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Abstract. We investigate the complexity of reasoning over various frag-
ments of the Extended Entity-Relationship (EER) language, which in-
clude different combinations of the constructors for isa between concepts
and relationships, disjointness, covering, cardinality constraints and their
refinement. Specifically, we show that reasoning over EER diagrams with
isa between relationships is ExpTime-complete even when we drop both
covering and disjointness for relationships. Surprisingly, when we also
drop isa between relations, reasoning becomes NP-complete. If we fur-
ther remove the possibility to express covering between entities, reas-
oning becomes polynomial. Our lower bound results are established by
direct reductions, while the upper bounds follow from correspondences
with expressive variants of the description logic DL-Lite. The established
correspondence shows also the usefulness of DL-Lite as a language for
reasoning over conceptual models and ontologies.

1 Introduction

Conceptual modelling formalisms, such as the Entity-Relationship model [1], are
used in the phase of conceptual database design where the aim is to capture at
best the semantics of the modelled application. This is achieved by expressing
constraints that hold on the concepts, attributes and relations representing the
domain of interest through suitable constructors provided by the conceptual
modelling language. Thus, on the one hand it would be desirable to make such
a language as expressive as possible in order to represent as many aspects of
the modelled reality as possible. On the other hand, when using an expressive
language, the designer faces the problem of understanding the complex interac-
tions between different parts of the conceptual model under construction and
the constraints therein. Such interactions may force, e.g., some class (or even all
classes) in the model to become inconsistent in the sense that there cannot be
any database state satisfying all constraints in which the class (respectively, all
classes) is populated by at least one object. Or a class may be implied to be
a subclass of another one, even if this is not explicitly asserted in the model.
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To understand the consequences, both explicit and implicit, of the constraints
in the conceptual model being constructed, it is thus essential to provide for an
automated reasoning support.

In this paper, we address these issues and investigate the complexity of
reasoning in conceptual modelling languages equipped with various forms of
constraints. We carry out our analysis in the context of the Extended Entity-
Relationship (EER) language [2], where the domain of interest is represented
via entities (representing sets of objects), possibly equipped with attributes, and
relationships (representing relations over objects)1. Specifically, the kind of con-
straints that will be taken into account in this paper are the ones typically used
in conceptual modelling, namely:

– is-a relations between both entities and relationships;
– disjointness and covering (referred to as the Boolean constructors in what

follows) between both entities and relationships;
– cardinality constraints for participation of entities in relationships;
– refinement of cardinalities for sub-entities participating in relationships; and
– multiplicity constraints for attributes.

The hierarchy of EER languages we consider here is shown in the table below
together with the complexity results for reasoning in these languages (all our
languages include cardinality, refinement and multiplicity constraints).

entities relationships
lang. isa disjoint covering isa disjoint covering complexity

C1 v C2 C1 u C2 v ⊥ C = C1 t C2 R1 v R2 R1 u R2 v⊥ R=R1 t R2

ERfull + + + + + + ExpTime [3]
ERisaR + + + + − − ExpTime
ERbool + + + − − − NP
ERref + + − − − − NLogSpace

According to [3] reasoning over UML class diagrams is ExpTime-complete, and
it is easy to see that the same holds for ERfull diagrams as well (cf. e.g., [4]).
Here we strengthen this result by showing (using reification) that reasoning is
still ExpTime-complete for its sublanguage ERisaR. The NP upper bound for
ERbool is proved by embedding ERbool into DL-Litebool, the Boolean extension
of the tractable DL DL-Lite [5, 6]. Thus, quite surprisingly, isa between relation-
ships alone is a major source of complexity of reasoning over conceptual schemas.
Finally, we show that ERref is closely related to DL-Litekrom, the Krom frag-
ment of DL-Litebool, and that reasoning in it is polynomial. The correspondence
between modelling languages like ERbool and DLs like DL-Litebool shows that
the DL-Lite family are useful languages for reasoning over conceptual models
and ontologies, even though they are not equipped with all the constructors that
are typical of rich ontology languages such as OWL and its variants [7].

Our analysis is in spirit similar to [8], where the consistency checking problem
for an EER model equipped with forms of inclusion and disjointness constraints
is studied and a polynomial-time algorithm for the problem is given (assuming
constant arities of relationships). Such a polynomial-time result is incomparable

1 Our results can be adapted to other modelling formalisms, such as UML diagrams.



with the one for ERref, since ERref lacks both isa and disjointness for relation-
ships (both present in [8]); on the other hand, it is equipped with cardinality
and multiplicity constraints. We also mention [9], where reasoning over cardin-
ality constraints in the basic ER model is investigated and a polynomial-time
algorithm for strong schema consistency is given, and [10], where the study is
extended to the case where isa between entities is also allowed and an expo-
nential algorithm for entity consistency is provided. Note, however, that in [9,
10] the reasoning problem is analysed under the assumption that databases are
finite, whereas we do not require finiteness in this paper.

