
Software and Programming 1

Lab 1:
Introduction to Java:

HelloWorld
and InterestCalculator

1SP1-Lab1-2019-20.pptx

Tobi Brodie (tobi@dcs.bbk.ac.uk)
16 January 2020

Module Information
Lectures:
Afternoon 2pm (surnames A-H), 3.30pm (surnames I-Z)
Birkbeck Main Building, Malet Street MAL B04
Lecturer: Carsten Fuhs
Evening 6pm (surnames A-L), 7.30pm (surnames M-Z)
Birkbeck Main Building, Malet Street MAL B20
Lecturer: Roman Kontchakov

Lab Sessions:
Afternoon 2pm (I-Z), 3.30pm (A-H) Main Building, Malet Street MAL 109
Evening 6pm (K-Z), 7.30pm (A-J) Main Building, Malet Street MAL 414/415
Tobi Brodie, Ping Brennan
Module materials:
http://www.dcs.bbk.ac.uk/~roman/sp1/

Additional Tutorials
5-6pm Birkbeck Main Building, Malet Street MAL 109 2

http://www.bbk.ac.uk/maps/find-us
mailto:carsten@dcs.bbk.ac.uk
http://www.bbk.ac.uk/maps/find-us
mailto:roman@dcs.bbk.ac.uk
http://www.bbk.ac.uk/maps/find-us
http://www.bbk.ac.uk/maps/find-us
mailto:tobi@dcs.bbk.ac.uk
mailto:p.brennan@bbk.ac.uk
http://www.dcs.bbk.ac.uk/~roman/sp1/
http://www.bbk.ac.uk/maps/find-us

Module Information

Generally, each class is split into two 90 minute sessions and, as there
is a large attendance the class is also split, so the lecture and lab
session you attend will be one of the following below:

• Lectures 2pm/3.30pm and 6pm/7.30pm,
• Lab sessions 3.30pm/2pm and 7.30pm/6pm

Attendance is compulsory for both Lectures and Labs, and a register is
maintained.

Note: Lab sessions are designed to reinforce the material covered in
the previous week’s lecture, so there is no difference in which order
you attend the lecture and lab session.

3

Lab Session 1: Objectives

Introduction to Java basics and the Blue J IDE

As this is the first week, we are not following up from a lecture, so we
can spend this session familiarising ourselves with the syntax, coding
conventions and data types of Java and look at the tools we will be
using for programming on the module.

• Basic Java syntax, rules and coding conventions
• Java primitive data types
• Commenting
• Blue J – Application for coding in Java (free, cross-platform)
• Basics of methods and the terminal window output
In order to do this we will end the lab session by creating two programs:

HelloWorld & InterestCalculator
4

http://www.bluej.org/

Java Syntax
syntax rules and coding conventions

Rules (breaking a rule results in a compile-time error):
• Every variable declaration and assignment statement in a Java program

must be terminated with a semicolon (;)

• Identifiers (variable, method and class names) are case-sensitive

• An identifier is a sequence of alpha characters, digits, underscores and $

that begins with an alpha character

• Reserved words cannot be used for identifiers
(see https://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html)

Coding Conventions (good practices, NOT rules):
• Variable, method and class names follow Camel Case: studentNumber
• Class names begin with a capital letter

• Method names begin with a lowercase letter

• Constants are named in CAPITALS

• Descriptive names are used for variables, not abbreviations

– (e.g. int speed = 70; not int s = 70;)
5

Java Data Types

Every variable in Java must be declared before it’s first used. When
declaring a variable in Java, we specify the data type along with the
variable name (and optionally, an initial value).
For example, to declare a new variable containing a whole number we
use the following syntax:

int studentNumber = 12311487;

This tells the compiler that there is a variable named studentNumber,
which will hold an integer value. By using a single equals sign, we
provide the initial assignment of the value 12311487 to this variable.
Remember: values from the right of an operator are assigned to the
variable on the left.

