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Abstract— Model compression methods have become popular
in recent years, which aim to alleviate the heavy load of deep
neural networks (DNNs) in real-world applications. However,
most of the existing compression methods have two limitations:
1) they usually adopt a cumbersome process, including pretrain-
ing, training with a sparsity constraint, pruning/decomposition,
and fine-tuning. Moreover, the last three stages are usually
iterated multiple times. 2) The models are pretrained under
explicit sparsity or low-rank assumptions, which are difficult to
guarantee wide appropriateness. In this article, we propose an
efficient decomposition and pruning (EDP) scheme via construct-
ing a compressed-aware block that can automatically minimize
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the rank of the weight matrix and identify the redundant
channels. Specifically, we embed the compressed-aware block
by decomposing one network layer into two layers: a new
weight matrix layer and a coefficient matrix layer. By imposing
regularizers on the coefficient matrix, the new weight matrix
learns to become a low-rank basis weight, and its corresponding
channels become sparse. In this way, the proposed compressed-
aware block simultaneously achieves low-rank decomposition
and channel pruning by only one single data-driven training
stage. Moreover, the network of architecture is further com-
pressed and optimized by a novel Pruning & Merging (PM)
module which prunes redundant channels and merges redundant
decomposed layers. Experimental results (17 competitors) on
different data sets and networks demonstrate that the pro-
posed EDP achieves a high compression ratio with accept-
able accuracy degradation and outperforms state-of-the-arts
on compression rate, accuracy, inference time, and run-time
memory.

Index Terms— Data-driven, low-rank decomposition, model
compression and acceleration, structured pruning.

I. INTRODUCTION

COMPARED with traditional machine learning algo-
rithms, deep neural network (DNN) models [1]–[4] have

achieved a better performance in several fields such as image
classification [1], object detection [5], object tracking [6],
and video understanding [7]. However, a large number of
parameters and FLoating-point OPerations (FLOPs) make it
difficult to deploy them in mobile and embedding devices.
Therefore, the model compression of DNN is a funda-
mental problem that has been studied extensively in recent
years.

Recently, low-rank decomposition methods [8]–[10], such
as singular value decomposition (SVD) [8], have been used
for model compression by decomposing an original network
layer into two lightweight layers. However, there are some
limitations in these low-rank decomposition methods. First,
an appropriate hyperparameter for the rank of filters should be
selected [8], [11], at the cost of many validation experiments.
Second, the compression rates of these methods are limited
if the DNN is pretrained without low-rank constraint. Third,
these methods fail to remove all the redundant channels and
occupy much run-time memory. Moreover, the decomposition
of each layer makes the network too deep, which may influ-
ence the accuracy.
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Fig. 1. Illustration of the proposed method. (a) Blue blocks comprise the original weight matrix at the lth layer, with size cl+1 × cl . The orange blocks
represent the decomposed matrixes: a basis weight matrix with rl × cl size, and a coefficient matrix with c′l+1 × rl size. Low-rank decomposition is achieved
by minimizing rl , whereas the sparse output channels are obtained by minimizing c′l+1. (b) Whole optimization process of the proposed method.

Channel pruning methods [12], [13] have been increasingly
popular in recent years. They prune unimportant input–output
channel-wise connections of DNNs and are more hardware-
friendly than traditional weight pruning methods. However,
the learning procedure is cumbersome as it includes four
stages: pretraining, training with a sparsity constraint, pruning,
and fine-tuning. To achieve better performance, the whole
procedure may be iterated several times. In addition, channel
pruning methods change the input–output dimensions of a
layer, which may perform not well in some blocks, such as
element-wise addition blocks.