2 The DL-Lite Language

We consider the extension DL-Litebool [6] of the description logic DL-Lite [11, 5].
The language of DL-Litebool contains concept names A0, A1, . . . and role names
P0, P1, . . . . Complex roles R and concepts C of DL-Litebool are defined as follows:

R ::= Pi | P−i ,

B ::= ⊥ | Ai | ≥ q R,

C ::= B | ¬C | C1 u C2,

where q ≥ 1. Concepts of the form B are called basic concepts. A DL-Litebool
knowledge base is a finite set of axioms of the form C1 v C2. A DL-Litebool
interpretation I is a structure

(
∆I , ·I), where ∆I 6= ∅ and ·I is a function such

that AI
i ⊆ ∆I , for all Ai, and P I

i ⊆ ∆I ×∆I , for all Pi. The role and concept
constructors are interpreted in I as usual. We also make use of the standard
abbreviations: > := ¬⊥, ∃R := (≥ 1 R) and ≤ q R := ¬(≥ q + 1 R). We say that
I satisfies an axiom C1 v C2 if CI

1 ⊆ CI
2 . A knowledge base K is satisfiable if

there is an interpretation I that satisfies all the axioms of K (such an I is called
a model of K). A concept C is satisfiable w.r.t. K if there is a model I of K such
that CI 6= ∅.

We also consider a sub-language DL-Litekrom of DL-Litebool, called the Krom
fragment, where only axioms of the following form are allowed (with Bi basic
concepts):

B1 v B2, B1 v ¬B2, ¬B1 v B2,

Theorem 1 ([6]). Concept and KB satisfiability are NP-complete for
DL-Litebool KBs and NLogSpace-complete for DL-Litekrom KBs.

3 The Conceptual Modelling Language

In this section, we define the notion of a conceptual schema by providing its syn-
tax and semantics for the fully-fledged conceptual modelling language ERfull.
First citizens of a conceptual schema are entities, relationships and attributes. Ar-
guments of relationships—specifying the role played by an entity when particip-
ating in a particular relationship—are called roles. Given a conceptual schema,
we make the following assumptions: relationship and entity names are unique;
attribute names are local to entities (i.e., the same attribute may be used by



different entities; its type, however, must be the same); role names are local to
relationships (this freedom will be limited when considering conceptual models
without sub-relationships).

Given a finite set X = {x1, . . . , xn} and a set Y , an X-labelled tuple over
Y is a (total) function T : X → Y . The element T [x] ∈ Y is said to be labelled
by x; we also write (x, y) ∈ T if y = T [x]. The set of all X-labelled tuples over
Y is denoted by TY (X). For y1, . . . , yn ∈ Y , the expression 〈x1 : y1, . . . , xn : yn〉
denotes T ∈ TY (X) such that T [xi] = yi, for 1 ≤ i ≤ n.

Definition 1 (ERfull syntax). An ERfull conceptual schema Σ is a tuple of
the form (L,rel,att,cardR,cardA,ref, isa,disj,cov), where

– L is the disjoint union of alphabets E of entity symbols, A of attribute sym-
bols, R of relationship symbols, U of role symbols and D of domain symbols;
the tuple (E ,A,R,U ,D) is called the signature of the schema Σ.

– rel is a function assigning to every relationship symbol R ∈ R a tuple
rel(R) = 〈U1 : E1, . . . , Um : Em〉 over the entity symbols E labelled with a
non-empty set {U1, . . . , Um} of role symbols; m is called the arity of R.

– att is a function that assigns to every entity symbol E ∈ E a tuple att(E),
att(E) = 〈A1 : D1, . . . , Ah : Dh〉, over the domain symbols D labelled with
some (possibly empty) set {A1, . . . , Ah} of attribute symbols.

– cardR : R×U ×E → N× (N∪{∞}) is a partial function (called cardinality
constraints); cardR(R,U, E) may be defined only if (U,E) ∈ rel(R).

– cardA : A× E → N× (N ∪ {∞}) is a partial function (called multiplicity of
attributes); cardA(A,E) may be defined only if (A,D) ∈ att(E), for some
D ∈ D.

– ref : R×U ×E → N× (N∪ {∞}) is a partial function (called refinement of
cardinality constraints); ref(R,U, E) may be defined only if E isa E′ and
(U,E′) ∈ rel(R); note that ref subsumes cardinality constraints cardR.

– isa = isaE ∪ isaR, where isaR ⊆ E × E and isaR ⊆ R×R.
– disj = disjE ∪disjR and cov = covE ∪covR, where disjE ,covE ⊆ 2E×E

and disjR,covR ⊆ 2R ×R.

isaR, disjR and covR may only be defined for relationships of the same arity.
In what follows we also use infix notation for relations isa, isaE , etc.

Definition 2 (ERfull semantics). Let Σ be an ERfull conceptual schema and
BD, for D ∈ D, a collection of disjoint countable sets called basic domains. An
interpretation of Σ is a pair B = (∆B∪ΛB, ·B), where ∆B 6= ∅ is the interpretation
domain; ΛB =

⋃
D∈D ΛBD, with ΛBD ⊆ BD for each D ∈ D, is the active domain

such that ∆B ∩ ΛB = ∅; ·B is a function such that EB ⊆ ∆B, for each E ∈ E ,
AB ⊆ ∆B × ΛB, for each A ∈ A, RB ⊆ T∆B(U), for each R ∈ R; and DB = ΛBD,
for each D ∈ D. An interpretation B of Σ is called a legal database state if the
following holds:

