈ B with iρ(b) = k is m′k. Thus, ρ′ is a solution to (n′1, . . . , n

′
qmax

, 0), (m′1, . . . ,m
′
qmax

, 0), as required.
For the converse direction, suppose that we have numbers nq

D, mq
D satisfying the conditions of (C3). Let ρ be

a solution to (n′1, . . . , n
′
qmax

, 0),(m′1, . . . ,m
′
qmax

, 0). We may assume that ρ is a solution to a system (A′1, . . . , A
′
qmax

, ∅),
(B′1, . . . , B

′
qmax

, ∅) in which

– each A′k is the disjoint union of sets ÂD
k ⊆ A of cardinality nD

q , for D ⊆ B∞ and q − |D| = k;

– each B′k is the disjoint union of sets B̂D
k ⊆ B of cardinality mD

q , for D ⊆ A∞ and q − |D| = k.

Now, for each a ∈ ÂD
k and each b ∈ B̂D′

k , we add to ρ the pairs (a, d), d ∈ D, and the pairs (d′, b), d′ ∈ D′. Denote the
resulting relation by ρ0. It follows from

∑
D⊆B∞ nD

q = |Aq| that the number of points a with oρ0 (a) = q is |Aq|. Similarly,
from

∑
D⊆A∞ mD

q = |Bq| we obtain that the number of points b with iρ0 (b) = q is |Bq|. For e ∈ B∞, using the inequality∑qmax
q=1

∑
e∈D⊆B∞ nD

q > qmax − |A∞|, we can expand ρ0 by sufficiently many pairs (e′, e) with e′ ∈ A∞ so that the indegree
of each e ∈ B∞ is at least qmax + 1. Similarly, for e ∈ A∞, using the inequality

∑qmax
q=1

∑
e∈D⊆A∞ mD

q > qmax − |B∞|, we
can expand ρ0 by sufficiently many pairs (e, e′) with e′ ∈ B∞ so that the outdegree of each e ∈ A∞ is at least qmax + 1.
The resulting relation ρ is a solution to the set-system (A1, . . . , Aqmax , A∞), (B1, . . . , Bqmax , B∞). q

We are now in a position to prove the following:

Lemma 56. For every role name P and every number qmax ≥ 1, one can construct a BAPA formula ϕP,qmax with free
variables

X=1P, . . . , X=qmaxP, X>qmaxP, X=1P− , . . . , X=qmaxP− , X>qmaxP− (9)

such that, for every BAPA model M, the following conditions are equivalent:
47

(i) M |= ϕP,qmax ;

(ii) the set-system (XM
=1P, . . . , X

M
=qmaxP, X

M
>qmaxP), (XM

=1P− , . . . , X
M
=qmaxP− , X

M
>qmaxP−) has a solution.

Proof. The formula ϕP,qmax is defined by a case distinction similar to the formulation of Lemma 87 above. Namely, we
define ϕP,qmax as the conjunction of the formulas:

– (|X>qmaxP| > qmax) ∧ (|X>qmaxP− | > qmax)→ (0 = 0),

– (|X>qmaxP| > qmax) ∧ (|X>qmaxP− | ≤ qmax)→ ψ1,

– (|X>qmaxP| ≤ qmax) ∧ (|X>qmaxP− | > qmax)→ ψ2,

– (|X>qmaxP| ≤ qmax) ∧ (|X>qmaxP− | ≤ qmax)→ ψ3.

The first conjunct corresponds to (C0) of Lemma 87 stating that a solution exists whenever the cardinalities of the sets
of points of outdegree and, respectively, indegree > qmax are greater than qmax. To define formulas ψ1, ψ2, ψ3, note
first that one can trivially construct a BAPA formula ϕ0

P,qmax
satisfying the conditions of Lemma 56 for all models M

with
(∑qmax

q=1 |X
M
=q P| < q2

max

)
and

(∑qmax
q=1 |(X=q P−)M| < q2

max

)
by simply listing all possible configurations of cardinalities

< qmax of the free variables in (9) for which solutions exist. Now, according to (B) of Lemma 86, we can define a
formula ψB with the intended meaning

‘(XM
=1P, . . . , X

M
=qmaxP, ∅), (X

M
=1P− , . . . , X

M
=qmaxP− , ∅) has a solution’

by taking

(qmax∑
q=1

(q · |X=q P|) =

qmax∑
q=1

(q · |X=q P− |)
)
∧

((qmax∑
q=1

(|X=q P| < q2
max) ∧

qmax∑
q=1

(|X=q P− | < q2
max)

)
→ ϕ0

P,qmax

)
.

