
Software and Programming I

Object-Oriented Design

Roman Kontchakov / Carsten Fuhs

Birkbeck, University of London



Outline

Discovering classes and methods

Relationships between classes

An object-oriented process
for software development

Sections 12.1–12.3
http://higheredbcs.wiley.com/legacy/college/horstmann/1118063317/web_chapters/ch12.pdf

slides are available at
www.dcs.bbk.ac.uk/˜roman/sp1

SP1 2020-10 1

http://higheredbcs.wiley.com/legacy/college/horstmann/1118063317/web_chapters/ch12.pdf
www.dcs.bbk.ac.uk/~roman/sp1


Problem Solving: the Story So Far

objects are first-class citizens that exchange
messages: object.method(parameter values)

similar objects are organised into classes
organising classes for related concepts into

inheritance hierarchies (e.g., Employee extends Person)

polymorphism: talk to different objects in the same way,
but they may process the request differently

allows code reuse when they do use the same solution

But how do we know which classes (and methods) to have,
and how to come up with the inheritance hierarchies?

SP1 2020-10 2



Discovering Classes

Starting point: requirements specification in natural language
Candidates for classes: nouns (from the problem domain)

Examples: Person, Student, Employee, BankAccount, CashRegister, . . .

Suitable classes may already exist in Java standard libraries / earlier
programs; or maybe we can extend an existing class

Class name tells us what its objects are supposed to do
Don’t go too far: e.g., address as class Address, or just a String?

depends what we need from addresses for the task . . .

NB: code may later need classes outside the problem domain for
“technical” purposes, e.g., user interface, database access,

basic data structures like ArrayList, . . .

⇒ requirements give us the “domain model”
SP1 2020-10 3



Discovering Classes: Example

Program for invoices that list
each item with its price and
quantity, the overall total
due amount, as well as the
address of the customer

Possible classes:

Invoice
LineItem
Customer

C. Horstmann, Java for Everyone, 2013, p. W551

SP1 2020-10 4



Discovering Methods:
CRC Cards (1)

Candidates for methods: verbs in the task description
Invoice example: computing the overall total amount due
But which of the classes should take the method,

Invoice, LineItem or Customer?

Approach: use CRC Cards (index cards)

Invoice
compute amount due LineItem

Class

Responsibilities Collaborators

SP1 2020-10 5



Discovering Methods:
CRC Cards (2)

Responsibility≈method, but can be higher level
(Java implementation may need several methods)

Listing collaborators may reveal their own responsibilities
(e.g., LineItem must tell its own total)

CRC cards can be rearranged on table,
handy for discussions

A single CRC card should not have too many responsibilities

keep design simple

Later: find out how classes are related
Can we move common responsibilities to a superclass?

Are there independent clusters?
SP1 2020-10 6



Cohesion (1)

Public interface of a class should be cohesive:
everything should be closely related to single concept

represented by the class
1 public class CashRegister {
2 public static final double NICKEL_VALUE = 0.05;
3 public static final double DIME_VALUE = 0.1;
4 public static final double QUARTER_VALUE = 0.25;
5 . . .
6 public void enterPayment(int dollars, int

quarters, int dimes, int nickels, int pennies)
{ . . . }

7 . . .
8 }

Q: What is wrong here?

SP1 2020-10 7



Cohesion (2)

Two separate concepts: cash register and values of coins
⇒ Rather have a dedicated Coin class

with Coins responsible for knowing their own value

Allows us to simplify the CashRegister . . .
1 public class CashRegister {
2 . . .
3 public void enterPayment(Coin[] coins) {
4 . . .
5 }
6 . . .
7 }
. . . responsibilities of cash register and coins are separated
SP1 2020-10 8



Relationships Between Classes

Good cases

Can we move some common responsibilities to a
superclass?

→ less implementation effort, cleaner design

Are there (groups of) classes that are completely
independent from each other?