1. for each R ∈ R with rel(R) = 〈U1 : E1, . . . , Um : Em〉 and each 1 ≤ i ≤ m,
– for all r ∈ RB, r = 〈U1 : e1, . . . , Um : em〉 and ei ∈ EB

i ;
– if cardR(R,Ui, Ei) = (α, β) then α ≤ ]{r ∈ RB | (Ui, ei) ∈ r} ≤ β, for

all ei ∈ EB
i ;



– if ref(R,Ui, E) = (α, β), for E ∈ E with E isa Ei, then, for all e ∈ EB,
α ≤ ]{r ∈ RB | (Ui, e) ∈ r} ≤ β;

2. for each E ∈ E with att(E) = 〈A1 : D1, . . . , Ah : Dh〉 and each 1 ≤ i ≤ h,
– for all (e, a) ∈ ∆B × ΛB , if (e, a) ∈ AB

i then a ∈ DB
i ;

– if cardA(Ai, E) = (α, β) then α ≤ ]{(e, a) ∈ AB
i } ≤ β, for all e ∈ EB;

3. for all E1, E2 ∈ E , if E1 isaE E2 then EB
1 ⊆ EB

2 (similarly for relationships);

4. for all E,E1, . . . , En ∈ E , if {E1, . . . , En} disjE E then EB
i ⊆ EB, for every

1 ≤ i ≤ n, and EB
i ∩ EB

j = ∅, for 1 ≤ i < j ≤ n (similarly for relationships);

5. for all E,E1, . . . , En ∈ E , {E1, . . . , En} covE E implies EB =
⋃n

i=1 EB
i

(similarly for relationships).

Reasoning tasks over conceptual schemas include verifying whether an entity,
a relationship, or a schema is consistent, or checking whether an entity (or a
relationship) subsumes another entity (relationship, respectively):

Definition 3 (Reasoning services). Let Σ be an ERfull schema.

• Σ is consistent (strongly consistent) if there exists a legal database state B
for Σ such that EB 6= ∅, for some (every, respectively) entity E ∈ E .

• An entity E ∈ E (relationship R ∈ R) is consistent w.r.t. Σ if there exists a
legal database state B for Σ such that EB 6= ∅ (RB 6= ∅, respectively).

• An entity E1 ∈ E (relationship R1 ∈ R) subsumes an entity E2 ∈ E (relation-
ship R2 ∈ R) w.r.t. Σ if EB

2 ⊆ EB
1 (RB

2 ⊆ RB
1 , respectively), for every legal

database state B for Σ.

One can show that the reasoning tasks of schema/entity/relationship con-
sistency and entity subsumption are reducible to each other. (Note that in the
absence of the covering constructor schema consistency cannot be reduced to a
single instance of entity consistency, though it can be reduced to several entity
consistency checks.) Due to these equivalences, in the following we will consider
entity consistency as the main reasoning service.

4 Complexity of Reasoning in EER Languages

This section shows the complexity results obtained in this paper for
reasoning over different EER languages (All proofs can be found at
http://www.inf.unibz.it/~artale/papers/dl07-full.pdf.)

Reasoning over ERisaR schemas. The modelling language ERisaR is the sub-
set of ERfull without the Booleans between relationships (i.e., disjR = ∅ and
covR = ∅) but with the possibility to express isa between them. We establish
an ExpTime lower bound for satisfiability of ERisaR conceptual schemas by re-
duction of the satisfiability problem for ALC knowledge bases. It is easy to show
(see, e.g., [3, Lemma 5.1]) that one can convert, in a satisfiability preserving way,
an ALC KB K into a primitive KB K′ that contains only axioms of the form:
A v B,A v ¬B,A v B tB′, A v ∀R.B, A v ∃R.B, where A,B,B′ are concept
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Fig. 1. Encoding axioms: (a) A v ∀R.B; (b) A v ∃R.B.

names and R is a role name, and the size of K′ is linear in the size of K. Thus,
satisfiability problem for primitive ALC KBs is ExpTime-complete [3].

Let K be a primitive ALC KB. The reduction in [3] maps K into an UML class
diagram. We show how to define an ERisaR schema Σ(K): the first three types
of axioms are dealt with in a way similar to [3]. Axioms of the form A v ∀R.B
are encoded in [3] using both the Booleans and isa between relationships, which
are unavailable in ERisaR. In order to to stay within ERisaR, we propose to
use reification of ALC roles (which are binary relationships) to encode the last
two types of axioms. This approach is illustrated in Fig. 1: in (a), A v ∀R.B
is encoded by reifying the binary relationship R with the entity CR so that the
functional relationships R1 and R2 give the first and second component of the
reified R, respectively; a similar encoding is used to capture A v ∃R.B in (b).

Lemma 1. A concept name A is satisfiable w.r.t a primitive ALC KB K iff the
entity A is consistent w.r.t the ERisaR schema Σ(K).

Theorem 2. Reasoning over ERisaR schemas is ExpTime-complete.

The lower bound follows, by Lemma 1, from ExpTime-completeness of concept
satisfiability w.r.t. primitive ALC KBs [3] and the upper bound from the re-
spective upper bound for ERfull [3].

Reasoning over ERbool schemas. Denote by ERbool the sub-language of ERfull

without isa and the Booleans between relationships (i.e., isaR = ∅, disjR = ∅
and covR = ∅). In ERbool we impose an insignificant syntactic restriction on
rel: there is no U ∈ U such that (U,Ei) ∈ rel(Ri), i = 1, 2, for some E1, E2 ∈ E
and some distinct R1, R2 ∈ R.