Similarly, by using the condition of (BL) in Lemma 86, we can define a BAPA formula ψBL stating that a set-system
(XM

=1P, . . . , X
M
=qmaxP, ∅), (X

M
=1P− , . . . , X

M
=qmaxP− , ∅) has a left solution.

And by Lemma 87, ψ1, ψ2 and ψ3 can be constructed from ψB and ψBL (with appropriate renaming of variables).
We leave this rather tedious but straightforward construction to the interested reader. q

In the remainder of this section we give a proof of Theorem 58 stating that deciding Σ-model entailment for
TBoxes in DL-LiteNhorn with maximal numerical parameter qmax = 3 is coNExpTime-hard. The proof is by reduction of
the model-conservativity problem for modal logic S5. Recall that formulas of the propositional modal languageML
are constructed from propositional variables p1, p2, . . . using the Booleans ∧, ¬, and the modal (possibility) operator
◇. ML-formulas are interpreted in (Kripke) models of the form K = (∆K , pK1 , pK2 , . . .), where ∆K is a nonempty set
and pKi ⊆ ∆K for all propositional variables pi. The interpretation ϕK of a modal formula ϕ inK is defined inductively
as follows:

(ψ1 ∧ ψ2)K = ψK1 ∩ ψ
K
2 ,

(¬ψ)K = ∆K \ ψK ,

(◇ψ)K = {d ∈ ∆K | ∃d′ ∈ ψK }.

A global formula is a modal formula in which every propositional variable is in the scope of a ◇. Observe that, for
every global formula ϕ and every model K , we have ϕK ∈ {∅,∆K }. We say that K is a model of a global formula ϕ
(or that ϕ is true in K) if ϕK = ∆K .

A global formula ϕ2 is said to be a (finite) model conservative extension of a global formula ϕ1 if, for every (finite)
model K of ϕ1, there exists a model K ′ of ϕ2 such that ∆K = ∆K

′

and pKi = pK
′

i , for all variables pi of ϕ1. The
following result is proved in [53].3

3Note that this is result is not formulated explicitly in [53] but follows immediately from the proof of [53, Theorem 4] stating that the conserva-
tiveness problem is coNExpTime-hard for a large family of normal modal logics including S5.

48

Theorem 88. (i) For any global modal formulas ϕ1 and ϕ2, ϕ2 is a model conservative extension of ϕ1 if, and only if,
ϕ2 is a finite model conservative extension of ϕ1.

(ii) It is NExpTime-hard to decide whether a global formula ϕ2 is not a (finite) model-conservative extension of a
global formula ϕ1.

We first present a reduction of model conservativity in S5 to Σ-model entailment between DL-LiteNbool TBoxes.
Then we modify this reduction to obtain a reduction of finite model-conservativity in S5 to Σ-model entailment
between DL-LiteNhorn TBoxes.

Fix global modal formulas ϕ1 and ϕ2. Denote by s(ϕi) the closure under single negation of the set of subformulas
of ϕi. For every ψ ∈ s(ϕi), take a concept name Aψ and, additionally, for every ◇ψ ∈ s(ϕi), take three role names S ◇ψ,
L◇ψ and S ¬◇ψ. Let Dom and Box be fresh concept names.

The extensions of Dom will be employed to simulate the domains of S5-models. Thus, the interpretation ψK

of a subformula ψ of ϕi will correspond to (Aψ u Dom)I in the description logic interpretation I. (We could work
with DomI = ∆I as well but prefer allowing Dom to be a proper subset of ∆I because that will be necessary for the
encoding into DL-LiteNhorn.)

We assemble a TBox T1 by first encoding the truth-conditions for ∧ and ¬ in the obvious manner by taking

¬Aψ u Dom ≡ A¬ψ u Dom, for all ¬ψ ∈ s(ϕ1), (10)
Aψ1 u Aψ2 u Dom ≡ Aψ1∧ψ2 u Dom, for all ψ1 ∧ ψ2 ∈ s(ϕ1). (11)

To encode the truth condition for ◇ we use, besides A◇ψ, the role names S ◇ψ, S ¬◇ψ and L◇ψ. First we state that, for
every ◇ψ ∈ s(ϕ1), the extensions of ∃S ◇ψ and A◇ψ as well as their negations coincide on Dom:

Dom u A◇ψ ≡ Dom u ∃S ◇ψ, Dom u A¬◇ψ ≡ Dom u ∃S ¬◇ψ. (12)