To overcome the above limitations, we propose an efficient
decomposition and pruning (EDP) scheme via constructing a
compressed-aware block. The proposed block can be used to
replace every layer of a convolutional neural network (CNN) in
a plug-and-play way so as to efficiently compress the network.
The proposed compression procedure contains one single
efficient training process and adaptively learns an optimal
architecture. Fig. 1(a) shows the architecture and optimization
process of the proposed method. Specifically, we embed the
compressed-aware block by decomposing the original network
layer into two layers: one is a basis weight matrix and the other
is a coefficient matrix. By imposing L2,1-based constraints
on the coefficient matrix, the block can learn to be compact
adaptively. On the one hand, the proposed constraints make
the columns (i.e., input space) of the coefficient matrix to be
sparse. After pruning the redundant connections, the remaining
channels of the basis weight matrix can be regarded as the
bases of the original weight space. Thus, the low-rank purpose
is achieved. On the other hand, the proposed constraints push
redundant rows (i.e., output space) of the coefficient matrix to
zero. As a result, unimportant connections to the next layer
are identified and then pruned. Thus, the remaining channels
are sparse. Furthermore, the proposed method can degenerate
into two special cases: a low-rank decomposition case and a
channel pruning case. The two special cases can be utilized
separately in some situations. For example, the low-rank
decomposition case does not change the output dimension,
which can be used in element-wise addition blocks.

The optimization of the proposed method is based on a
proximal gradient algorithm. By setting approximate penalty
coefficients of the regularizers, the tradeoff between accuracy
and pruned ratio can be adaptively controlled. Moreover,
we also find that the early stopping (ES) of these constraints
can achieve a better performance. When the network is learned
to be sparse and low rank, a Pruning & Merging (PM) module
is deployed to prune the redundant filters and merge the
redundant decomposed layers. Note that the merging operation
can reduce the redundant layers, avoiding the depth of the
network being too large. Finally, a lightweight and hardware-
friendly DNN model with high performance is obtained. The
whole process of the proposed method is shown in Fig. 1(b).

Experiments on several data sets and a range of network
architectures show the effectiveness of the proposed method.
We can obtain a DNN model with up to 95.59% parame-
ters’ compression, 80.11% FLOPs’ reduction, 3.3× speedup
of inference time, and 1.8× run-time memory saving with
VGG-small architecture on CIFAR-10 data set, while keeping
acceptable accuracy.

The main contributions are summarized as follows.
1) We propose a compressed-aware block, which can be put

in any CNN layers as a plug-in to efficiently compress
the network. Low rank and channel sparsity are adap-
tively achieved by introducing L2,1-based constraints on
the coefficient matrix.

2) A PM module is presented to remove not only redundant
filters but also redundant decomposed layers. Thus,
an optimal architecture can be adaptively obtained.

3) The proposed method is flexible. It can achieve low-rank
decomposition and channel pruning, either separately or
together, when compressing a network.

II. RELATED WORKS

Related works for compressing neural networks can be
grouped into four categories: weight sparsity (nonstructured)
pruning, parameter (weight) quantization, low-rank decompo-
sition, and structured sparsity pruning.

Authorized licensed use limited to: Birkbeck University of London. Downloaded on November 05,2020 at 14:03:18 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RUAN et al.: EDP SCHEME FOR CONVOLUTIONAL NEURAL NETWORK COMPRESSION 3

Most of the early studies [14]–[17] on weight sparsity
pruning focus on the importance of weights. They pruned
the unimportant weights via different criteria. Han et al. [14]
and Guo et al. [16] pruned the weights based on the magnitude
of parameters. LeCun et al. [15] used second-derivative
information to identify insignificant weights. In order to make
these weights sparse, some regularizations [18], e.g., L1 and
L2, were imposed on the loss function during the training
process. After that, to further improve the performance of the
compressed model, Ding et al. [19] gradually reduced the
redundant weights to zero by directly altering the gradient
flow based on momentum stochastic gradient descent (SGD).
Besides, some recent works [20]–[22] articulated the lottery
ticket hypothesis and learned very sparse networks (winning
tickets) which obtained almost the same performance as the
original network. Although the storage space can be dra-
matically reduced, these methods rely on specific operation
libraries and hardware. The run-time memory saving is limited
because most memory space is consumed by the feature maps
rather than the weights.

Parameter (weight) quantization methods [23]–[27]
express the floating-point weights by a few bits. For exam-
ple, XNOR-Net [23], binarized neural networks [24], and
binary connect [25] were proposed to quantize the floating-
point weights into binary values, and quantized neural net-
works [26] were trained with low precision weights and
activations. Han et al. [28] proposed a three-stage compress
pipeline, in which they first pruned the model, then quantized
the weights, and finally adopted Huffman coding to further
increase the compression rate. However, parameter (weight)
quantization methods usually result in a moderate accuracy
degradation in large DNNs.