We define a polynomial translation τ of ERbool schemas into DL-Litebool KBs.
Let Σ be an ERbool schema. For every entity, domain or relationship symbol
N ∈ E ∪D∪R, we fix a DL-Litebool concept name N ; for every attribute or role
symbol N ∈ A ∪ U , we fix a DL-Litebool role name N . The translation τ(Σ) of



Σ is defined as follows:

τ(Σ) = τdom ∪
⋃

R∈R

[
τR
rel ∪ τR

cardR
∪ τR

ref

]
∪

⋃
E∈E

[
τE
att ∪ τE

cardA

]
∪

⋃
E1,E2∈E
E1isaE2

τE1,E2
isa ∪

⋃
E1,...,En,E∈E
{E1,...,En}disjE

τ
{E1,...,En},E
disj ∪

⋃
E1,...,En,E∈E
{E1,...,En}covE

τ{E1,...,En},E
cov ,

where
– τdom =

{
D v ¬X | D ∈ D, X ∈ E ∪ R ∪ D, D 6= X

}
;

– τR
rel =

{
R v ∃U, ≥ 2 U v ⊥, ∃U v R, ∃U− v E | (U,E) ∈ rel(R)

}
;

– τR
cardR

=
{
E v ≥ α U

− | (U,E) ∈ rel(R),cardR(R,U, E) = (α, β), α 6= 0
}

∪
{
E v ≤ β U

− | (U,E) ∈ rel(R),cardR(R,U, E) = (α, β), β 6= ∞
}
;

– τR
ref =

{
E v ≥ α U

− | (U,E) ∈ rel(R),ref(R,U,E) = (α, β), α 6= 0
}

∪
{
E v ≤ β U

− | (U,E) ∈ rel(R),ref(R,U, E) = (α, β), β 6= ∞
}
;

– τE
att =

{
∃A− v D | (A,D) ∈ att(E)

}
;

– τE
cardA

=
{
E v ≥ α A | (A,D) ∈ att(E),cardA(A,E) = (α, β), α 6= 0

}
∪

{
E v ≤ β A | (A,D) ∈ att(E),cardA(A,E) = (α, β), β 6= ∞

}
;

– τE1,E2
isa =

{
E1 v E2

}
;

– τ
{E1,...,En},E
disj =

{
Ei v E | 1 ≤ i ≤ n

}
∪

{
Ei v ¬Ej | 1 ≤ i < j ≤ n

}
;

– τ
{E1,...,En},E
cov =

{
Ei v E | 1 ≤ i ≤ n} ∪

{
E v E1 t · · · t En

}
.

Clearly, the size of τ(Σ) is polynomial in the size of Σ.

Lemma 2. An entity E is consistent w.r.t. an ERbool schema Σ iff the concept
E is satisfiable w.r.t. the DL-Litebool KB τ(Σ).

Theorem 3. Reasoning over ERbool conceptual schemas is NP-complete.

The upper bound is proved by Lemma 2 and Theorem 1; the lower one is by
reduction of the NP-complete 3SAT problem to entity consistency for ERbool

schemas.

Reasoning over ERref schemas. Denote by ERref the modelling language
without the Booleans and isa between relationships, but with the possibility
to express isa and disjointness between entities (i.e., disjR = ∅, covR = ∅,
isaR = ∅ and covE = ∅). Thus, ERref is essentially ERbool without covering.

Theorem 4. The entity consistency problem for ERref is NLogSpace-
complete.

The upper bound follows from the fact that for any ERref schema, Σ, τ(Σ) is a
DL-Litekrom KB (τcov = ∅). Thus, by Lemma 2, the entity consistency problem
for ERref can be reduced to concept satisfiability for DL-Litekrom KBs, which
is NLogSpace-complete (see Theorem 1), while the reduction can be proved



to be computed in logspace. The lower bound is obtained by reduction of the
non-reachability problem in oriented graphs (the non-reachability problem is
known to be coNLogSpace-complete and so, it is NLogSpace-complete as
these classes coincide by the Immerman-Szelepcsényi theorem; see, e.g., [12]).

5 Conclusions

This paper provides new complexity results for reasoning over Extended Entity-
Relationship (EER) models with different modelling constructors. Starting from
the ExpTime result [3] for reasoning over the fully-fledged EER language, we
prove that the same complexity holds even if the Boolean constructors (dis-
jointness and covering) on relationships are dropped. This result shows that
isa between relationships (with the Booleans on entities) is powerful enough to
capture ExpTime-hard problems. To illustrate that the presence of relationship
hierarchies is a major source of complexity in reasoning we show that avoiding
them makes reasoning in ERbool an NP-complete problem. Another source of
complexity is the covering constraint. Indeed, without relationship hierarchies
and covering constraints reasoning problem for ERref is NLogSpace-complete.

