
Software and Programming I

Lab 3:
Loops and conditional statements

1SP1-Lab3-20.pdf

Tobi Brodie (Tobi@dcs.bbk.ac.uk)30th January 2020

Lab 3 Objectives

Understanding & Debugging loops.

Understanding which type of loop is correct for a particular
program.

The correct use of conditional statements to get the correct
results from common loop algorithms.

There are three exercises to complete this week.

Note: Powers and BalancedParentheses classes are marked
exercises and you are required to complete them and show the
working program on or before the 13th February.
Make sure you have backed up your work on a memory stick or similar.

2

Loops & Debugging

In order to remind ourselves how to work with loops and the
correct syntax for Java, we will modify the HelloWorld program
we just created in week 1 into PrintHelloWorldWhile:

Note: You will need to save this as a new class in BlueJ 3

public class PrintHelloWorldWhile {
public static void main(String[] args) {

int i = 0;
while(i < 10) {

System.out.println("Hello World!");
i = i + 1;

}
}

}

Loops & Debugging (2)

4

Before we run the code
int i = 0;
while(i < 10) {

System.out.println("Hello World!");
i = i + 1;

}

we should be able to work out how many times "Hello
World!" is printed to the terminal window by quickly drawing
out a table.

counter i (at start of loop) i < 10 Output to terminal i after the increment (i = i + 1)
0 true Hello World! 1
1 true Hello World! 2
2 true Hello World! 3
3 true Hello World! 4
4 true Hello World! 5
5 true Hello World! 6
6 true Hello World! 7
7 true Hello World! 8
8 true Hello World! 9
9 true Hello World! 10
10 false

Loops & Debugging (3)

5

By utilising the built-in Debugger in BlueJ we can make
sure that the values of the counter are as expected and
that our program will print "Hello World!" the correct
number of times.

Add the following breakpoints to check the counter value
against the loop table:

Loops & Debugging (4)

We now modify the PrintHelloWorldWhile program we have
just created into PrintHelloWorld:

Note: You will need to save this as a new class in BlueJ

Note: i++ is an abbreviation for i = i + 1

6

public class PrintHelloWorld {
public static void main(String[] args) {

for(int i = 0; i < 10; i++)
System.out.println("Hello World!");

}
}

Loops & Debugging (5)

7

Again, before we run the code
for(int i = 0; i < 10; i++)

System.out.println("Hello World!");

we should be able to work out how many times "Hello
World!" is printed to the terminal window by quickly drawing
out a table.

counter i (at start of loop) i < 10 Output to terminal i after the increment (i++)

0 true Hello World! 1
1 true Hello World! 2
2 true Hello World! 3
3 true Hello World! 4
4 true Hello World! 5
5 true Hello World! 6
6 true Hello World! 7
7 true Hello World! 8
8 true Hello World! 9

9 true Hello World! 10

10 false

Exercise 1: InterestCalculator3
Using the InterestCalculator2 class from last week,
refactor the code to ask the user for the initial balance
value and then use a for loop to calculate the interest
(current balance – initial balance) after 10
years. Output a polite message informing the user of the
current balance and interest earned each year.

8

InterestCalculator4
Rewrite the code using a while loop to terminate when the
current balance is double the initial balance. Again, notify the
user of balance and interest where necessary.

Consider why a for loop was chosen for InterestCalculator3
and a while loop for InterestCalculator4.

Marked Exercise 2: Powers
Note: This class is the second marked exercise and you are required to
complete it and show the working program, explaining step-by-step
execution, by the 13th February.
Make sure you have backed up your work on a memory stick or similar.

Write a program, class Powers, that prints all powers of a
given n from n1 up to n15 without using class Math. Your
program should follow the pattern given in the next slide
and available from
http://www.dcs.bbk.ac.uk/~roman/sp1/java/Powers.java
Hints:
Unlike in Python, there is no ** power operation in Java.
So, use a for loop and then multiply with a variable to store the
“current” value inside the loop.
Remember to choose an appropriate integer datatype. 9

http://www.dcs.bbk.ac.uk/~roman/sp1/java/Powers.java

Marked Exercise 2: Powers (2)

10

import java.util.Scanner;
public class Powers {

public static void main(String[] args) {
printPowers(2);
printPowers(-1);
printPowers(10);
System.out.println("Enter a number: ");
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
printPowers(n);

}

public static void printPowers(int n) {
System.out.println("Powers of " + n);

// INSERT YOUR CODE HERE
}

}

Marked Exercise 3:
BalancedParentheses

Implement the class BalancedParentheses with a
method isBalanced that receives a String and checks
whether the brackets in it are balanced.

Your program should follow the pattern given in the next
slide and available from
http://www.dcs.bbk.ac.uk/~roman/sp1/java/BalancedParentheses.java

Note: The BalancedParentheses class is the third marked exercise
and you are required to complete it and show the working program,
explaining step-by-step execution, by the 13th February.
Make sure you have backed up your work on a memory stick or similar.

11

http://www.dcs.bbk.ac.uk/~roman/sp1/java/BalancedParentheses.java

Marked Exercise 3:
BalancedParentheses (2)

12

import java.util.Scanner;
public class BalancedParentheses {

public static void main(String[] args) {
checkParentheses("((a + b) * t/2 * (1 - t)");
checkParentheses("(a + b) * t)/(2 * (1 - t)");
checkParentheses("a + ((a + b) * t)/(2 * (1 - t))");
System.out.println("Enter an expression: ");
Scanner scanner = new Scanner(System.in);
String s = scanner.nextLine();
checkParentheses(s);

}
public static void checkParentheses(String s) {

System.out.println(s + " is "
+ (isBalanced(s) ? "" : "not ")
+ "parentheses balanced");

}
public static boolean isBalanced(String s) {

// INSERT YOUR CODE HERE
}

}

Marked Exercise 3:
BalancedParentheses (3)

13

For example, consider the expression
((a + b) * t/2 * (1 - t)
There are three (and two). The parentheses are unbalanced. This
kind of typing error is very common with complicated expressions. Now
consider the expression
(a + b) * t)/(2 * (1 - t)
This expression has three (and three), but it still is not correct. In
the middle of the expression,
(a + b) * t)/(2 * (1 - t)
there is only one (but two), which is an error. In the middle of an
expression, the count of (must be greater than or equal to the count
of), and at the end of the expression the two counts must be the
same.

BalancedParentheses: Hints

14

Here is a simple trick to check whether parentheses are
balanced or not. Use a single counter when scanning the
expression. Start with 1 at the first opening parenthesis,
which is not necessarily the first character.
Then, add 1 whenever you see an opening parenthesis,
and subtract 1 whenever you see a closing parenthesis.
If the count ever drops below zero, or is not zero at the
end, the parentheses are unbalanced. For example, when
scanning the previous expression, you would get the
following:
(a + b) * t)/(2 * (1 - t)
1 0 -1
and would find the error.

Home Work
Java for Everyone by C. Horstmann

15

Read Chapters 4 & 5 (except 5.9), which are available
online from

http://vufind.lib.bbk.ac.uk/vufind/Record/566484
and complete the following exercises:
• Exercise R4.15
• Exercise R4.18
• Exercise R4.19
• Exercise P4.1
• Exercise P4.3
• Exercise P4.9

