On dynamic topological logics

Roman Kontchakov

School of Computer Science and Information Systems, Birkbeck, London

http://www.dcs.bbk.ac.uk/~roman

joint work with

Boris Konev, Frank Wolter and Michael Zakharyaschev
The Story

S. Artemov, J. Davoren and A. Nerode.
Topological semantics for hybrid systems.

J. Davoren. *Modal logics for continuous dynamics.*
Ph.D. Thesis, Department of Mathematics, Cornell University, 1998

Bimodal logics for reasoning about continuous dynamics.
Advances in Modal Logic, Volume 3, pp. 91–110. World Scientific, 2002

On dynamic topological and metric logics.
Dynamical systems

‘space’ + f

Orb$_f$(x) = { $f(x)$, $f^2(x)$, ... } — the orbit of x

Temporal logic \times logic of topology

to describe and reason about the (asymptotic) behaviour of orbits
Dynamic topological structures

Dynamic topological structure \(\mathcal{F} = \langle \mathcal{T}, f \rangle \)

\[\mathcal{T} = \langle T, I \rangle \quad \text{a topological space} \]

- arbitrary topologies
- Aleksandrov: arbitrary (not only finite) intersections of open sets are open — every Kripke frame \(\mathcal{G} = \langle U, R \rangle \), where \(R \) is a quasi-order, induces the Aleksandrov topological space \(\langle U, I_\mathcal{G} \rangle \):
 \[I_\mathcal{G} X = \{ x \in U \mid \forall y (xRy \implies y \in X) \} \]
 — conversely, every Aleksandrov space is induced by a quasi-order

- Euclidean spaces \(\mathbb{R}^n, n \geq 1 \)
- \(\ldots \)

\[f : T \rightarrow T \quad \text{a continuous function} \quad (X \text{ open } \implies f^{-1}(X) \text{ open}) \]

- continuous
- homeomorphisms (continuous bijections with continuous inverses)
Dynamic topological logic DTL

Formulas:

- propositional variables p, q, \ldots
- the Booleans \neg, \land and \lor
- topological (‘modal’) operators \mathbb{I} and \mathbb{C}
- temporal operators \mathbb{O}, \Box_F and \Diamond_F

\mathcal{V} a valuation in $\langle \langle T, \mathbb{I} \rangle, f \rangle$

subsets of T
\neg, \land and \lor
\mathbb{I} and \mathbb{C}

$\mathcal{V}(\mathbb{O}\varphi) = f^{-1}(\mathcal{V}(\varphi))$

$\mathcal{V}(\Box_F \varphi) = \bigcap_{n=1}^{\infty} f^{-n}(\mathcal{V}(\varphi)) = \{ x \in T \mid \text{Orb}_f(x) \subseteq \mathcal{V}(\varphi) \}$

$\mathcal{V}(\Diamond_F \varphi) = \bigcup_{n=1}^{\infty} f^{-n}(\mathcal{V}(\varphi)) = \{ x \in T \mid \text{Orb}_f(x) \cap \mathcal{V}(\varphi) \neq \emptyset \}$

Example: every ψ satisfies φ infinitely often

$\psi \rightarrow \Box_F \Diamond_F \varphi$

Oxford 05/08/07
Known results: no ‘infinite’ operations

\(DT\mathcal{L}_0 \) — subset of \(DT\mathcal{L} \) containing no ‘infinite’ operators (\(\Box_F \) and \(\diamond_F \))

Artemov, Davoren & Nerode (1997): The two dynamic topo-logics

\[\text{Log}_o \{ \langle F, f \rangle \} \quad \text{and} \quad \text{Log}_o \{ \langle F, f \rangle \mid F \text{ an Aleksandrov space} \} \]

coincide, have the \textbf{fmp}, are finitely \textbf{axiomatisable}, and so decidable

NB. \(\text{Log}_o \{ \langle F, f \rangle \} \subsetneq \text{Log}_o \{ \langle \mathbb{R}, f \rangle \} \) (Slavnov 2003, Kremer & Mints 2003)

