
Software and Programming I

Loops and
Expression Types

Roman Kontchakov / Carsten Fuhs

Birkbeck, University of London

Outline

The while, for and do Loops

Sections 4.1, 4.3 and 4.4

Variable Scope

Section 5.8

Expressions and Types

Operation Precedence

SP1 2020-03 1

Boolean Variables and Operators

The Boolean type boolean has two values, false and true

three Boolean operators that combine conditions:
&& (and), || (or), ! (not)

A B A && B
false false false
false true false
true false false
true true true

A B A || B
false false false
false true true
true false true
true true true

NB: not False and True, and not and, or and not (like in Python)

A !A
false true
true false

SP1 2020-03 2

If v Boolean Operations (1)

Can the following code be simplified (e.g., one println)?
1 if (wavelength < 400) // IR
2 System.out.println("invisible");
3 if (wavelength > 700) // UV
4 System.out.println("invisible");

Yes:
1 if (wavelength < 400 || wavelength > 700) // IR or UV
2 System.out.println("invisible");

Avoid code duplication!

SP1 2020-03 3

If v Boolean Operations (2)

Can the following code be simplified (e.g., one if)?
1 if (temp >= 0)
2 if (temp <= 100)
3 System.out.println("liquid");

Yes:
1 if (temp >= 0 && temp <= 100)
2 System.out.println("liquid");

Avoid code duplication!

SP1 2020-03 4

Boolean Operators

De Morgan’s Laws: !(A && B) is equivalent to !A || !B
!(A || B) is equivalent to !A && !B

NB: Java does not use mathematical notation:
(in contrast to Python)

if (0 <= temp <= 100) // ERROR - not an expression

instead, use
if (0 <= temp && temp <= 100)

NB: and ≤ is NOT a Java operation
NB: do not confuse with & and |
SP1 2020-03 5

Conditional Operator

conditional operator ?:
lets us write simple conditional statements as expressions

1 double abs = (x > 0) ? x : -x; // -x is unary minus
an expression

is equivalent to

1 double abs;
2 if (x > 0)
3 abs = x;
4 else
5 abs = -x;

SP1 2020-03 6

The while Loop

the while loop executes instructions repeatedly
while a condition is true

1 int year = 0;
2 double balance = 1000;
3 while (balance < TARGET) { // RATE = 3, TARGET = 1092
4 double interest = balance * RATE / 100;
5 balance = balance + interest;
6 year = year + 1;
7 }

Python:
while (balance < TARGET) :

interest = balance * RATE / 100
balance = balance + interest
year = year + 1

year
before

balance
before balance < TARGET balance

after
year
after

0 1000.000 1000.00 true 1030.00 1
1 1030.00 true 1060.90 2
2 1060.90 true 1092.73 3
3 1092.73 false end of loop

SP1 2020-03 7

Loops and Assignments

1 int i = 6;
2 while (i >= 0) {
3 System.out.println(i - 1);
4 i = i - 2;
5 }

i
before i >= 0 i - 1 i - 2 i

after

6 true 5 4 4
4 true 3 2 2
2 true 1 0 0
0 true -1 -2 -2
-2 false end of loop

SP1 2020-03 8

Assignment Operations

shortcuts for increment and decrement:
i++; is the same as i = i + 1;
i--; is the same as i = i - 1;

mixing operations and assignment:
i += 2; is the same as i = i + 2;
i *= 2.5; is the same as i = i * 2.5;
. . .

+=, etc. are of lowest precedence:
i /= 2 + 3; is the same as i = i / (2 + 3);

NB: ONLY assignment operators change values of variables
(just writing i - 1 does NOT change i!)

SP1 2020-03 9

The for Loop

The for loop is normally used when instructions are executed
repeatedly and a value runs from a starting point
to an ending point with a constant increment (or decrement)

initialisation
(statement)

condition
(Boolean
expression)

update
(statement)

body:
– a block or
– a single

statement
1 for (int i = 1; i <= 10; i++)
2 System.out.println("Hello, World!");

SP1 2020-03 10

The for Loop: Example

1 public class PrintHelloWorld {
2 public static void main(String[] args) {
3 for (int i = 1; i <= 10; i++)
4 System.out.println("Hello, World!");
5 }
6 }

Q: How many times is the phrase printed?

SP1 2020-03 11

The for Loop: Example (cont.)

Q: How many times is the phrase printed?

1 for (int i = 0; i < 10; i++)
2 System.out.println("Hello, World!");

1 for (int i = 0; i <= 10; i++)
2 System.out.println("Hello, World!");

1 for (int i = 10; i > 0; i--)
2 System.out.println("Hello, World!");

SP1 2020-03 12

The for Loop: Java v Python

Java Python

for(int i = 0; i < 10; i++) for i in range(0, 10)

loop body is run with i set to 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

for(int i = 0; i < 10; i += 2) for i in range(0, 10, 2)

loop body is run with i set to 0, 2, 4, 6, 8

for(int i = 10; i > 0; i--) for i in range(10, 0, -1)

loop body is run with i set to 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

NB: the for loop does not iterate over the letters in a string: for(c : "hello world!")
SP1 2020-03 13

The for Loop

initialisation
(statement)

condition
(Boolean
expression)

update
(statement)

1 for (int k = 2; k <= 9; k++) {
2 String s = s0;
3 if (k % 2 == 1)
4 s = s1;
5 System.out.println(k + " is " + s);
6 }

SP1 2020-03 14

. . . and the while Loop

initialisation
(statement)

condition
(Boolean
expression)

update
(statement)