Next, we state that S ◇ψ and S ¬◇ψ, for ◇ψ ∈ s(ϕ1), are binary relations between Dom and Box:

∃S ◇ψ v Dom, ∃S −◇ψ v Box, ∃S ¬◇ψ v Dom, ∃S −¬◇ψ v Box. (13)

Finally, we connect Aψ and A◇ψ (via S ◇ψ, S ¬◇ψ, and L◇ψ) by stating, for every ◇ψ ∈ s(ϕ1),

Aψ u Dom v ∃S ◇ψ, ∃S ◇ψ v ∃Lψ, ∃L−ψ v Dom u Aψ, ∃S −◇ψ u ∃S −¬◇ψ v ⊥. (14)

These inclusions together enforce that A◇ψ u Dom simulates ◇ψ in models where Box is a singleton set: in such a
model I we have (∃S ◇ψ)I = ∅ or (∃S ¬◇ψ)I = ∅, by the last inclusion of (14) and the condition that the range of S◇ψ

and S ¬◇ψ is a subset of Box. Using the remaining inclusions in (14), (12) and (13), we obtain that (Aψ u Dom)I , ∅
if, and only if, (∃S ◇ψ)I , ∅ if, and only if, (∃S ◇ψ)I = Dom if, and only if, (A◇ψ u Dom)I = DomI, as required.
Finally, to say that ϕ1 is true we take:

Dom v Aϕ1 . (15)

Thus, T1 consists of the concept inclusions (10)–(15).
We construct T2 in the same way (but now taking concept inclusions for ψ ∈ s(ϕ2)), except that we do no include

Dom v Aϕ2 corresponding to (15) into T2. Instead, we take a set of inclusions that forces, when not satisfiable, Box to
be a singleton set. To this end, we consider three fresh role names S 0, S , S ′ and include into T2 the following axioms
stating that S and S ′ are functions from Dom to Box (we leave the inclusions for S ′ to the reader):

∃S ≡ Dom, ∃S − v Box, (≥ 2 S) v ⊥. (16)

We also add an axiom saying that if a point is in the range of both S and S ′, then it is in the domain of S 0:

∃S − u ∃S ′− v ∃S 0. (17)

Finally, we encode that ϕ2 is true by taking
∃S −0 v Dom u Aϕ2 . (18)

49

Lemma 89. ϕ2 is a model conservative extension of ϕ1 if, and only if, T1 Σ-model entails T2, for Σ = sig(T1).

Proof. Suppose ϕ2 is not a model conservative extension of ϕ1. Take a modelK of ϕ1 for which there is no modelK ′

of ϕ2 having the same domain and the same interpretations of the variables in ϕ1 asK (in this case, we simply say that
K cannot be expanded to a model of ϕ2). Define an interpretation I by taking ∆I = ∆K , DomI = ∆I, BoxI = {d}, for
some d ∈ ∆I, and

(a) AIψ = ψK , for all ψ ∈ s(ϕ1);

(b) S I◇ψ = (◇ψ)K × {d} and S I
¬◇ψ = (¬◇ψ)K × {d}, for all ◇ψ ∈ s(ϕ1);

(c) LIψ = DomI × ψK , for all ◇ψ ∈ s(ϕ1).

It is readily checked that I is a model of T1. We show that it cannot be expanded to a model of T2. Assume that such
an expansion I′ exists. Then, by (16)–(18) and BoxI being a singleton set, AI

′

ϕ2
is nonempty. Define an expansion K ′

ofK by setting pK
′

= AI
′

p for all those variables p in ϕ2 that do not occur in ϕ1. Using the fact that BoxI is a singleton
set, one can show by induction that ψK

′

= AI
′

ψ for all ψ ∈ s(ϕ2). Hence ϕK
′

2 is nonempty (and so coincides with the
domain of K ′), which is a contradiction.

Conversely, assume that T1 does not Σ-model entail T2. Let I be a witness model—i.e., a model of T1 that
cannot be expanded to a model of T2. We first show that BoxI is a singleton set. Assume that this is not the case.
Choose distinct d, d′ ∈ BoxI and define an extension I0 of I by taking S I0 = DomI × {d}, S ′I0 = DomI × {d′}, and
S I0

0 = ∅. Then I0 is a model of (16)–(18) independently of the interpretation of Aϕ2 . It is straightforward to interpret
the remaining fresh symbols of T2 in such a way that I0 is a model of T2, contrary to our assumption.

Now take a modelK with domain DomI and pK = AIp ∩DomI, for all variables p in ϕ1. Using the fact that BoxI

is a singleton set, it is easily checked by induction that, for all ψ ∈ s(ϕ1),

ψK = AIψ ∩ DomI.

