Can you tell the difference between \textit{DL-Lite} ontologies?

Roman Kontchakov

\textit{SCSIS, Birkbeck College, London}

http://www.dcs.bbk.ac.uk/~roman

Frank Wolter and Michael Zakharyaschev

University of Liverpool \hspace{1cm} Birkbeck College, London
Developing and maintaining ontologies

● versions:
 comparing **logical consequences** over some common vocabulary \(\Sigma \)
 not not the syntactic form of the axioms (as in diff)

● refinement:
 adding new axioms but **preserving** the relationships
 between terms of a certain part \(\Sigma \) of the vocabulary

● reuse:
 importing an ontology and using its vocabulary \(\Sigma \) as originally defined
 (relationships between terms of \(\Sigma \) should not change)

new types of reasoning problems

related notions: conservative extensions, model conservativity, locality, etc.
Σ-difference

Let \mathcal{T}_1 and \mathcal{T}_2 be TBoxes (in some DL \mathcal{L}) and Σ a signature (concept and role names).

Σ-concept difference $c\text{Diff}_\Sigma(\mathcal{T}_1, \mathcal{T}_2)$ is the set of Σ-concept inclusions such that $\mathcal{T}_2 \models C \subseteq D$ and $\mathcal{T}_1 \not\models C \subseteq D$.

Σ-query difference $q\text{Diff}_\Sigma(\mathcal{T}_1, \mathcal{T}_2)$ is the set of pairs $(\mathcal{A}, q(\overline{x}))$, where $\text{sig}(\mathcal{A}), \text{sig}(q) \subseteq \Sigma$, $(\mathcal{T}_2, \mathcal{A}) \models q(\bar{a})$ and $(\mathcal{T}_1, \mathcal{A}) \not\models q(\bar{a})$, for some \bar{a}.

Strong Σ-query difference $\text{sqDiff}_\Sigma(\mathcal{T}_1, \mathcal{T}_2)$ is the set of triples $(\mathcal{T}, \mathcal{A}, q(\overline{x}))$, where $\text{sig}(\mathcal{T}, \mathcal{A}), \text{sig}(q) \subseteq \Sigma$, $(\mathcal{T}_2 \cup \mathcal{T}, \mathcal{A}) \models q(\bar{a})$, $(\mathcal{T}_1 \cup \mathcal{T}, \mathcal{A}) \not\models q(\bar{a})$, for some \bar{a}.

\mathcal{T}_1 and \mathcal{T}_2 are **Σ-concept inseparable** iff $c\text{Diff}(\mathcal{T}_1, \mathcal{T}_2) = \emptyset$ and $c\text{Diff}(\mathcal{T}_2, \mathcal{T}_1) = \emptyset$.

\mathcal{T}_1 and \mathcal{T}_2 are **Σ-query inseparable** iff $q\text{Diff}(\mathcal{T}_1, \mathcal{T}_2) = \emptyset$ and $q\text{Diff}(\mathcal{T}_2, \mathcal{T}_1) = \emptyset$.

- ExpTime for \mathcal{EL}, 2ExpTime for \mathcal{ALCQI}, undecidable for \mathcal{ALCQIO}
- tractable for acyclic \mathcal{EL} (e.g., SNOMED)
DL-Lite: Description Logic for Databases

A fragment of a conceptual schema:

Translating into DL:

1. \(\exists \text{manages}. \top \sqsubseteq \text{ProjectManager} \)
2. \(\exists \text{manages}^{-}. \top \sqsubseteq \text{Project} \)
3. \(\text{Project} \sqsubseteq \exists \text{manages}^{-}. \top \)
4. \(\geq 3 \text{ manages}^{-}. \top \sqsubseteq \bot \)
5. \(\text{Research} \sqcap \text{Visiting} \sqsubseteq \bot \)
6. \(\text{Academic} \sqsubseteq \text{ProjectManager} \)
7. \(\text{ProjectManager} \sqsubseteq \text{Academic} \sqcup \text{Visiting} \)

\[
\begin{align*}
DL-Lite_{\text{horn}} & : B_1 \sqcap \cdots \sqcap B_k \sqsubseteq B \\
DL-Lite_{\text{bool}} & : C_1 \sqsubseteq C_2
\end{align*}
\]

\[
\begin{align*}
B & ::= \bot \mid A_i \mid \exists R \mid \geq q R \\
C & ::= B \mid \neg C \mid C_1 \sqcap C_2 \mid C_1 \sqcup C_2
\end{align*}
\]
Example

