
Software and Programming I

Lab 2:
Step-by-step execution of

programs using a Debugger

1SP1-Lab2-20.pdf

Tobi Brodie (tobi@dcs.bbk.ac.uk)
23 January 2020

Lab Session 2: Objectives

This session we are concentrating on BlueJ’s built-in
debugging tool.

In order to fully understand how our programs work we
use the debugging tool to see the values of variables at
different points throughout execution.

We do this by adding breakpoints into our code.

Breakpoints will halt the code execution when we run it,
allowing us to inspect the values held in variables in the
currently executing methods.

2

Lab Session 2: Exercises

There are 4 exercises in this week’s lab presentation. You will
be taken step-by-step through Exercise 1, modifying the
InterestCalculator class created last week and then using the
debugging tool to understand its execution.

Exercises 2 & 3 are more complex exercises, which you may
be able to complete within the lab session.

Marked Exercise 1 is the first of the six exercises that count
towards your coursework, and no assistance will be given to
complete it. The exercise must be completed by 6th February.
You will be asked to show it and explain its execution.

3

In–Lab Marked Exercises

There are 6 exercises that count for 5% towards your final
module mark. Typically you will have 2 weeks to complete
each exercise; however, it is recommended that you
complete them within a week, in order to check that your
solution is correct.
Your marked exercise will be reviewed and assessed in the
lab by one of the lab assistants.

If, for any reason you cannot complete the work before
the deadline, you will need to apply directly to the
university for consideration of mitigating circumstances.
The MIT-CIRCS form is available through the MyBirkbeck
portal. As the exercises count towards your final mark, lab
assistants are unable to give extensions. 4

In–Lab Marked Exercises (2)

The assistant will require you to explain your code and may

change the code and then ask you to explain how those

changes affect the program. Once the lab assistant is happy

that you fully understand the work, they will record the

exercise as completed. If further work is required, this will

also be recorded.

Marks will be uploaded to Moodle before the next session.

It is your responsibility to check that the marks have

been recorded correctly. To ensure that any issues are

resolved quickly, you should always take note of the lab

assistant’s name and the date that your work was seen.

Failure to complete the 6 Marked Exercises within their

two-week deadlines will disqualify you from the second in-

class test, which in itself counts for 10% of your final mark. 5

Exercise 1: InterestCalculator2

• Launch BlueJ - begin with the Start icon in the lower left
corner of the screen. Select the options

Start -> All Programs -> Departmental Software
-> Computer Science -> BlueJ

or start typing BlueJ in the box – the app icon should appear

• Create a new Project on your disk space.
1. Select Project then followed by New Project.
2. Select a directory in your disk space and a suitable name for

your project, e.g. week2. After entering week2 in the BlueJ
window, a new BlueJ window will appear for the project week2.

• Create a new class by clicking on button New Class ... in
the new BlueJ window. Enter the name
InterestCalculator2 for the new class and click on OK.

6

Exercise 1: InterestCalculator2 (2)

We will be using the code used in last week’s
InterestCalculator class as the starting point for
this week’s first exercise. Copy the code completed
last week into InterestCalculator2, changing the
class name by adding 2 to it.

public class InterestCalculator2 {
public static void main(String[] args)
{ …

InterestCalculator can be found at:
http://www.dcs.bbk.ac.uk/~roman/sp1/java/InterestCalculator.java 7

http://www.dcs.bbk.ac.uk/~roman/sp1/java/InterestCalculator.java

Exercise 1: InterestCalculator2 (3)

We will then add code to the class that allows the user to
set a saving target and then informs the user when this
target has been met.

To do this we use the Scanner class to receive a value
from the user, and add a new variable of type double to
store the savings target.

We must also import the Java utility Scanner class into
our program by including the following line at the
beginning of our code, before the class declaration:

import java.util.Scanner;
8

Exercise 1: InterestCalculator2 (4)

We then use the following code within the main method to
get the value from the user. First, we use
System.out.println to open the terminal window
showing an instruction to the user (the terminal needs to
be open for user input)
System.out.println("Please enter a savings target");

We then write the following code to create a Scanner
class instance, scan, to use to get the input:

Scanner scan = new Scanner(System.in);

Finally, we store the value in a variable of type double:

double savingsTarget = scan.nextDouble(); 9

import java.util.Scanner;

public class InterestCalculator2
{
public static void main(String[] args)
{
double initialBalance = 10000;
System.out.println("Please enter " +

"a savings target");
Scanner scan = new Scanner(System.in);
double savingsTarget = scan.nextDouble();
System.out.println("The initial balance is: £" +

initialBalance);
…

Structure of InterestCalculator2

The program should now look like this:

10

Exercise 1: InterestCalculator2 (5)

Now that a savings target value has been set, an if
statement should be introduced into the program to check
the current balance against this value to see if the target
has been reached. The following code will need to be
inserted into our program each time the current balance is
updated:

if (currentBalance > savingsTarget)
{

System.out.println("Congratulations, your " +
"savings target has been reached");

}

11

Exercise 1: InterestCalculator2 (6)

After compiling the code and executing the method the
terminal window should display the following:

12

Enter a value of 11500 as the savings target.