Once a variable’s data type is fixed, it will only accept values of that
data type: studentNumber above cannot hold a value such as 2.5

6

Data Types (2)

Java supports 8 primitive data types:

• byte – integer values -128 to 127
• short – integer values -32,768 to 32,767
• int – integer values -231 (-2,147,483,648) to 231-1 (2,147,483,647)
• long – integer values -263 to 263-1
• float - 32-bit IEEE 754 floating-point numbers
• double - 64-bit IEEE 754 floating-point numbers
• boolean – values true or false
• char - 16-bit Unicode characters

In this module we will concentrate on the following primitive data
types: int for whole numbers, double for floating-point numbers,
boolean and char.

The 8 primitive data types are written in lower case (reserved words).
7

Data Types (3)

In addition to the 8 primitive data types, Java provides support for
character strings via the built-in String class.

The string data type begins with a capital letter and values are given
within double quotations:

String message = "Hello World!";

8

Java Comments
Block Comments
Block comments are used to provide descriptions of classes, methods,
data structures and algorithms.

Coding Conventions: Block comments may be used at the beginning of
each file and before each method. They can also be used in other
places, such as within methods. Block comments inside a function or
method should be indented to the same level as the code they describe.
A block comment should be preceded by a blank line to set it apart from
the rest of the code.

Block Comments can also be used as trailing comments:

9

/*
* Here is a block comment.
*/

if (a == 2)
{

return 25; /* special case */
}

Comments (2)

End-Of-Line Comments

The // comment delimiter can comment out a complete line or only a
partial line.
Coding Conventions: It shouldn't be used on consecutive multiple lines
for text comments; however, it can be used in consecutive multiple
lines for commenting out sections of code.

http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-
141999.html

10

if (number >= 0)
{

// code for natural numbers
...

}
else
{

return 0; // number will not be in range
}

http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-141999.html

Java Project in BlueJ

Name of project:
week1

Name of class:

11

HelloWorld

Getting Started
• Launch BlueJ - begin with the Start icon in the lower

left corner of the screen.

• Select the options in the order shown:
Start -> All Programs -> Programming Tools -> BlueJ

• Create a new Project on your disk space.
1. Select Project then followed by New Project.

2. Select a directory in your disk space (in drive I on non-DCS
computers) and a suitable name for your project, e.g. week1.
After entering week1 in the BlueJ window, a new BlueJ
window will appear for the project week1.

12

Getting Started (2)
• Create a new class by clicking on button New Class ...

in the new BlueJ window.

13

Getting Started (3)
• Enter the name HelloWorld for the new class and click

on OK.

14

Exercise 1:
Write your first program

• Move the mouse on top of the class icon with the name
HelloWorld, right-click and select Open Editor.

15

Exercise 1 :
Write your first program (2)

• Delete all the code in the template class and leave it
empty for now.

This can be easily done by selecting all (control + A), using the right
click and selecting cut.

16

Exercise 1:
Write your first program (3)

• Writing your own code:
1. Start by writing two keywords, public class.
2. Write the name of the class, HelloWorld.
3. First line of your code looks like: public class HelloWorld
4. Any code that you might write next for the class HelloWorld

must be put after the first line and it must be enclosed with
braces (i.e. { }).

17

public class HelloWorld
{

/*
all code must lie between the two braces that
define the boundaries of the class

*/
}

Exercise 1:
Write your first method

• Steps in defining a method:
1. First write public static void.
2. Next write the method’s name main.
3. Followed by the method’s parameters String[] args in brackets.
4. Finally, followed by the method’s boundaries (open/close braces { }).

Your code must look like:

Note the indentations of the lines of code which make the code easier to read. 18

public class HelloWorld
{

public static void main(String[] args)
{

} // end of method
} // end of class

Exercise 1:
Write your first method (2)

5. Use the statement
System.out.println(…);

within the method to make it print something in your terminal.
For example,

System.out.println("Hello, World!");

19

Exercise 1:
Write your first method (3)

6. Your code must look like this:

20

Exercise 1:
Compiling your first class

• Click on the button Compile. The compiler will check
your code for syntax errors and error messages (if any)
are displayed at the bottom of the window.

