
Software and Programming I

Object-Oriented
Programming in Java

Roman Kontchakov / Carsten Fuhs

Birkbeck, University of London

Outline

Object-Oriented Programming

Public Interface of a Class

Instance Variables

Instance Methods and Constructors

Sections 8.1 – 8.6 (7.1 – 7.5 in 1/e)

SP1 2020-06 1

Object-Oriented Programming

Tasks are solved by collaborating objects
Each object has its own set of data, together

with a set of methods that act upon the data

A class describes a set of objects
with the same behaviour (i.e., methods)

Objects are constructed with the new operator:

Scanner in = new Scanner(System.in);

SP1 2020-06 2

Classes and Objects

Class represents
a set of objects that
share a common structure
and a common behaviour

Objects
are instances

of classes

Booch, G.: Object Oriented Analysis and Design with Applications (2nd Edition)
Addison-Wesley, 1994

SP1 2020-06 3

Example: Cash Register

A cashier who rings up a sale presses a key to start
the sale; then rings up each item.
A display shows the amount owed as well as

the total number of items purchased
(a use case description)

We want the following methods on
a cash register object:

add the price of an item
get the total amount owed

and the count of items purchased
clear the cash register to start a new sale

SP1 2020-06 4

Example: Cash Register (2)

1 /**
2 A simulated cash register
3 */
4 public class CashRegister {
5 /* private data */
6 ...
7 /* methods (public interface) */
8 public void addItem(double price) { /* */ }
9 public double getTotal() { /* */ }

10 public int getCount() { /* */ }
11 public void clear() { /* */ }
12 }

SP1 2020-06 5

Using the CashRegister

constructing an object (for example, in class CashRegisterTest)

CashRegister r1 = new CashRegister();

invoking methods (again, in class CashRegisterTest)

r1.addItem(1.95);
r1.addItem(2.99);
System.out.println(r1.getTotal()

+ " " + r1.getCount());

SP1 2020-06 6

Instance Variables

An object holds instance variables
that are accessed by its methods

1 public class CashRegister {
2 private int itemCount;
3 private double totalPrice;
4 // the rest of the class
5 }

values of the instance variables determine
the state of the object

SP1 2020-06 7

Instance Variables

Every instance of a class has its own set
of instance variablesin class CashRegisterTest:

1 // constructing objects
2 CashRegister r1 = new CashRegister();
3 CashRegister r2 = new CashRegister();
4 // invoking methods
5 r1.addItem(7.67);
6 System.out.println(r1.getTotal() + " " +
7 r1.getCount());
8 r2.addItem(1.95);
9 r2.addItem(2.99);

10 System.out.println(r2.getTotal() + " " +
11 r2.getCount());

SP1 2020-06 8

Instance Variables

Every instance of a class has its own set
of instance variables

1 // constructing objects
2 CashRegister r1 = new CashRegister();
3 CashRegister r2 = new CashRegister();

r1

r2

CashRegister

itemCount = 0
totalPrice = 0.0

CashRegister

itemCount = 0
totalPrice = 0.0

SP1 2020-06 9

Instance Variables

Every instance of a class has its own set
of instance variables

1 // constructing objects
2 CashRegister r1 = new CashRegister();
3 CashRegister r2 = new CashRegister();
4 // invoking methods
5 r1.addItem(7.67);

r1

r2

CashRegister

itemCount = 1
totalPrice = 7.67

CashRegister

itemCount = 0
totalPrice = 0.0

SP1 2020-06 10

Instance Variables

Every instance of a class has its own set
of instance variables

1 // constructing objects
2 CashRegister r1 = new CashRegister();
3 CashRegister r2 = new CashRegister();
4 // invoking methods
5 r1.addItem(7.67);
6

7

8 r2.addItem(1.95);
9 r2.addItem(2.99);

r1

r2

CashRegister

itemCount = 1
totalPrice = 7.67

CashRegister

itemCount = 2
totalPrice = 4.94

An object reference specifies the location of an object
(similar to array references!)SP1 2020-06 11

Object: State, Behaviour & Identity

NB: equal
6=

identical

Booch, G.: Object Oriented Analysis and Design with Applications (2nd Edition)
Addison-Wesley, 1994SP1 2020-06 12

Access Modifiers

private instance variables (and methods)
can only be accessed

by the methods of the same class
// can access instance variables like methods
r1.itemCount = 0;
// COMPILE-TIME ERROR in class CashRegisterTest