Exercise 1: InterestCalculator2 (7)

The terminal window output should be similar to the
screenshot below:

13

Test the program again using the target of £11025. You
will see the program is not working as expected. We should
now debug the program to find the issue.

Debugging InterestCalculator2

• By utilising the built-in Debugger in BlueJ we can make sure that
the values of the variables are as expected and that our program
will print the “congratulations” message at the correct point.

• Before you can start debugging your code you must compile it.

• Once compiled the section to the left of your code will turn white
(see figure below).

14

Debugging InterestCalculator2 (2)

Breakpoints can then be added into our code by clicking within the
white section. Breakpoints will halt the code execution when we run it,
allowing us to inspect the values held in variables in the currently
executing methods.

15

Debugging InterestCalculator2 (3)

Once the breakpoints are in place we can then execute the method as
we did before. The method will execute until the first breakpoint and
halt, displaying the debugging window.

16

Debugging InterestCalculator2 (4)

Continue through the program using the Step / Step Into buttons,
taking note of the variables and their values in the bottom right box.

17

Exercise 2 – Roman Numerals

Write a program that converts a positive integer into the Roman
number system. The Roman number system has digits I (1), V (5), X
(10), L (50), C (100), D (500) and M (1000). Numbers up to 3999 are
formed according to the following rules:

a) As in the decimal system, the thousands, hundreds, tens and
ones are expressed separately.

b) The numbers 1 to 9 are expressed as:

(An I preceding a V or X is subtracted from the value, and
there cannot be more than three Is in a row.)

18

1 I 6 VI
2 II
3 III
4 IV
5 V

7 VII
8 VIII
9 IX

Exercise 2 (2)

c) Tens and hundreds are done the same way, except that the
letters X, L, C, and C, D, M are used instead of I, V, X,
respectively.

Your program should take an input, such as 1978, and convert it
to Roman numerals, MCMLXXVIII.

See JFE, 2nd Ed, exercise P3.26 on p. 130.

19

Exercise 2 (3):
Conversion Algorithm

Hints:
1. Use the following method to convert a positive number into Roman

numerals and return it as a string.
public static String convert(int n)

2. Inside the method, write an if statement to check for numbers in
the range 0 to 3999.

3. If the above is valid, apply the following rules :
i. Use if statements to convert numbers in the range 1 and 9

into Roman numerals.
Note: an I preceding a V or X is subtracted from the value, and
there cannot be more than three Is in a row.

ii. Tens and hundreds are done in the same way, using if
statements, except that the letters X, L, C and C, D, M are
used. 20

/* Roman Number system class */
import java.util.Scanner;

public class RomanNumber
{

public static void main(String[] args)
{
/* write code to take an input and store it

in a variable, number */

// call method convert
String romanStr = convert(number);

// Output value returned from convert method.
}

Exercise 2: Basic structure of
Class RomanNumber

21

public static String convert(int n)
{

// convert the number, n, into Roman numerals
if ((n >= 1) && (n <= 3999))
{

/* Step 1 Determine how many ones, tens,
hundreds and thousands are in the given
number, n */

// for n = 1234, ones is 4
int ones = n % 10;
// for n = 1234, tens is 3
int tens = (n / 10) % 10;
int hundreds = write formula for the hundreds
int thousands = write formula for the thousands

//… see next slide

Exercise 2: Basic structure of
Class RomanNumber (2)

22

//… continuation of the method convert()
/* Step 2 Convert the ones into a Roman numeral

and save it in romanOnes*/
/* Step 3 Convert the tens and save it in romanTens */
/* Step 4 Convert the hundreds and save it in

romanHundreds */
/* Step 5 Convert the thousands and save it in

romanThousands */
return romanThousands + romanHundreds

+ romanTens + romanOnes;
}
else
{

return "Number can’t be converted ";
}

} // end of method convert()
} // end of class RomanNumber

Exercise 2: Basic structure of
Class RomanNumber (3)

23

Exercise 2 (Step 2): convert the ones into
a Roman numeral

24

String romanOnes;
if (ones == 1)

romanOnes = "I";
else if (ones == 2)

romanOnes = "II";
else if (ones == 3)

romanOnes = "III";
else if (ones == 4)

romanOnes = "IV";
else if (ones == 5)

romanOnes = "V";
else if (ones == 6)

romanOnes = "VI";
else if (ones == 7)

romanOnes = "VII";
else if (ones == 8)

romanOnes = "VIII";
else if (ones == 9)

romanOnes = "IX";
else // (ones == 0)

romanOnes = "";

Exercise 2 (Steps 3-5): convert the tens,
hundreds and thousands into Roman

numerals

25

The code required for steps 3, 4 and 5 is similar to that used to
convert the ones into a Roman numeral (step 2).