The paper also provides a tight correspondence between conceptual modelling
languages and the DL-Lite family of description logics and shows the usefulness
of DL-Lite in representing and reasoning over conceptual models and ontologies.
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A Proofs

A.1 Reasoning Tasks: Reductions

The reasoning tasks of schema/entity/relationship consistency and entity sub-
sumption are reducible to each other. Indeed, that entity subsumption is equi-
valent to entity satisfiability is shown in [3]. Schema consistency can be reduced
to entity consistency by extending Σ as follows: let O∗ be a fresh entity symbol,
E∗ = E ∪ {O∗} and cov∗ = cov ∪ {(E , O∗)}. Clearly, Σ is consistent iff O∗ is
consistent w.r.t. Σ∗. For the converse reduction Σ is extended follows: let O∗

be a fresh entity symbol and RE a fresh relationship symbol, E∗ = E ∪ {O∗},
cov∗ = cov ∪ {(E , O∗)}, R∗ = R ∪ {RE}, rel(RE) = 〈U1 : E,U2 : O∗〉,
cardR(RE , U2, O

∗) = (1,∞). Clearly, E is consistent w.r.t. Σ iff Σ∗ is con-
sistent.

Relationship consistency can be reduced to entity consistency by extending
Σ as follows: let O∗ be a fresh entity symbol, E∗ = E ∪ {O∗}, isaE

∗ = isaE ∪
{(O∗, E)} and ref∗ extends ref so that ref∗(R,U, O∗) = (1, β), where E is
an entity with (U,E) ∈ rel(R) and β is such that cardR(R,U, E) = (α, β).
Relationship R is consistent w.r.t. Σ iff entity O∗ is consistent w.r.t. Σ∗. For
the converse reduction, let RE be a fresh relationship symbol with rel(RE) =
〈U1 : E,U2 : E〉. Then E is consistent iff RE is consistent.

A.2 Complexity of Reasoning in ERisaR

Lemma 1. A concept name E is satisfiable w.r.t a primitive ALC KB K iff the
entity E is consistent w.r.t the ERisaR schema Σ(K).

Proof. (⇐) Let B = (∆B, ·B) be a legal database for Σ(K) such that EB 6= ∅. We
construct a model I = (∆I , ·I) of K with EI 6= ∅ by taking ∆I = ∆B, CI = CB,
for all concept names C in K, and RI = (R−

1 ◦R2)B, for all role names R in K,
where ◦ denotes the binary relation composition. Clearly, EI 6= ∅. Let us show
that I is indeed a model of K. The cases of axioms of the form A v B, A v ¬B
and A v B tB′ are treated as in [3]. Let us consider the remaining two cases.

Case A v ∀R.B. Let o ∈ AI and o′ ∈ ∆I with (o, o′) ∈ RI . We show that o ∈
(∀R.B)I . Since RI = (R−

1 ◦R2)B, then there is o′′ ∈ ∆B with (o, o′′) ∈ (R−
1 )B and

(o′′, o′) ∈ RB
2 . Then o′′ ∈ CB

R and, by the covering constraint, o′′ ∈ CB
RA

∪ CB
RA

.
We claim that o′′ ∈ CB

RA
. Indeed, suppose otherwise; then o′′ ∈ CB

RA
, and so there

is a unique a ∈ ∆B such that (o′′, a) ∈ RB
A1

and a ∈ A
B
; from RB

A1
⊆ RB

1 and
the cardinality constraint on CR it follows that a = o, contrary to o ∈ AB = AI

and the disjointness of A and A. Since o′′ ∈ CB
RA

, there is a unique b ∈ ∆B such
that (o′′, b) ∈ RB

A2 and b ∈ BB. From RB
A2 ⊆ RB

2 and the cardinality constraint
on CR, we conclude that b = o′. Thus, o′ ∈ BI = BB and o ∈ (∀R.B)I .

Case A v ∃R.B. Let o ∈ AI . Since o ∈ AI = AB, then, there is o′ ∈ ∆B with
(o, o′) ∈ (R−

AB1)
B and o′ ∈ CB

RAB
. Since RB

AB1 ⊆ RB
1 , we have (o, o′) ∈ (R−

1 )B,
and since o′ ∈ CB

RAB
, then there is o′′ ∈ ∆B such that (o′, o′′) ∈ RB

AB2 ⊆ RB
2

and o′′ ∈ BB = BI . Therefore, since RI = (R−
1 ◦ R2)B, then (o, o′′) ∈ RI and

o′′ ∈ BI , i.e. o ∈ (∃R.B)I .



(⇒) Let I = (∆I , ·I) be an ALC model of K such that EI 6= ∅. We construct
a legal database state B = (∆B, ·B) for Σ(K) such that EB 6= ∅. Let ∆B = ∆I∪Γ ,
where Γ is the disjoint union of the ∆R = {(o, o′) ∈ ∆I | (o, o′) ∈ RI}, for all
ALC role names R. We set AB = AI and A

B
= (¬A)I , for all concept names A,

OB = ∆I , for the concept O, and CB
R = ∆R, for all ALC role names R.