Kremer, Mints & Rybakov (1997): The three dynamic topo-logics

\[\text{Log}_o \{ \langle F, f \rangle \mid f \text{ a homeomorphism} \} , \]
\[\text{Log}_o \{ \langle F, f \rangle \mid F \text{ an Aleksandrov space, } f \text{ a homeomorphism} \} , \]
\[\text{Log}_o \{ \langle \mathbb{R}^n, f \rangle \mid f \text{ a homeomorphism} \} , \quad n \geq 1 , \]

coincide, have the \textbf{fmp}, are finitely \textbf{axiomatisable}, and so decidable
Homeomorphisms vs. continuous mappings

\(\mathcal{T} = \langle U, I \rangle \) is the Aleksandrov space induced by a quasi-order \(\mathcal{G} = \langle U, R \rangle \)

\[f \text{ is a } \text{homeomorphism} \iff x \mathcal{R} y \iff f(x) \mathcal{R} f(y) \]

\[f \text{ is continuous} \iff x \mathcal{R} y \Rightarrow f(x) \mathcal{R} f(y) \]

a DTM can be \text{unwound} into

\[\text{a product model} \]

\[\mathcal{G}_0 = \mathcal{G}_1 = \mathcal{G}_2 = \]

\[\text{an } \text{e-product model} \]

\[\mathcal{G}_0 \subseteq \mathcal{G}_1 \subseteq \mathcal{G}_2 \subseteq \]

\[\text{(lcom)} \quad \text{(rcom)} \]

\[\text{S4} \oplus \text{DAlt} \oplus (\mathcal{O} \mathcal{I} p \leftrightarrow \mathcal{I} \mathcal{O} p) \]

\[\text{S4} \oplus \text{DAlt} \oplus (\mathcal{O} \mathcal{I} p \rightarrow \mathcal{I} \mathcal{O} p) \]

Oxford 05/08/07
DTLs with homeomorphisms

Theorem 1 (AiML 2004). No logic from the list below is recursively enumerable:

- \(\text{Log} \left\{ \langle S, f \rangle \mid f \text{ a homeomorphism} \right\} \),
- \(\text{Log} \left\{ \langle S, f \rangle \mid S \text{ an Aleksandrov space, } f \text{ a homeomorphism} \right\} \),
- \(\text{Log} \left\{ \langle \mathbb{R}^n, f \rangle \mid f \text{ a homeomorphism} \right\}, \ n \geq 1 \).

Proof. By reduction of the undecidable but r.e. Post’s Correspondence Problem to the satisfiability problem (more on the next slide)

NB. All these logics are different.
Encoding PCP

PCP: given a set of pairs \(\{(u_1, v_1), \ldots, (u_k, v_k)\} \) of nonempty finite words, decide whether there exists an \(N \geq 1 \) and a sequence \(i_1, \ldots, i_N \) such that

\[
u_{i_1} \cdot u_{i_2} \cdots \cdot u_{i_N} = v_{i_1} \cdot v_{i_2} \cdots \cdot v_{i_N}\]

Post (1946):
The PCP is undecidable and the set of PCP instances without solutions is not R.E.

- Aleksandrov space \(\langle U, \mathcal{I}\rangle \) (induced by \(\langle U, R\rangle \))

- ‘local’ formulas
 \[
 \square_{\mathcal{I}}^+ I(\psi_1 \rightarrow O \psi_2)\]

- plus
 \[
 \Diamond_{\mathcal{I}} \bigwedge_{a \in A} I(L_a \leftrightarrow R_a)\]

- arbitrary topological spaces and \(\mathbb{R}^n \):
 the formula requires only a finite number of iterations
 and thus the completeness results for \(\text{Log}_\circ \{ \cdots \} \) can be used
DTLs with continuous mappings

Theorem 2. No logic from the list below is **decidable**:

- \(\text{Log} \{ \langle \mathcal{F}, f \rangle \} \),
- \(\text{Log} \{ \langle \mathcal{F}, f \rangle \mid \mathcal{F} \text{ an Aleksandrov space} \} \),
- \(\text{Log} \{ \langle \mathbb{R}^n, f \rangle \}, \ n \geq 1 \).