• The final message should be one of the following.
§ Either Class compiled – no syntax errors
§ Or a compile-time error message.

• Important: after each modification of the code, always
compile the new code.

21

Exercise 1:
Execute the method

• Close the Editor and return to the project’s workspace.

• Move the mouse on top of the HelloWorld icon, right-
click and invoke the method main by clicking on it.

22

Exercise 1:
Execute the method (2)

• A terminal window will
appear with the
message:
Hello, World!

23

• After selecting the main
method, a window will
appear and select OK.

Note

24

• The exercise just completed outlines the basic structure
for creating Java programs, creating a method within the
class, compiling and finally executing the method.
Generally, the same structure will be applied for classes
created during the sessions for the next few weeks.

• Exercise 2, which follows, requires you to again create a
new class, define methods within the class, then compile
and execute to see the result.

Exercise 2:
InterestCalculator

You put £10,000 into a bank account that earns 5%
interest per year. What will the balance be after 3 years?

(Based on JFE, Section 1.7)

25

Exercise 2:
InterestCalculator (2)

§ Initial balance: £10000
§ Interest rate: 5% per year
§ Interest earned after 1 year: 10000*5/100 = 500
§ New balance after 1 year: initial amount + interest

= 10000+500
= 10000+(10000 * 0.05)

§ Balance after each subsequent year:
= previous balance + interest on it

26

Exercise 2:
InterestCalculator (3)

Pseudo code:
1. initialBalance = 10000
2. Print “initial balance” + initialBalance
3. currentBalance = withInterestOn(initialBalance)
4. Print “year1” + currentBalance
5. currentBalance = withInterestOn(currentBalance)
6. Print “year2” + currentBalance
…
Note: The code to calculate the balance is identical for lines 3 & 5 and
will be for each successive year. A method to calculate the interest
should be written in addition to the main method.

27

Exercise 2: InterestCalculator (4)

28

public class InterestCalculator
{

public static void main(String[] args)
{

// declare variable initialBalance
System.out.println("The initial balance is £" +

initialBalance);
// declare variable currentBalance
currentBalance = withInterestOn (initialBalance);
// print new balance

/* repeat previous 2 lines (use currentBalance instead of
initialBalance as argument for withInterestOn call)
to calculate balance for 2 more years(see previous slide)

*/
}
public static double withInterestOn(double balance)
{

double interest = balance * 0.05;
return balance + interest;

}
}

Exercise 2:
InterestCalculator (5)

A closer look at the method to calculate interest:

public static double withInterestOn(double balance)
{

double interest = balance * 0.05;
return balance + interest;

}

When writing Java methods we must declare the data type of the
return value (returned by the return statement) as well as the data
types of parameters passed as arguments (double balance
is a declaration of the variable that stores the value passed into the
method from the method call)

29

Exercise 2:
Compiling InterestCalculator

• Click on the button Compile. The compiler will check
your code for syntax errors and error messages (if any)
are displayed at the bottom of the window.

• The final message should be one of the following.
§ Either Class compiled – no syntax errors
§ Or an error message.

• Important: after each modification of the code, always
compile the new code.

30

Exercise 2:
Execute the method

• Close the Editor and return to the project’s workspace.

• Move the mouse on top of the InterestCalculator icon,
right-click and invoke the method main by clicking on it.

• A window will appear and select OK.

• A terminal window will appear with output similar to
below:

31

Home Work
Java for Everyone by C. Horstmann

Read Chapter 1, which is available online from

http://vufind.lib.bbk.ac.uk/vufind/Record/566484

and complete the following exercises:

• Exercise R1.8

• Exercise R1.9

• Exercise R1.15

• (*extra) Exercise R1.18

• Exercise P1.3

• Exercise P1.5

32

http://vufind.lib.bbk.ac.uk/vufind/Record/566484