Next, for every ALC axiom of the form A v ∀R.B, we set

– CB
RA

= {(o, o′) ∈ ∆R | o ∈ AI}, CB
RA

= {(o, o′) ∈ ∆R | o ∈ (¬A)I},
– RB

1 = {((o, o′), o) ∈ ∆R ×∆I | (o, o′) ∈ RI},
– RB

2 = {((o, o′), o′) ∈ ∆R ×∆I | (o, o′) ∈ RI},
– RB

A1 = {((o, o′), o) ∈ RB
1 | o ∈ AI}, RB

A1
= {((o, o′), o) ∈ RB

1 | o ∈ (¬A)I},
– RB

A2 = {((o, o′), o′) ∈ RB
2 | o ∈ AI},

and, for every ALC axiom of the form A v ∃R.B,

– CB
RAB

= {(o, o′) ∈ ∆R | o ∈ AI and o′ ∈ BI},
– RB

1 = {((o, o′), o) ∈ ∆R ×∆I | (o, o′) ∈ RI},
– RB

2 = {((o, o′), o′) ∈ ∆R ×∆I | (o, o′) ∈ RI},
– RB

AB1 = {((o, o′), o) ∈ RB
1 | (o, o′) ∈ CB

RAB
}.

– RB
AB2 = {((o, o′), o′) ∈ RB

2 | (o, o′) ∈ CB
RAB

}.

It is now easy to show that B is a legal database state for Σ(K) and EB 6= ∅.

Theorem 2. Reasoning over ERisaR schemas is ExpTime-complete.

Proof. The lower bound follows, by Lemma 1, from ExpTime-completeness of
concept satisfiability w.r.t. primitive ALC KBs [3] and the upper bound from
the respective upper bound for ERfull [3].

A.3 Complexity of Reasoning in ERbool

Lemma 2. An entity E is consistent w.r.t. an ERbool schema Σ iff the concept
E is satisfiable w.r.t. the DL-Litebool KB τ(Σ).

Proof. (⇒) Let B = (∆B ∪ ΛB, ·B) be a legal database state for Σ such that
EB 6= ∅, where {BD}D∈D are the domain sets. Define a model I = (∆I , ·I)
of τ(Σ) by taking ∆I = ∆B ∪ ΛB ∪ Γ , where Γ is the disjoint union of the
∆R = {(e1, . . . , em) ∈ RB}, for all relationships R ∈ R, and setting D

I
= DB,

for every D ∈ D, E
I

= EB, for every E ∈ E , A
I

= AB, for every A ∈ A,
R
I

= ∆R, for every R ∈ R, and, for every U ∈ U such that there is R ∈ R with
rel(R) = 〈U1 : E1, . . . , Um : Em〉 and U = Ui for some i with 1 ≤ i ≤ m,

U
I

= {((e1, . . . , em), ei) ∈ ∆R ×∆B | (e1, . . . , em) ∈ RB}. (1)

Clearly, E
I 6= ∅. We now prove that I is indeed a model of τ(Σ). We guide

the proof by considering the translation of the various statements in Σ.



1. We show I |= τdom. For any two distinct D1, D2 ∈ D, we have DB
1 ∩DB

2 = ∅,
and so I |= D1 v ¬D2. For all D ∈ D and E ∈ E , since EB ⊆ ∆B, DB ⊆ ΛB

and ∆B ∩ ΛB = ∅, we have I |= D v ¬E. Next, for all D ∈ D and R ∈ R,
as DB ⊆ ΛB, R

I
= ∆R ⊆ Γ and Γ ∩ ΛB = ∅, we have I |= D v ¬R.

2. rel(R) = 〈U1 : E1, . . . , Um : Em〉. Consider all axioms in τR
rel ∪ τR

cardR
∪ τR

ref:

(a) R v ∃Ui. Let r ∈ R
I
. Then r is of the form (e1, . . . , em) ∈ RB. By (1),

(r, ei) ∈ Ui
I
, and so r ∈ ∃Ui

I
.

(b) ≥ 2 Ui v ⊥. Suppose that there are (r, e), (r, e′) ∈ Ui
I

such that e 6= e′.
By (1), r is of the form (e1, . . . , em) and e = ei = e′, contrary to e 6= e′.

(c) ∃Ui
− v Ei. Let e ∈ (∃Ui

−
)I . Then (r, e) ∈ Ui

I
for some r ∈ ∆I . Since

Ui may be involved only in one relation (R in this case) and in view
of (1), r is of the form (e1, . . . , em) ∈ RB and ei = e. By the semantics
of R, e ∈ EB

i , from which e ∈ Ei
I
.

(d) ∃Ui v R. Let r ∈ (∃Ui)I . Then (r, e) ∈ Ui
I

for some e ∈ ∆I . Since Ui

may be involved only in one relation (R in this case) and by (1), r is of
the form (e1, . . . , em) ∈ RB and e = ei. Therefore, r ∈ R

I
.

(e) E v ≥ α U
−
i (when cardR(R,Ui, Ei) = (α, β) and α 6= 0). Let e ∈ E

I
i .

Then e ∈ EB
i . We have ]{(e1, . . . , em) ∈ RB | ei = e} ≥ α and, by (1),

we obtain ]{r | (r, e) ∈ U
I
i } ≥ α, from which e ∈ (≥ αU

−
i )I .

(f) E v ≤ β U
−
i (when cardR(R,Ui, Ei) = (α, β) and β 6= ∞). The proof

is similar to the previous case.
(g) E v ≥ α U

−
i (when ref(R,Ui, Ei) = (α, β) and α 6= 0). The proof is

similar to case 2e.
(h) E v ≤ β U

−
i (when ref(R,Ui, Ei) = (α, β) and β 6= ∞). The proof is

similar to case 2e.