(it is on the level of classes, not individual objects!)
(any instance of CashRegister can change instance variables of

any other instance of CashRegister provided that it has a reference to it)

public instance variables and methods
can be accessed by the methods of any class

SP1 2020-06 13

Instance Methods

public void addItem (double price) { ... }

access
modifier

return type method name parameter
type

parameter
name

body

signature

all instances variables should be private

most methods should be public encapsulation

it is useful to classify the methods as
accessors and mutators

SP1 2020-06 14

Instance Methods: Accessors

An accessor method just queries the object for some
information without changing it

1 public class CashRegister {
2 private int itemCount;
3 private double totalPrice;
4 // ...
5 public int getCount() {
6 return itemCount;
7 }
8 public double getTotal() {
9 return totalPrice;

10 }
11 }

SP1 2020-06 15

Instance Methods: Mutators

A mutator method changes the object
on which it operates

1 public class CashRegister {
2 private int itemCount;
3 private double totalPrice;
4 // ...
5 public void addItem(double price) {
6 itemCount++;
7 totalPrice += price;
8 }
9 }

NB: no return statement is needed if the return type is void
SP1 2020-06 16

Constructors

A constructor initialises the instance variables
of an object

The name of the constructor is the name of
the class (and no return type, not even void)

1 public class CashRegister {
2 private int itemCount;
3 private double totalPrice;
4 // ...
5 public CashRegister() {
6 itemCount = 0;
7 totalPrice = 0;
8 }
9 }

SP1 2020-06 17

Constructors (cont.)

By default, instance and class variables
are initialised as follows:

numbers are initialised as 0,

booleans as false, and

object and array references as null (special reference)

what about String s;?

If no constructor is provided,
a constructor with no parameters is generated

by the Java compiler (in bytecode only)

SP1 2020-06 18

Cash Register Class

1 public class CashRegister {
2 /* private data (instance variables) */
3 private int itemCount;
4 private double totalPrice;
5 /* methods (public interface) */
6 public void addItem(double price)
7 { itemCount++; totalPrice += price; }
8 public void clear()
9 { itemCount = 0; totalPrice = 0; }

10 public int getCount() { return itemCount; }
11 public double getTotal() { return totalPrice; }
12 }

SP1 2020-06 19

Public Interface
of the CashRegister Class

1 public class CashRegister {
2

3

4

5 /* methods (public interface) */
6 addItem(double)
7 { }
8 clear()
9 { }

10 getCount() { }
11 getTotal() { }
12 }

NB: the rest are implementation details,
which may be changed without affecting the users of the class

SP1 2020-06 20

Testing a Class

1 public class CashRegisterTest {
2 public static void main(String[] args) {
3 CashRegister r1 = new CashRegister();
4 r1.addItem(2.95);
5 r1.addItem(1.99);
6 System.out.println(r1.getCount());
7 System.out.println((r1.getCount() == 2)
8 ? "OK" : "FAIL");
9 System.out.printf("%.2f\n", r1.getTotal());

10 System.out.println((r1.getTotal() == 4.94)
11 ? "OK" : "FAIL");
12 }
13 }

SP1 2020-06 21

Java Compilation

source
CashRegisterTest.java

source
CashRegister.java

bytecode
CashRegisterTest.class

bytecode
CashRegister.class

compiler

javac

running
program

Virtual Machine java

public static void main(String[] args) {
. . .
}
NB: statements must be inside methods!

SP1 2020-06 22

Encapsulation

Every class has a public interface:
a collection of methods through which

the objects of the class can be manipulated

Encapsulation is the act of providing a public
interface and hiding implementation details

Encapsulation enables
changes in the implementation

without affecting users of the class

SP1 2020-06 23

Encapsulation

Encapsulation
hides the details
of the implementation
of an object

Booch, G.: Object Oriented Analysis and Design with Applications (2nd Edition)
Addison-Wesley, 1994

SP1 2020-06 24

Encapsulation: Why?

What if we want to support a method void undo()
(cancels the last item)?

What if we want to implement CashRegister
using the fixed-point arithmetic (so that 12.92 is 1292)?

Instance variables are “hidden” by declaring them
private,

but they are not hidden very well at all. . .

SP1 2020-06 25

Take Home Messages

Encapsulation enables
changes in the implementation

Public interface: a collection of public methods

Methods: accessors and mutators

Every instance of a class has
its own set of instance variables

All instance variables should be declared private

A constructor initialises the instance variables

SP1 2020-06 26