→ can assign different programmers to implement
them, no worries about one waiting for the other

SP1 2020-10 9



Dependency

Dependency relationship between classes
aka: “knows about”

Example: CashRegister knows about Coin objects

but Coin does not know about CashRegister

Notation for dependencies in UML Class Diagrams: dashed arrow, “normal” arrow tip

CashRegister Coin

In Java:
CashRegister needs Coin to compile, but not vice versa

⇒ CashRegister depends on Coin, but not vice versa
SP1 2020-10 10



Coupling

Coupling is the degree of dependency between classes

C. Horstmann
Java for Everyone
2013, p. W555

Aim for low coupling:

If, say, Coin changes in the future, all classes that
depend on Coin may need to be changed as well

Want to be able to use Coin in another program
without dragging in a lot of dependencies

SP1 2020-10 11



Aggregation (1)

Aggregation relationship between classes aka: “has-a”

Example: a Quiz contains (1 or more) Question ob-
jects, so class Quiz aggregates class Question

UML notation: solid arrow with diamond-shaped tip at the aggregating class

QuestionQuiz

Can also keep track of multiplicities (how many do I have?)

QuestionQuiz
1..*

Later on implementation level:
private Question[] questions;

as instance variable of Quiz (multiple Questions in a Quiz)SP1 2020-10 12



Aggregation (2)

Another example: Car aggregates Tyre objects

Tyre Car

Aggregation is a stronger form of dependency:

if you have something, you certainly know about it

Quiz also depends on Scanner (to read input),
but Quiz does not aggregate Scanner

Generally: need aggregation (→ instance variable) in your
class if you need to remember an object between
calls to the methods of your class

SP1 2020-10 13



Inheritance

Inheritance relationship between classes aka: “is-a”

Example: an Employee is a Person,
class Employee inherits from class Person

Inheritance is also a stronger form of dependency

UML notation: solid arrow with triangle-shaped tip at the superclass

Employee Person
In Java:

1 public class Employee extends Person {
2 . . .
3 }

SP1 2020-10 14



Inheritance: A Pitfall

Should Tyre be a subclass of Circle?
Could inherit methods for computing radius, centre point, . . .

No! A Tyre is a car part, not a geometric object like Circle
Use aggregation instead of inheritance for “code reuse”:

1 public class Tyre {
2 private Circle boundary;
3 . . .
4 public double radius() {
5 // delegate method calls to aggregated object
6 return this.boundary.radius();
7 }
8 }

SP1 2020-10 15



Inheritance: Another Example

Car: Every Car is a Vehicle, every Car has Tyres
⇒ inherit from Vehicle and aggregate Tyre

Car VehicleTyre

In Java:
1 public class Car extends Vehicle {
2 private Tyre[] tyres;
3 . . .
4 }

SP1 2020-10 16



Attributes & Operations in UML

Often want more details than just class names in nodes

Attributes (= instance variables) and operations (= methods)

Person
name: String
birthday: Date

int getAge()

Employee
hourlyWage: double

void pay(double hoursWorked)

Use (conceptually) primitive classes as attribute types

Do not represent aggregated classes from
the diagram as attributes (redundant information)

SP1 2020-10 17



Example: Modelling Vehicles

Every vehicle has an owner.
A bicycle is a vehicle with a tyre diameter in inches.
A rickshaw is a special bicycle that can transport a passen-
ger for a fare. Here, the maximum additional weight in kg is
a relevant property.
A car is a vehicle with four tyres and with a power in kW.
A police car is a car that can toggle a siren and that has a
specific number of blue lights.
A taxi is a car that can transport passengers for a fare.
Vehicles designed to transport passengers can tell how many
passengers are currently in the passenger area of the vehi-
cle.

SP1 2020-10 18



Example: Modelling Vehicles, v1
Some parts of the spec are ambiguous (and others are missing):

Don’t all vehicles have at least one passenger (the driver)?
Even if we don’t count the driver, can’t all vehicles

transport also a passenger, even a bicycle?
While we are building the domain model, we may find shortcomings

in the results of an earlier activity, the requirements analysis.

Similarly, while coding, you may find that some parts of the design
don’t make sense as such.

Revisiting (and fixing) the results of earlier activities is
actually quite common in software development processes.

Due to the flexibility of software, this is not as costly as in other
engineering disciplines (and lets us upgrade the software later
with new features). (Lab example: new cancelLast() feature in CashRegister)
SP1 2020-10 19



Example: Modelling Vehicles, v2
Every vehicle has an owner.