Thus, K is a model of ϕ1. We show that there does not exist an expansion K ′ of K that is a model of ϕ2. Assume
such a K ′ exists. Define an expansion I′ of I by setting AI

′

ψ = ψK
′

for all new ψ ∈ s(ϕ2). Then, AI
′

ϕ2
⊇ DomI. Define

extensions of S ◇ψ, S ¬◇ψ and Lψ as in (b)–(c) above (now using K ′ for ◇ψ ∈ s(ϕ2)). Let S I
′

and S ′I
′

be functions
from DomI to BoxI and let S I

′

0 be a function from BoxI to DomI. It is readily checked that I′ is a model of T2,
which is a contradiction. q

We now modify the encoding above with the aim of obtaining an encoding into DL-LiteNhorn. Observe that the only
‘problematic’ axiom is (10) encoding negation. To construct a DL-LiteNhorn TBox T ′1 , we take (11)–(15) and replace
(10) as follows. First, we state, using an auxiliary role name P, that the whole domain is exactly twice as large as
Dom:

(≥ 3 P) v ⊥, Dom ≡ (≥ 2 P), (≥ 2 P−) v ⊥, > v ∃P−. (19)

We also state that Aψ and A¬ψ are disjoint: for ψ ∈ s(ϕ1),

Aψ u A¬ψ v ⊥. (20)

Finally, we add that Dom and Aψ have the same cardinality for ψ ∈ s(ϕ1). To this end, we use a fresh role name Pψ

and say that Pψ is a bijection from Dom onto Aψ:

Dom ≡ ∃Pψ, Aψ ≡ ∃P−ψ, (≥ 2 Pψ) v ⊥, (≥ 2 P−ψ) v ⊥. (21)

The DL-LiteNhorn TBox T ′1 consists of concept inclusions (11)–(15) and (19)–(21).

Lemma 90. If I is a finite model of T ′1 then, for all ψ ∈ s(ϕ1),

(A¬ψ u Dom)I = (¬Aψ u Dom)I.
50

Proof. By (20), AIψ and AI
¬ψ are disjoint. Thus, it is sufficient to show that AIψ ∪ AI

¬ψ ⊇ DomI. In fact, as AIψ,
AI
¬ψ, DomI and ∆I \ DomI all have the same cardinality and ∆I is finite, a simple pigeonhole argument shows that

AIψ ∪ AI
¬ψ = ∆I. q

Note that Lemma 90 does not hold for infinite models. To construct T ′2 , we take the concept inclusions from T ′1
(formulated for ψ ∈ s(ϕ2)) except (15). We add axioms (16) and (17) from the definition of T2. For T ′2 , however, it is
not sufficient to add (18) as we do not only have to ensure that BoxI is a singleton set but also that I is finite. To this
end we replace (18) by the axioms saying that a fresh role name Z is an injective function from ∆I to ∆I:

> v ∃Z, (≥ 2 Z) v ⊥, (≥ 2 Z−) v ⊥ (22)

together with the following concept inclusion stating that if a point is in the range of Z and the range of S 0, then it is
in Dom u Aϕ2 :

∃S −0 u ∃Z− v Dom u Aϕ2 . (23)

To understand the purpose of these axioms, recall that a set ∆I is finite if, and only if, there does not exist an injective
function from ∆I to ∆I that is not surjective. Thus, if an interpretation I is infinite, then we can always expand it to
a model I′ of (22) and (23) by choosing an injective but non-surjective function Z whose range is disjoint from the
range of S 0 (as we can always choose an S 0 having only one point in its range). On the other hand, if I is finite, then
(22) and (23) enforce, in the same way as (18) above, that Dom u Aϕ2 is nonempty if Box is a singleton set.

The following lemma can be proved using this observation and combining the proof of Lemma 89 with Lemma 90:

Lemma 91. ϕ2 is a finite model conservative extension of ϕ1 if, and only if, T ′1 Σ-model entailsT ′2 , where Σ = sig(T ′1).

Remark 92. It is worth mentioning that the TBox T ′1 constructed above can be used to show that finite model rea-
soning in DL-LiteNhorn is non-tractable (in contrast to the results of [61] showing that, in other logics of the DL-Lite
family, finite model reasoning is tractable). Indeed, consider the DL-LiteNhorn TBox T ′1 for a propositional formula
ϕ1—i.e., assume that the modal operator ◇ does not occur in ϕ1. Then ϕ1 is satisfiable if, and only if, the concept
Aϕ1 u Dom is satisfiable in a finite model of T ′1 . Thus, the problem whether a DL-LiteNhorn concept is satisfiable in
finite model of a DL-LiteNhorn TBox is NP-hard.