In step 3, you will be replacing the letters I (1), V (5) and X
(10) with the letters X (10), L (50) and C (100), respectively.

Step 4 follows the same format, but replacing with the numerals
for units: C (100), D (500) and M (1000).

In Step 5, use only M (1000) for thousands (from 1 to 3).

Exercise 3

Rewrite the Roman number system program by implementing
and using the following method:

public static String romanDigit(int digit, String one,
String five, String ten)

The above method translates one decimal digit, using the three
strings specified for the one, five and ten values.

You would call the method as follows:

romanOnes = romanDigit(n % 10, "I", "V", "X");

26

Exercise 3 (2)
The Roman number system follows the same pattern for
ones, tens and hundreds just as the decimal system does,
however, the numerals change. See slide 19.

ones example (7)
I, V, X VII

tens example (70)
X, L, C LXX

hundreds example (700)
C, D, M DCC

Your program should use division to separate the ones,
tens and hundreds values and send that value, along with
the correct numeral pattern to the romanDigit method.

27

Exercise 3 (3)

The romanDigit method will receive a single int value
and the corresponding three String values.

Example (7):
The int value 7 is sent to the method, along with the
String values "I", "V" and "X".

The method receives the value 7 in the variable digit,
the value "I" in the variable one, the value "V" in the
variable five and the value "X" in the variable ten. The
method should concatenate the variables as follows:

return five + one + one;

28

Exercise 3 (4)
int ones = n % 10;
String romanOnes = romanDigit(ones, "I", "V", "X");

For instance, when using the value 2018 as n, the romanDigit()
method will receive the value 8 as the first input parameter. The
String value returned from the method, "VIII" (the Roman
numeral representing eight) would be stored in the variable
romanOnes.
Your program should continue as follows:
int tens = (n / 10) % 10;
String romanTens = romanDigit(tens, "X", "L", "C");

This time, the romanDigit()method will receive the value 1 as the
first input parameter, representing 1 in 2018.
Note: the other arguments sent to the method have been changed
accordingly.
Complete the program by sending the values representing hundreds
and thousands.

29

Marked Exercise 1
See JFE, 2nd Ed, exercise P3.28 on p. 131.

A year with 366 days is called a leap year. Leap years are necessary to
keep the calendar synchronised with the sun because the earth revolves
around the sun once every 365.25 days. Actually, that figure is not
entirely precise, and for all dates after 1582 the Gregorian
correction applies.

1. Usually years that are divisible by 4 are leap years: for example, 2020.

2. However, years that are divisible by 100 (for example, 1900) are not
leap years, but years that are divisible by 400 are leap years (for
example, 2000).

Write a program that asks the user for a year and computes whether that
year is a leap year. Your program should follow the pattern given in the
next slide and available from
http://www.dcs.bbk.ac.uk/~roman/sp1/java/LeapYear.java

30

http://www.dcs.bbk.ac.uk/~roman/sp1/java/LeapYear.java

Marked Exercise 1 (2)

31

import java.util.Scanner;
public class LeapYear
{

public static boolean isLeapYear(int year)
{

// INSERT YOUR CODE HERE
}

public static void printLeapYear(int year)
{

System.out.println("Year " + year + " is" +
(isLeapYear(year) ? "" : " not") + " a leap year");

}

public static void main(String[] args)
{

printLeapYear(2020);
printLeapYear(2000);
printLeapYear(1900);
System.out.println("Enter a year: ");
Scanner scanner = new Scanner(System.in);
int year = scanner.nextInt();
printLeapYear(year);

} // end of method main
} // end of class

Home Work
Java for Everyone by C. Horstmann

Read Chapters 2 & 3, which are available online from
http://vufind.lib.bbk.ac.uk/vufind/Record/566484

and complete the following exercises:
• Exercise R2.5
• Exercise R2.6
• Exercise R2.7
• Exercise P2.4
• Exercise R3.4
• Exercise P3.15
• (extra) Exercise P3.14

32