3. att(E) = 〈A1 : D1, . . . , Ah : Dh〉. Let us consider all axioms in τE
att ∪ τE

cardA
:

(a) ∃Ai
− v Di. Let a ∈ (∃Ai

−
)I . Then there is e ∈ ∆I such that (e, a) ∈

Ai
I
. As Ai

I
= AB

i , we have e ∈ ∆B and a ∈ ΛB. By the semantics of
att(E), a ∈ DB

i . Therefore, I |= ∃Ai
− v Di.

(b) E v ≥ α Ai (when cardA(Ai, E) = (α, β) and α 6= 0). Let e ∈ E
I
.

Then e ∈ EB. Thus, ]{a | (e, a) ∈ AB} ≥ α and ]{a | (e, a) ∈ AI} ≥ α.
Therefore, e ∈ (≥ α Ai)I .

(c) E v ≤ β Ai (when cardA(Ai, E) = (α, β) and β 6= ∞). The proof is
similar to the previous case.

4. E1 isa E2. We have E
I
1 = EB

1 ⊆ EB
2 = E

I
2 , and so I |= τE1,E2

isa .

5. {E1, . . . , En} disj E. We have EB
i ⊆ EB, for 1 ≤ i ≤ n, and EB

i ∩ EB
j = ∅

for 1 ≤ i < j ≤ n. Hence, I |= τ
{E1,...,En},E
disj .

6. {E1, . . . En} cov E. Similarly to the previous case.

Thus, I |= τ(Σ).



(⇐) Let T = (∆T , ·T ) be a model of τ(Σ) such that E
I 6= ∅. Without loss

of generality, we may assume that T is a tree model (see Chapter 2 in [13]).
Starting from this interpretation, we construct domain sets {BD}D∈D and a
legal database state B = (∆B ∪ ΛB, ·B) for the ERbool schema Σ by taking
BD = ΛBD = DB = D

T
, for D ∈ D, ΛB =

⋃
D∈D ΛBD and ∆B = ∆T \ΛB; further

we set EB = E
T

, for every E ∈ E , AB = A
T ∩ (∆B×ΛB), for every A ∈ A, and,

for every R ∈ R with rel(R) = 〈U1 : E1, . . . , Um : Em〉, we set

RB =
{
(e1, . . . , em) ∈ T∆T ({U1, . . . , Um}) |

∃r ∈ R
T

such that (r, ei) ∈ Ui
T

for 1 ≤ i ≤ m
}
.

Observe that the function ·B is as required by Definition 2 and EB 6= ∅. We show
now that B satisfies every assertion of the ERbool schema Σ.

1. rel(R) = 〈U1 : E1, . . . , Um : Em〉. Let (e1, . . . , em) ∈ RB. Then there exists
r ∈ R

T
such that (r, ei) ∈ Ui

T
, for 1 ≤ i ≤ m. Since T |= ∃Ui

− v Ei, we
obtain ei ∈ Ei

T
, and so ei ∈ EB

i , for 1 ≤ i ≤ m.

2. att(E) = 〈A1 : D1, . . . , Ah : Dh〉. Let (e, ai) ∈ ∆B × ΛB with (e, ai) ∈ AB
i ,

for 1 ≤ i ≤ h. Then (e, ai) ∈ Ai
T

. As T |= ∃Ai
− v Di, we have ai ∈ Di

T
,

from which ai ∈ DB
i ⊆ ΛB.

3. cardR(R,U, E) = (α, β). Then we have rel(R) = 〈U1 : E1, . . . , Um : Em〉
such that Ui = U and Ei = E, for some Ui and Ei, 1 ≤ i ≤ m. We have to
show that, for every e ∈ EB,

α ≤ ]{(e1, . . . , em) ∈ RB | ei = e} ≤ β.

Consider the lower and upper bounds.
(a) We may assume that α 6= 0. Since T |= E v ≥ α U

−
and EB = E

T
,

there exist at least α distinct r1, . . . , rα ∈ ∆T such that (rj , e) ∈ U
T

,
for 1 ≤ j ≤ α. Since T |= ∃U v R, we have r1, . . . , rα ∈ R

T
. And

since T |= R v ∃Ui and T |= ≥ 2 Ui v ⊥, for all 1 ≤ i ≤ m, there are
uniquely determined ej

k ∈ ∆T such that (rj , e
j
k) ∈ Uk

T
and ej

i = e, for
all 1 ≤ j ≤ α and 1 ≤ k ≤ m. Since T is a tree-like model, we have
ej
k 6= ej′

k′ whenever k 6= i, k′ 6= i and either k 6= k′ or j 6= j′. Therefore,
we have shown that exactly one tuple corresponds to each object in R

T

and vice versa. Then, by construction, (ej
1, . . . , e

j
m) ∈ RB and ej

i = e, for
all 1 ≤ j ≤ α. It follows that ]{(e1, . . . , em) ∈ RB | ei = e} ≥ α.

(b) We may assume that β 6= ∞. The proof is similar to the previous item.

4. cardA(A,E) = (α, β). Let e ∈ EB = E
T

. Consider the lower and upper
bounds:
(a) We may assume α 6= 0. Since T |= E v ≥ α A and T |= ∃A− v D, for

some D with (A,D) ∈ att(E), we have ]{a ∈ DB | (e, a) ∈ A
T } ≥ α.