A.5. Proofs of results from Section 8

Here we prove Theorem 78 and Theorem 79.

Theorem 78. Let T and T ′ be TBoxes in DL-LiteNbool and Σ a signature. And let T ′
Σ

be a uniform query interpolant of
T ′ with respect to Σ in DL-Liteu

bool. Then T Σ-query entails T ′ if, and only if, T |= C1 v C2, for every (C1 v C2) ∈ T ′
Σ
.

Proof. Suppose that T Σ-query entails T ′ and T 6|= ϰ, for some ϰ ∈ T ′
Σ
. Let I be a model of T such that I 6|= ϰ. Let

Q be the set of numerical parameters in T ∪ T ′ ∪ {ϰ} and Ξ the set of ΣQ-types realised in I. Then Ξ is T -precisely
realisable. Hence, by Theorem 21, Ξ is T ′-precisely realisable. Let I′ be a model of T ′ precisely realising Ξ. Then
I′ 6|= ϰ because I and I′ realise the same ΣQ-types. It follows that T ′ 6|= ϰ, and so ϰ < T ′

Σ
, which is a contradiction.

Conversely, suppose that T does not Σ-query entail T ′. By Theorem 21, there exists a set Ξ of ΣQT∪T ′ -types
which is precisely T -realisable but not precisely T ′-realisable. Let

D =
(l

t∈Ξ

∃U.
l

C∈t

C
)
u

(
∀U.

⊔
t∈Ξ

l

C∈t

C
)
,

where ∀U.C′ = ¬∃U.¬C′. Then T 6|= D v ⊥ but T ′ |= D v ⊥. It follows that T ′
Σ
|= D v ⊥. So there exists ϰ ∈ T ′

Σ

such that T 6|= ϰ. q

Theorem 79. For every TBox T in DL-LiteNbool and every signature Σ, one can construct a uniform query interpolant
TΣ of T with respect to Σ in DL-Liteu

bool.

51

Proof. Let T be a TBox in DL-LiteNbool and Σ a signature. Let m be the number of role names in T . Define TΣ to be
the set containing all concept inclusions of the form

d
C∈t C v ⊥, where t is a ΣQT -type which is not T -realisable, as

well as all concept inclusions of the form
l

C∈t

C v
⊔
Ξ∈Ω

(l

t′∈Ξ

∃U.
l

C∈t′
C
)
,

where t is a T -realisable ΣQT -type and Ω is the set of all sets Ξ of ΣQT -types with |Ξ| ≤ 2m + 1 such that {t} ∪ Ξ is
precisely T -realisable. It follows that TΣ can be constructed in exponential time in the size of T . It remains to show
that TΣ is a uniform query interpolant. Clearly, T |= ϰ, for all ϰ ∈ TΣ. For the converse direction, it is sufficient
to show that each precisely TΣ-realisable set of ΣQT -types is precisely T -realisable. Let Ξ0 be such a set. By the
complexity analysis for Σ-query entailment for DL-LiteNbool in Section 6.2, for each t ∈ Ξ0 there exists Ξt ⊆ Ξ0 such
that {t}∪Ξt is T -precisely realisable. Take the disjoint union of models of T realising {t}∪Ξt , for t ∈ Ξ0. It is readily
seen that this is a model of T precisely realising Ξ0. q

Acknowledgements. We thank Marco Benedetti, Luca Pulina, Uli Sattler, Thomas Schneider and Petra Selmer for
their help in conducting experiments described in Section 9.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. F. Patel-Schneider (Eds.), The Description Logic Handbook: Theory, Implementation
and Applications, Cambridge University Press, 2003.

[2] N. Noy, M. Musen, Promptdiff: a fixed-point algorithm for comparing ontology versions, in: Proc. of the 18th Nat. Conf. on Artificial
Intelligence (AAAI 2002), 2002, pp. 744–750.

[3] B. Cuenca Grau, I. Horrocks, Y. Kazakov, U. Sattler, A logical framework for modularity of ontologies, in: Proc. of the 20th Int. Joint Conf.
on Artificial Intelligence (IJCAI 2007), 2007, pp. 298–303.

[4] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, DL-Lite: Tractable description logics for ontologies, in: Proc. of the 20th
Nat. Conf. on Artificial Intelligence (AAAI 2005), 2005, pp. 602–607.