Let T_1 contain the axioms

- Research $\sqsubseteq \exists \text{worksIn}$,
- Project $\sqsubseteq \exists \text{manages}$,
- $\exists \text{teaches} \sqsubseteq \text{Academic} \sqcup \text{Research}$,
- Research \cap Visiting $\sqsubseteq \bot$,
- $\exists \text{writes} \sqsubseteq \text{Academic} \sqcup \text{Research}$,
- $\exists \text{worksIn}^- \sqsubseteq \text{Project}$,
- $\exists \text{manages} \sqsubseteq \text{Academic} \sqcup \text{Visiting}$,
- Academic $\sqsubseteq \exists \text{teaches} \cap \leq 1 \text{teaches}$,
- $\exists \text{writes} \sqsubseteq \text{Academic} \sqcup \text{Research}$,

$T_2 = T_1 \cup \{ \text{Visiting} \sqsubseteq \geq 2 \text{writes} \}$ and $\Sigma = \{ \text{teaches} \}$

- T_1 and T_2 are Σ-concept inseparable (\Sigma-entailment in both directions)
 - $T_2 \models \text{Visiting} \sqsubseteq \text{Academic}$, but nothing new in the signature Σ

- T_1 does not Σ-query entail T_2:
 - $\mathcal{A} = \{ \text{teaches}(a,b), \text{teaches}(a,c) \}$
 - $q = \exists x ((\exists \text{teaches})(x) \land (\leq 1 \text{teaches})(x))$
 - ‘is there anybody who teaches precisely one module?’
 - $(T_1, \mathcal{A}) \not\models q$
 - $(T_2, \mathcal{A}) \models q$
Σ-inseparability in DL-Lite

Theorem

(1) In DL-$Lite_{bool}$:
Strong $Σ$-query insep. \iff $Σ$-query inseparability \Rightarrow $Σ$-concept inseparability

In each case the problem is Π^P_2-complete

(2) In DL-$Lite_{horn}$:
Strong $Σ$-query insep. \Rightarrow $Σ$-query inseparability \Rightarrow $Σ$-concept inseparability

In each case the problem is coNP-complete

(3) In DL-$Lite_{bool}$:
$Σ$-query entailment and $Σ$-concept entailment

can be encoded by Quantified Boolean Formulas $\forall \exists \psi$
Σ-entailment: semantic criteria

Let Q be a set of numerical parameters and $Σ$ a signature

ΣQ-concepts B: $A_i ∈ Σ$ and $(≥ q R)$ with $q ∈ Q$ and $R ∈ Σ$

<table>
<thead>
<tr>
<th>$ΣQ$-type t is a set of $ΣQ$-concepts containing</th>
</tr>
</thead>
<tbody>
<tr>
<td>● B or $¬B$ (but not both), for all B</td>
</tr>
<tr>
<td>● $≥ q R$ whenever $q < q'$ and $≥ q' R ∈ t$, for all $≥ q R$</td>
</tr>
</tbody>
</table>

For a TBox T,

a $ΣQ$-type t is T-realisable if t is satisfied in a model of T

a set $Ξ$ of $ΣQ$-types is precisely T-realisable if

there is a model of T realising precisely the types from $Ξ$

Theorem. Let Q denote the set of parameters occurring in $T_1 ∪ T_2$

T_1 $Σ$-concept entails T_2 iff every T_1-realisable $ΣQ$-type is T_2-realisable

T_1 $Σ$-query entails T_2 iff every precisely T_1-realisable set $Ξ$ of $ΣQ$-types is precisely T_2-realisable
Encoding Σ-concept entailment in QBF

Let \mathcal{T} be a TBox, Q a set of numerical parameters and t a $\text{sig}(\mathcal{T})Q$-type

\[\text{‘}t_0 is \mathcal{T}-realisable with t_1, \ldots, t_n being witnesses’\text{‘} = \Phi_{\mathcal{T}}(b_0, b_1, \ldots, b_n) \]

Propositional formula

b_j is the vector of all propositional variables B^* of the type t_j

Then the condition

\text{‘}every \mathcal{T}_1-realisable ΣQ-type t is \mathcal{T}_2-realisable’ \text{‘}

is described by the following QBF

\[
\forall b_0^{\Sigma Q} \left[\exists b_0^{T_2 \setminus \Sigma Q} \exists b_1^{T_1} \ldots \exists b_{n_1}^{T_1} \Phi_{\mathcal{T}_1}(b_0^{\Sigma Q} \cdot b_0^{T_1 \setminus \Sigma Q}, b_1^{T_1}, \ldots, b_{n_1}^{T_1}) \rightarrow \\
\exists b_0^{T_2 \setminus \Sigma Q} \exists b_1^{T_2} \ldots \exists b_{n_2}^{T_2} \Phi_{\mathcal{T}_2}(b_0^{\Sigma Q} \cdot b_0^{T_2 \setminus \Sigma Q}, b_1^{T_2}, \ldots, b_{n_2}^{T_2}) \right]
\]