A bicycle is a vehicle with a tyre diameter in inches.

A rickshaw is a special bicycle such that the driver can trans-
port a passenger for a fare. Here the maximum additional
weight in kg is a relevant property.

A car is a vehicle that has four tyres and that has a power
in kW.

A police car is a car that can toggle a siren and that has a
specific number of blue lights.

A taxi is a car that can transport passengers for a fare. The
number of passengers is limited by the taxi’s passenger ca-
pacity.

Vehicles whose primary purpose is to transport passengers
in addition to the driver can be queried how many passen-
gers are currently in the passenger area of the vehicle.

SP1 2020-10 20



Example: Modelling Vehicles v2,
class diagram

Vehicle
ownerName: String

Bicycle
tyreInches: double

Rickshaw
maxKG: int

int getPassengerCount()

Car
powerInKW: doubleTyre

Taxi
maxPassengers: int

int getPassengerCount()

PoliceCar
numberOfBlueLights: int

void toggleSiren()

4

SP1 2020-10 21



Example: Modelling Vehicles v2,
remarks

Still further variations possible:
aggregate wheels in Vehicle? (but: ships are vehicles too!)

We do not mention the getters and setters for at-
tributes in the domain model (they are artefacts of
the implementation).

Note the common

int getPassengerCount()

operation in Taxi and Rickshaw
(Java interfaces can let us talk to different objects in a uniform way)

SP1 2020-10 22



Example: Modelling Vehicles v2,
implementation (1)

From class diagram to Java:
replace aggregation by instance variable

(single object or array of objects),
get Java code:

1 public class Vehicle {
2 private String ownerName;
3 }

1 public class Bicycle extends Vehicle {
2 private double tyreInches;
3 }

SP1 2020-10 23



Example: Modelling Vehicles v2,
implementation (2)

1 public class Rickshaw extends Bicycle {
2 private int maxKG;
3

4 public int getPassengerCount() {
5 return 0; // TODO Auto-generated method stub
6 }
7 }

1 public class Tyre {
2 }

1 public class Car extends Vehicle {
2 private Tyre[] tyres;
3 private double powerInKW;
4 }

SP1 2020-10 24



Example: Modelling Vehicles v2,
implementation (3)

1 public class PoliceCar extends Car {
2 private int numberOfBlueLights;
3

4 public void toggleSiren() {
5 // TODO Auto-generated method stub
6 }
7 }
1 public class Taxi extends Car {
2 private int maxPassengers;
3

4 public int getPassengerCount() {
5 return 0; // TODO Auto-generated method stub
6 }
7 }

SP1 2020-10 25



Architecture (1)

So far: focus on the domain model.

In larger projects you may also need

a dedicated user interface (GUI, web app, command line, . . . )

and a persistence layer
(store data not only in memory, but also on perma-
nent storage, e.g., an SQL database)

Those are not represented in the domain model;
a separate design model includes such classes

SP1 2020-10 26



Architecture (2)

Can often use a layered architecture with 3 layers:

Layer 1 User interface (JavaFX, web, command line, . . . )

Layer 2 Business logic
(implementation of the domain-specific aspects goes here, e.g., Invoice, LineItem, . . . )

Layer 3 Persistence layer (databases and other technical services, like logging)

Lower layers cannot see subsystems on higher layers
Flexibility

Reusability

Today’s web app may become tomorrow’s mobile
app, but the “business logic” may not have to change

SP1 2020-10 27



An Object-Oriented
Software Development Process

1. Gather requirements specification
(talk to customer, domain experts, . . . )

2. Use CRC cards to find
classes, responsibilities, collaborators

3. Use UML class diagram to record classes
and their relationships in domain model

4. Refine domain model to design model
5. Write classes with corresponding method stubs in Java
6. Use comments to document the desired behaviour
7. Write the implementation in Java
8. Test your implementation

SP1 2020-10 28



Take Home Messages

Goal: from requirements (in natural language) to Java code

discovering classes and methods

representing relationships between classes
in a UML class diagram

translating the UML class diagram to Java code

a software development process

SP1 2020-10 29