[5] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Data complexity of query answering in description logics, in: Proc. of the
10th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2006), 2006, pp. 260–270.

[6] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and efficient query answering in description logics:
The DL-Lite family, J. of Automated Reasoning 39 (3) (2007) 385–429.

[7] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, Linking data to ontologies, J. on Data Semantics X (2008)
133–173.

[8] A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev, Reasoning over Extended ER models, in: Proc. of the 26th Int.
Conf. on Conceptual Modeling (ER 2007), Vol. 4801 of Lecture Notes in Computer Science, Springer, 2007, pp. 277–292.

[9] A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev, DL-Lite in the light of first-order logic, in: Proc. of the 22nd Nat. Conf. on
Artificial Intelligence (AAAI 2007), 2007, pp. 361–366.

[10] A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev, The DL-Lite family and their relations, Tech. Rep. BBKCS-09-03, School of
Computer Sci and Inf Systems, Birkbeck College, to appear in JAIR (April 2009).

[11] H. Stuckenschmidt, C. Parent, S. Spaccapietra (Eds.), Modular Ontologies: Concepts, Theories and Techniques for Knowledge Modulariza-
tion, Vol. 5445 of Lecture Notes in Computer Science, Springer, 2009.

[12] P. Haase, V. Honavar, O. Kutz, Y. Sure, A. Tamilin (Eds.), Proceedings of the 1st International Workshop on Modular Ontologies, WoMO’06,
co-located with the International Semantic Web Conference, ISWC’06 November 5, 2006, Athens, Georgia, USA, Vol. 232 of CEUR Work-
shop Proceedings, CEUR-WS.org, 2007.

[13] B. Cuenca Grau, V. Honavar, A. Schlicht, F. Wolter (Eds.), Proceedings of the 2nd International Workshop on Modular Ontologies, WoMO
2007, Whistler, Canada, October 28, 2007, Vol. 315 of CEUR Workshop Proceedings, CEUR-WS.org, 2008.

[14] N. F. Noy, M. A. Musen, Specifying ontology views by traversal, in: S. A. McIlraith, D. Plexousakis, F. van Harmelen (Eds.), Proc. of the
3rd Int. Semantic Web Conf. (ISWC 2004), Vol. 3298 of Lecture Notes in Computer Science, Springer, 2004, pp. 713–725.

[15] J. Seidenberg, A. Rector, Web ontology segmentation: analysis, classification and use, in: L. Carr, D. D. Roure, A. Iyengar, C. A. Goble,
M. Dahlin (Eds.), Proc. of the 15th Int. Conf. on World Wide Web, WWW 2006, ACM Press, New York, NY, USA, 2006, pp. 13–22.

[16] B. Cuenca Grau, B. Parsia, E. Sirin, A. Kalyanpur, Modularity and web ontologies, in: P. Doherty, J. Mylopoulos, C. A. Welty (Eds.), Proc.
of the 10th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2006), AAAI Press, 2006, pp. 198–209.

[17] B. Cuenca Grau, I. Horrocks, Y. Kazakov, U. Sattler, Modular reuse of ontologies: Theory and practice, J. of Artificial Intelligence Research
31 (2008) 273–318.

[18] B. Konev, C. Lutz, D. Walther, F. Wolter, Semantic modularity and module extraction in description logics, in: M. Ghallab, C. D. Spyropoulos,
N. Fakotakis, N. Avouris (Eds.), Proceedings of the 18th European Conference on Artificial Intelligence (ECAI08), Vol. 178 of Frontiers in
Artificial Intelligence and Applications, IOS Press, 2008, pp. 55–59.

[19] J. Lang, P. Liberatore, P. Marquis, Propositional independence: Formula-variable independence and forgetting, J. of Artificial Intelligence
Research 18 (2003) 391–443.

[20] F. Lin, R. Reiter, Forget it!, in: Proceedings of the AAAI Fall Symposium on Relevance, 1994, pp. 154–159.
52

[21] T. Eiter, K. Wang, Semantic forgetting in answer set programming, Artificial Intelligence 172 (3) (2008) 1644–1672.
[22] A. Pitts, On an interpretation of second-order quantification in first-order intuitionistic propositional logic, J. Symbolic Logic 57 (1) (1992)

33–52.
[23] A. Visser, Uniform interpolation and layered bisimulation, in: P. Hájek (Ed.), Gödel’96, Vol. 6 of Lecture Notes in Logic, Springer, 1996, pp.

139–164.
[24] S. Ghilardi, C. Lutz, F. Wolter, Did I damage my ontology? A case for conservative extensions in description logic, in: Proc. of the 10th Int.