Finally, as AB = A
T ∩ (∆B × ΛB), we obtain ]{a|(e, a) ∈ AB} ≥ α.



(b) We may assume β 6= ∞. The proof is similar to the previous case.
5. ref(R,U,E) = (α, β). The proof is the same as in case 3.

6. E1 isaE2. This holds in B since T |= E1 v E2 and Ei
B = Ei

T
, for i ∈ {1, 2}.

7. {E1, . . . , En} disj E. This holds in B since T |= Ei v E, for all 1 ≤ i ≤ n,
and T |= Ei v ¬Ej , for all 1 ≤ i < j ≤ n, and EB

i = Ei
T

, for 1 ≤ i ≤ n.
8. {E1, . . . En} cov E. Similar to the previous case.

Theorem 3. Reasoning over ERbool conceptual schemas is NP-complete.

Proof. The upper bound is proved by Lemma 2 and Theorem 1. To prove NP-
hardness we provide a polynomial reduction of the 3SAT problem, which is
known to be NP-complete, to the problem of entity consistency. Let an instance
of 3SAT be given by a set φ of 3-clauses ci = a1

i ∨ a2
i ∨ a3

i over some finite set Λ
of literals. We define an ERbool schema Σφ as follows:

– the signature L of Σφ is given by E = {a | a ∈ Λ} ∪ {c | c ∈ φ} ∪ {φ,>},
A = ∅, R = ∅, U = ∅, D = ∅;

– φ isa c, for all c ∈ φ;
– (E \ {>}) cov>, {a,¬a} cov>, for all a ∈ Λ,

{a1
i , a

2
i , a

3
i } cov ci, for all ci ∈ φ, ci = a1

i ∨ a2
i ∨ a3

i ;
– {a,¬a} disj>, for all a ∈ Λ;
– att,rel, cardR,cardA,ref are empty functions.

Now we show the following claim:
Claim. φ is satisfiable iff the entity φ is consistent w.r.t. the schema Σφ.
(⇒) Let J |= φ. Define an interpretation B = (∆B, ·B) by taking ∆B = {o},
>B = {o}, and, for every E ∈ E \ {>}, E

B
= {o} if J |= E and E

B
= ∅ if

J 6|= E. We show that B is a legal database state for Σφ. Since J |= φ, we have
J |= ci for all ci ∈ φ, and, by construction, cBi = {o}. This means that every
isa assertion in Σφ is satisfied by B. Consider now some ci ∈ φ. Then J |= ak

i

for at least one of a1
i , a

2
i or a3

i , which means that ak
i

B
= {o}. It follows that the

assertion {a1
i , a

2
i , a

3
i } cov ci holds in B. The assertion (E \ {>}) cov > holds,

since E
B ⊆ {o}, φ

B
= {o} and >B = {o}, for every E ∈ E \ {>}. It should also

be clear that every assertion {a,¬a}cov>, for a ∈ Λ, holds in B. Since only one
of a,¬a is satisfied by J , the other one will be interpreted in B as the empty
set, so every assertion in disj holds, too. Thus, B is a legal database state for
Σφ, with φ

B 6= ∅.

(⇐) Let B = (∆B, ·B) be a legal database state for Σφ such that o ∈ φ
B
,

for some o ∈ ∆B. Construct a model J for φ by taking, for every propositional
variable p in φ, J |= p iff o ∈ pB. We show that J |= φ. Indeed, as o ∈ φ

B

and φ isa ci, we have o ∈ ci
B, for 1 ≤ i ≤ n. Since, for every ci, we have

{a1
i , a

2
i , a

3
i } cov ci, there is ak

i in ci such that o ∈ (ak
i )B. Now, if ak

i is a variable
then, by the construction of J , we have J |= ak

i , and so J |= ci. Otherwise,
ak

i = ¬p and, since {ak
i , p} disj>, o 6∈ pB. Therefore, by the construction of J ,

J 6|= p, i.e., J |= ak
i , and so J |= ci.



A.4 Complexity of Reasoning in ERref

Theorem 4. The entity consistency problem for ERref is NLogSpace-
complete.

Proof. The upper bound follows from the fact that for any ERref schema, Σ,
τ(Σ) is a DL-Litekrom KB (τcov = ∅). Thus, by Lemma 2, the entity consistency
problem for ERref can be reduced to concept satisfiability for DL-Litekrom KBs,
which is NLogSpace-complete (see Theorem 1), while the reduction can be
proved to be computed in LogSpace.

To establish NLogSpace-hardness, we consider the reachability problem in
oriented graphs, or the maze problem, which is known to be NLogSpace-
complete; see, e.g., [12]. Let G = (V,E, s, t) be an instance of maze, where
s, t are the initial and terminal vertices of a graph (V,E), respectively. We can
encode this instance in ERref using the following schema ΣG:

u isa v, for all (u, v) ∈ E, and {s, t} disj O,

where O a newly introduced entity. Clearly ΣG can be computed in LogSpace
and the following holds:

Claim. The terminal node t is reachable from s in G = (V,E, s, t) iff the entity
s is not consistent w.r.t. ΣG.

As NLogSpace=coNLogSpace (by the Immerman-Szelepcsényi theorem;
see, e.g., [12]), it follows that the problem of entity consistency in ERref is
NLogSpace-hard.