$(b_0^{\Sigma Q}$ is the ΣQ-part of b_0 and $b_0^{T_i \setminus \Sigma Q}$ contains the rest of the variables)
Experiments

TBox instances
(standard Department Ontology + ICNARC)

<table>
<thead>
<tr>
<th>series</th>
<th>description</th>
<th>no. of instances</th>
<th>axioms</th>
<th>basic concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(T_1)</td>
<td>(T_2)</td>
</tr>
<tr>
<td>NN</td>
<td>(T_1) does not (\Sigma)-concept entail (T_2)</td>
<td>420</td>
<td>59–154</td>
<td>74–198</td>
</tr>
<tr>
<td>YN</td>
<td>(T_1) (\Sigma)-concept but not (\Sigma)-query entails (T_2)</td>
<td>252</td>
<td>56–151</td>
<td>77–191</td>
</tr>
<tr>
<td>YY</td>
<td>(T_1) (\Sigma)-query entails (T_2)</td>
<td>156</td>
<td>54–88</td>
<td>62–110</td>
</tr>
</tbody>
</table>

QBF solvers
- sKizzo 0.8.2 (http://skizzo.info/).
- yQuaffle (http://www.princeton.edu/~chaff/quaffle.html).
- QuBE 6.4 (http://www.star.dist.unige.it/).

QBF entailment

<table>
<thead>
<tr>
<th>series</th>
<th>(\Sigma)-concept entailment QBF</th>
<th>(\Sigma)-query entailment QBF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>variables</td>
<td>clauses</td>
</tr>
<tr>
<td>NN</td>
<td>1,469–11,752</td>
<td>2,391–18,277</td>
</tr>
<tr>
<td>YN</td>
<td>1,460–11,318</td>
<td>2,352–17,424</td>
</tr>
<tr>
<td>YY</td>
<td>1,526–4,146</td>
<td>2,200–6,079</td>
</tr>
</tbody>
</table>
Experimental results: percentage of solved instances

% % %
\[\Sigma \text{-concept entailment} \]

% % %
\[\Sigma \text{-query entailment} \]

NN YN YY

2clsQ sKizzo yQuaffle QuBE

KR 2008 Sydney 18.09.08
Forgetting

studied under different names: forgetting, uniform interpolation, variable elimination...

A DL \mathcal{L} admits forgetting (has uniform interpolation) if,
for every \mathcal{T} in \mathcal{L} and every Σ, there exists \mathcal{T}_Σ in \mathcal{L} with $\text{sig}(\mathcal{T}_\Sigma) \subseteq \Sigma$
such that \mathcal{T} and \mathcal{T}_Σ are Σ-concept inseparable in \mathcal{L}

Theorem Both $\text{DL-Lite}^{u}_{\text{bool}}$ and $\text{DL-Lite}^{u}_{\text{horn}}$ have uniform interpolation
and the uniform interpolant can be constructed in exponential time

$\text{DL-Lite}^{u}_{\text{bool}}$:

$$C ::= \ldots \mid \exists C \mid \ldots$$

(universal modality)

e.g., $(\geq 2 \text{ teaches}) \sqsubseteq \exists (\exists \text{ teaches} \cap \leq 1 \text{ teaches})$

\mathcal{T}_Σ with $\text{sig}(\mathcal{T}_\Sigma) \subseteq \Sigma$ is a uniform interpolant of \mathcal{T} w.r.t. Σ in $\text{DL-Lite}^{u}_{\text{bool}}$ if
$\mathcal{T} \models C \sqsubseteq D$ iff $\mathcal{T}_\Sigma \models C \sqsubseteq D$, for every $C \sqsubseteq D$ in $\text{DL-Lite}^{u}_{\text{bool}}$ with $\text{sig}(C \sqsubseteq D) \subseteq \Sigma$

$\mathcal{T}' \Sigma$-query entails \mathcal{T} iff $\mathcal{T}' \models C \sqsubseteq D$, for each $C \sqsubseteq D \in \mathcal{T}_\Sigma$

Theorem For every \mathcal{T} in $\text{DL-Lite}^{u}_{\text{bool}}$ and every Σ one can construct
a uniform interpolant \mathcal{T}_Σ of \mathcal{T} w.r.t. Σ in $\text{DL-Lite}^{u}_{\text{bool}}$ in time exponential in \mathcal{T}
Future work

- investigate different variants of the QBF encoding (non-prenex/non-CNF) and/or different solvers (AQME or even a dedicated solver)
- QBF encoding of Σ-entailment in $DL-Lite_{horn}$ (coNP instead of Π^p_2)
- module extraction algorithm (extended QBF encoding)
- approximation of Σ-difference