Conf. on the Principles of Knowledge Representation and Reasoning (KR 2006), 2006, pp. 187–197.
[25] B. Konev, C. Lutz, D. Walther, F. Wolter, Formal properties of modularisation, in: Modular Ontologies: Concepts, Theories and Techniques

for Knowledge Modularization, Springer, 2009, pp. 25–66.
[26] B. Konev, D. Walther, F. Wolter, Forgetting and uniform interpolation in large-scale description logic terminologies, in: Proc. of the 21st Int.

Joint Conf. on Artificial Intelligence (IJCAI 2009), 2009, pp. 830–835.
[27] Z. Wang, K. Wang, R. W. Topor, J. Z. Pan, Forgetting concepts in DL-Lite, in: S. Bechhofer, M. Hauswirth, J. Hoffmann, M. Koubarakis

(Eds.), Proc. of the 5th Eur. Semantic Web Conf. (ESWC 2008), Vol. 5021 of Lecture Notes in Computer Science, Springer, 2008, pp.
245–257.

[28] L. Pulina, A. Tacchella, A self-adaptive multi-engine solver for quantified Boolean formulas, Constraints 14 (1) (2009) 80–116.
[29] R. Kontchakov, F. Wolter, M. Zakharyaschev, Can you tell the difference between DL-Lite ontologies?, in: Proc. of the 11th Int. Conf. on the

Principles of Knowledge Representation and Reasoning (KR 2008), 2008, pp. 285–295.
[30] R. Kontchakov, L. Pulina, U. Sattler, T. Schneider, P. Seimer, F. Wolter, M. Zakharyaschev, Minimal module extraction from DL-Lite

ontologies using QBF solvers, in: Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI 2009), 2009, pp. 836–840.
[31] A. Acciarri, D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, M. Palmieri, R. Rosati, QuOnto: Querying ontologies, in: Proc. of the

20th Nat. Conf. on Artificial Intelligence (AAAI 2005), 2005, pp. 1670–1671.
[32] A. Poggi, M. Rodriguez, M. Ruzzi, Ontology-based database access with DIG-Mastro and the OBDA Plugin for Protégé, in: K. Clark, P. F.

Patel-Schneider (Eds.), Proc. of the 4th Int. Workshop on OWL: Experiences and Directions (OWLED 2008 DC), 2008.
[33] C. Lutz, D. Walther, F. Wolter, Conservative extensions in expressive description logics, in: Proc. of the 20th Int. Joint Conf. on Artificial

Intelligence (IJCAI 2007), 2007, pp. 453–458.
[34] C. Lutz, F. Wolter, Mathematical logic for life science ontologies, in: H. Ono, M. Kanazawa, R. J. G. B. de Queiroz (Eds.), Logic, Language,

Information and Computation, 16th Int. Workshop, WoLLIC 2009, Vol. 5514 of Lecture Notes in Computer Science, Springer, 2009, pp.
37–47.

[35] R. Diaconescu, J. Goguen, P. Stefaneas, Logical support for modularisation, in: G. Huet, G. Plotkin (Eds.), Logical Environments, Cambridge
University Press, New York, 1993, pp. 83–130.

[36] P. Mosses (Ed.), CASL Reference Manual: The Complete Documentation Of The Common Algebraic Specification Language, Vol. 2960 of
Lecture Notes in Computer Science, Springer, 2004.

[37] P. Byers, D. H. Pitt, Conservative extensions: a cautionary note, Bulletin of the EATCS 41 (1990) 196–201.
[38] T. Maibaum, Conservative extensions, interpretations between theories and all that!, in: M. Bidoit, M. Dauchet (Eds.), Proc. of the 7th Int.

Joint Conf. CAAP/FASE on Theory and Practice of Software Development, TAPSOFT ’97, Vol. 1214 of Lecture Notes in Computer Science,
Springer, 1997, pp. 40–66.

[39] G. Antoniou, A. Kehagias, A note on the refinement of ontologies, Int. J. of Intelligent Systems 15 (7) (2000) 623–632.
[40] T. Eiter, M. Fink, S. Woltran, Semantical characterizations and complexity of equivalences in answer set programming, ACM Trans. Comput.

Log. 8 (3).
[41] M. Fink, Equivalences in answer-set programming by countermodels in the logic of here-and-there, in: M. G. de la Banda, E. Pontelli (Eds.),

Proc. of the 24th Int. Conf. on Logic Programming (ICLP 2008), Vol. 5366 of Lecture Notes in Computer Science, Springer, 2008, pp.
99–113.