1 int k = 2;
2 while (k <= 9) {
3 String s = s0;
4 if (k % 2 == 1)
5 s = s1;
6 System.out.println(k + " is " + s);
7 k++;
8 }

SP1 2020-03 15

The do Loop

the do loop is appropriate when
the loop body must be executed at least once

1 Scanner in = new Scanner(System.in);
2 int value;
3 do {
4 System.out.println("Enter an integer < 100: ");
5 value = in.nextInt();
6 } while (value >= 100);

NB: do not forget the semicolon ;
at the end of the statement

SP1 2020-03 16

Scope of a Variable

The scope of a variable is the part of the program
in which it is visible

from its declaration until the end of the block,
for a local variable

the entire method of a method’s parameter variable

the for statement, for a local variable declared
in the initialisation of a for statement

Two variables can have the same name
provided their scopes do not overlap

SP1 2020-03 17

Scope: Example 1

Q: What is wrong here?
1 public static int sumOfSquares(int n) {
2 int sum = 0;
3 for (int i = 1; i <= n; i++) {
4 int n = i * i;
5 sum = sum + n;
6 }
7 return sum;
8 }

SP1 2020-03 18

Scope: Example 2

Q: What is wrong here?
1 Scanner in = new Scanner(System.in);
2 do {
3 System.out.println("Enter an integer < 100: ");
4 int value = in.nextInt();
5 System.out.println("Entered: " + value);
6 } while (value >= 100);

SP1 2020-03 19

Boolean Expressions (1)

Suppose a is 5 and b is 4. What is the value of a > b ?

1 public static boolean greater(int a, int b) {
2 return a > b; // returns true if a > b
3 }

1 boolean found = false;
2 while (!found) {
3 ... // do something
4 if (...) // if the condition is met
5 found = true;
6 ... // do something else
7 }

SP1 2020-03 20

Boolean Expressions (2)

Q: Why are the following methods not good code?
1 public static boolean greater2(int a, int b) {
2 if (a > b)
3 return true;
4 else
5 return false;
6 }
1 public static boolean greater3(int a, int b) {
2 return (a > b) ? true : false;
3 }
1 public static boolean greater4(int a, int b) {
2 return (a > b) == true; // never use != false either
3 }

SP1 2020-03 21

Expressions

assignment statement cansPerPack︸ ︷︷ ︸
variable name

= 8︸︷︷︸
expression

;

an expression is a combination of
variable names, literals, method calls and operators

the type of an expression is known at compile-time:

8 is of type int
10.2 and -12.3e-45 are of type double

(NB: Java’s double corresponds to Python’s float)

"fooˆ=\nbar" is of type String
false and true are of type boolean

NB: types of variables are declared
SP1 2020-03 22

Type Cast Operator

Q: What is wrong with the following?
1 int income = 20000;
2 int tax = income * 0.13;

corrected version:
2 int tax = (int) (income * 0.13);

NB: do not forget brackets
because type cast is of very high precedence

Q: Would the following work?
2 int tax = income * (int)0.13;

SP1 2020-03 23

Type Cast Operator

Q: What is printed in the following fragment?
1 int a = 5, b = 2;
2 System.out.println(a / b);

1 int a = 5, b = 2;
2 System.out.println((double) a / b);

SP1 2020-03 24

Operators and Expressions (1)

suppose expr1 and expr2 are expressions
of type boolean, double, int, or String

the type of expr1 + expr2 is
int if the type of both expr1 and expr2 is int
double if the type of one of expr1 or expr2 is double
and the other type is numerical, i.e., int or double
String if the type of one of expr1 or expr2 is String

otherwise, it is a compile-time error

Q: what is the type of false + 1?

similar rules apply to -, *, / and %
except they are not defined on String
(unlike in Python, there is no string formatting operator % and no repetition *)

SP1 2020-03 25

Operators and Expressions (2)

suppose expr1 and expr2 are expressions

expr1 < expr2, expr1 <= expr2, expr1 > expr2
and expr1 >= expr2 are of type boolean

both expr1 and expr2 must be of numerical datatypes
compile-time error otherwise

Q: what is the type of 60 <= marks <= 69?

expr1 || expr2, expr1 && expr2 and ! expr1
are of type boolean

both expr1 and expr2 must be of type boolean
compile-time error otherwise

Q: what is the type of 60 <= marks && <= 69?

SP1 2020-03 26

Operation Precedence

() method call highest

!, (type) type cast, ++, -- unary

*, /, % multiplicative

+, - additive

<, <=, >=, > relational

==, != equality

&& logical AND

|| logical OR

?: conditional

=, +=, . . . assignments lowest
NB: there is no Python’s ** (power) and // (floor division)
SP1 2020-03 27

Operation Precedence

boolean f = 13 < floor - 1;
is the same as boolean f = 13 < (floor - 1);

Suppose we have the declaration: int a = 11;
Evaluate the following expressions:

2 + a % 3
2 * 6 + a % 3 + 1 < 10 && a > 3
2 * 6 + a % 3 + 1 < 10 && !a > 3
2 + a / 3
2 + (double) a / 3

SP1 2020-03 28

Loop Termination

Collatz conjecture Lothar Collatz, 1937

The sequence an+1 =

{
an/2, if an is even

3an + 1, if an is odd
eventually reaches 1

regardless of which positive integer a0 is chosen

1 while (a > 1) {
2 if (a % 2 == 0)
3 a = a / 2;
4 else
5 a = 3 * a + 1;
6 }

SP1 2020-03 29

Take Home Messages

The while loop executes instructions repeatedly
while a condition is true

The for is used when a value runs from a starting
point to an ending point with a constant increment

Variables can have the same name
provided their scopes do not overlap

SP1 2020-03 30