Proof. By reduction of the undecidable \(\omega \)-reachability problem for lossy channels to the satisfiability problem (more on the next slide)

NB. All these logics are **different**.
Encoding lossy channels backwards

Single channel system

\[S = \langle Q, \Sigma, \Delta \rangle \]

send

\[\langle q, w \rangle \xrightarrow{\langle q', w' \rangle} \ell \langle q', w' \rangle \]

iff \(w' \subseteq a \cdot w \)

receive

\[\langle q, w \cdot a \rangle \xrightarrow{\langle q', w' \rangle} \ell \langle q', w' \rangle \]

iff \(w' \subseteq w \)

backward encoding: loss of messages = introduction of new points
Encoding lossy channels: ω-reachability (1)

ω-reachability:

given a single channel lossy system S and two states q_0 and q_{rec},

decide whether, for every $n > 0$, there is a computation

$$
\langle q_0, \epsilon \rangle \xrightarrow{\delta_1} \ell \langle q_{i_1}, w_1 \rangle \xrightarrow{\delta_2} \ell \langle q_{i_2}, w_2 \rangle \xrightarrow{\delta_3} \ell \ldots
$$

to reach q_{rec} at least n times

Schnoebelen (2004): ω-reachability is undecidable

The ω-reachability problem can be encoded

using only ‘local’ formulas $\square_F^+ I(\psi_1 \rightarrow O \psi_2)$ plus $\square_F \diamond_F m$ plus...
Encoding lossy channels: ω-reachability (2)

\[light \land \square^+_{\mathcal{F}}(\text{light} \rightarrow \bigcirc \text{light}) \]
\[\square^+_{\mathcal{F}}(m \rightarrow \bigcirc \mathcal{I}(\text{light} \rightarrow \text{on})) \]
\[\square^+_{\mathcal{F}}(\mathcal{C}(\text{light} \land \text{on} \land \bigcirc \neg \text{on}) \rightarrow q_{\text{rec}}) \]
\[\square^+_{\mathcal{F}}(m \rightarrow \mathcal{I}(\text{light} \rightarrow \neg \text{on})) \]
\[\square_{\mathcal{F}}(m \rightarrow \mathcal{I}(\text{light} \rightarrow \bigcirc \mathcal{S} \text{light})) \]
\[\square^+_{\mathcal{F}}\mathcal{I}(\text{(light} \land \text{on} \land \bigcirc \neg \text{on}) \rightarrow \neg \mathcal{S}(\text{light} \land \text{on} \land \bigcirc \neg \text{on})) \]
Finite iterations

- arbitrary finite flows of time
- finite change assumption (the system eventually stabilises)

Theorem 3 (APAL 2006). The two topo-logics

\[
\text{Log}_{\text{fin}} \{\langle \mathcal{F}, f \rangle \} \quad \text{and} \quad \text{Log}_{\text{fin}} \{\langle \mathcal{F}, f \rangle \mid \mathcal{F} \text{ an Aleksandrov space} \}
\]

coincide and are **decidable**, but **not in primitive recursive** time

Proof. By Kruskal’s tree theorem and

reduction of the reachability problem for lossy channels

(decidable but not in primitive recursive time)

However:

Theorem 4 (AiML 2004). The two topo-logics

\[
\text{Log}_{\text{fin}} \{\langle \mathcal{F}, f \rangle \mid f \text{ a homeomorphism} \} \quad \text{and} \quad \text{Log}_{\text{fin}} \{\langle \mathcal{F}, f \rangle \mid \mathcal{F} \text{ an Aleksandrov space, } f \text{ a homeomorphism} \}
\]

coincide but are **not recursively enumerable**
Open problems

- Axiomatisation of DTL over Euclidean spaces (without \square_F, \Diamond_F)
- Are full DTLs with continuous mappings r.e.?
- If so, are they finitely axiomatisable? Axiomatisations?
- ...
Publications (all available on the web)

Dynamic topological logics over spaces with continuous functions

Non-primitive recursive decidability of products of modal logics with expanding domains

On dynamic topological and metric logics
Studia Logica, 84:127–158, 2006

4) B. Konev, F. Wolter and M. Zakharyaschev.
Temporal logics over transitive states

On dynamic topological and metric logics