[42] D. Pearce, A. Valverde, Synonymous theories in answer set programming and equilibrium logic, in: Proc. of the 16th European Conf. on
Artificial Intelligence (ECAI 2004), 2004, pp. 388–392.

[43] V. Lifschitz, D. Pearce, A. Valverde, A characterization of strong equivalence for logic programs with variables, in: Proc. of the 9th Int. Conf.
on Logic Programming and Nonmonotonic Reasoning (LPNMR), 2007, pp. 188–200.

[44] C. Lutz, F. Wolter, Deciding inseparability and conservative extensions in the description logic EL, Journal of Symbolic Computation(to
appear).

[45] C. Chang, H. Keisler, Model Theory, Elsevier, 1990.
[46] C. Areces, B. ten Cate, Hybrid logics, in: P. Blackburn, J. van Benthem, F. Wolter (Eds.), Handbook of Modal Logic, Elsevier, 2006, pp.

821–868.
[47] C. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
[48] D. Kozen, Theory of Computation, Springer, 2006.
[49] H. Kleine Büning, T. Lettman, Propositional logic: Deduction and algorithms, Cambridge University Press, 1999.
[50] C. Lutz, F. Wolter, Conservative extensions in the lightweight description logic EL, in: F. Pfenning (Ed.), Proc. of the 21st Conf. on Automated

Deduction (CADE-21), Vol. 4603 of Lecture Notes in Computer Science, Springer, 2007, pp. 84–99.
[51] S. Feferman, R. L. Vaught, The first-order properties of algebraic systems, Fundamenta Mathematicae 47 (1959) 57–103.
[52] V. Kuncak, H. H. Nguyen, M. C. Rinard, Deciding Boolean algebra with Presburger arithmetic, J. of Automated Reasoning 36 (3) (2006)

213–239.
[53] S. Ghilardi, C. Lutz, F. Wolter, M. Zakharyaschev, Conservative extensions in modal logics, in: G. Governatori, I. Hodkinson, Y. Venema

(Eds.), Advances in Modal Logics Volume 6, College Publications, 2006, pp. 187–207.
[54] H. Liu, C. Lutz, M. Milicic, F. Wolter, Updating description logic aboxes, in: Proc. of the 10th Int. Conf. on the Principles of Knowledge

Representation and Reasoning (KR 2006), 2006, pp. 46–56.
[55] A. Remshagen, K. Truemper, The complexity of futile questioning, in: H. R. Arabnia, P. L. Zhou (Eds.), Proc. of the Int. Conf. on Foundations

of Computer Science (FCS 2007), CSREA Press, 2007, pp. 132–138.

53

[56] M. Benedetti, sKizzo: A suite to evaluate and certify QBFs, in: R. Nieuwenhuis (Ed.), Proc. the 20th Int. Conf. on Automated Deduction
(CADE–20), Vol. 3632 of Lecture Notes in Computer Science, Springer, 2005, pp. 369–376.

[57] H. Samulowitz, F. Bacchus, Binary clause reasoning in QBF, in: A. Biere, C. P. Gomes (Eds.), Proc. the 9th Int. Conf. on Theory and
Applications of Satisfiability Testing (SAT 2006), Vol. 4121 of Lecture Notes in Computer Science, Springer, 2006, pp. 353–367.

[58] L. Zhang, S. Malik, Towards a symmetric treatment of satisfaction and conflicts in quantified boolean formula evaluation, in: P. V. Hentenryck
(Ed.), Proc. of the 8th Int. Conf. on Principles and Practice of Constraint Programming (CP 2002), Vol. 2470 of Lecture Notes in Computer
Science, Springer, 2002, pp. 200–215.

[59] L. Zhang, S. Malik, Conflict driven learning in a quantified boolean satisfiability solver, in: L. T. Pileggi, A. Kuehlmann (Eds.), Proc. of the
IEEE/ACM Int. Conf. on Computer-aided Design (ICCAD), ACM, 2002, pp. 442–449.

[60] E. Giunchiglia, M. Narizzano, A. Tacchella, Clause-term resolution and learning in quantified Boolean logic satisfiability, J. of Artificial
Intelligence Research 26 (2006) 371–416.

[61] R. Rosati, Finite model reasoning in DL-Lite, in: S. Bechhofer, M. Hauswirth, J. Hoffmann, M. Koubarakis (Eds.), Proc. of the 5th Eur.
Semantic Web Conf. (ESWC 2008), Vol. 5021 of Lecture Notes in Computer Science, Springer, 2008, pp. 215–229.

54