Low-rank decomposition [8], [10], [29]–[32] methods
have been explored over the past few years. They decom-
posed the weight matrix of DNN into several pieces, using
techniques such as SVD [8], [10] and canonical decomposi-
tion/parallel factors decomposition (CP decomposition) [32].
In [29], a decomposition method was presented by separating
k×k filters into k×1 and 1×k filters. Kim et al. [30] utilized
tucker decomposition on a kernel tensor to compress the
networks. It consists of three steps: rank selection, low-rank
tensor decomposition, and fine-tuning. This method requires
additional experiments to select an appropriate rank. Most
works did not consider the low-rank constraint in the training
process, and thus, the compression rate is limited. Recently,
Alvarez and Salzmann [31] introduced the low-rank constraint
(i.e., nuclear norm) and the sparse group least absolute shrink-
age and selection operator (LASSO) regularizer to train the
network, before SVD-based decomposition. However, after
training, the operation of SVD is time-consuming, and the
decomposed layers occupy much run-time memory.

Structured pruning methods [12], [13], [33]–[35] directly
remove redundant neurons and channels rather than irregular
weights. Some works [12], [13] imposed LASSO regression to
learn the importance of each channel, whereas several works
[33], [35] ranked filters by criteria such as the absolute values
and pruned the unimportant ones. In addition, some works
take the correlations between filters into account. For example,

[35] tied any strongly correlated neurons to a common value.
Since these methods prune parts of the network structures
(e.g., channels) instead of individual weights, they do not need
extra libraries or hardware, unlike weight pruning methods.
However, almost all these methods need to pretrain stage and
fine-tune stage, and some even iterate the multiple stages
to further enhance accuracy. Furthermore, channel pruning
methods change the input–output dimensions of a layer,
which may not match the dimensions in the case of the
element-wise addition blocks. For instance, when ResNets are
compressed, due to the unequal dimensions of input–output
channels, the channel pruning methods cannot prune the last
layer of each residual block. This may lead to insufficient
compression.

In order to overcome the above weakness, the proposed
method integrates low-rank decomposition and structured spar-
sity pruning into a unified framework. The two components
can be performed either separately or together in an efficient
training process, without cumbersome stages.

III. PROPOSED METHOD

In this section, we first introduce the EDP algorithm which
integrates low-rank decomposition and channel pruning to
reduce the redundancy. Second, a proximal gradient method
is introduced to deal with the optimization of EDP. Then,
a PM module is successively presented to further com-
pact the network. The learning procedure is summarized at
the end.

A. EDP Algorithm

In the original DNN, the weights of the lth layer are denoted
as θl ∈ R

cl+1×cl×kl×kl , where cl and cl+1 are the number of input
and output channels, respectively, and kl is the kernel size.
Without the loss of generality, we reorganize the parameters
from the original space θl ∈ R

cl+1×cl×kl×kl to θ2D
l ∈ R

cl+1×cl kl kl .
Given the input feature map fl , the output response is obtained
by

fl+1 = σ( fl ∗ θl) (1)

where σ(·) is an activation function, such as rectifier linear
unit (ReLU), and ∗ is the 2-D convolution operator. Fig. 2(a)
shows an illustration of the original DNN layer. The input
is the feature map fl with cl channels, and the output is the
feature map fl+1 with cl+1 channels. The parameter θl has cl+1

filters with cl × kl × kl size.
In this approach, the original layer is decomposed into two

layers: one is a basis weight matrix θ
′(2D)
l ∈ R

rl×cl kl kl (tensor
θ ′l ∈ R

rl×cl×kl×kl ), and the other one is a coefficient matrix
β2D

l ∈ R
c′l+1×rl (tensor βl ∈ R

c′l+1×rl×1×1), which represents the
coefficients of the bases. Therefore, we compute the response
of the decomposed layers by

fl+1 = σ( fl ∗ θ ′l ∗ βl). (2)

Note that the size of β2D
l reflects the number of ranks

(i.e., rl ) and channels (i.e., c′l+1). By imposing L2,1 regulariza-
tion on the coefficient matrix β2D

l and its transposition (β2D
l )T ,

we obtain the basis weight θ
′(2D)
l with fewer rows rl and fewer
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Fig. 2. Illustration of the proposed algorithm. The blocks shown only by
outlines are eventually pruned. (a) Original layer. (b) Our layer: Low-rank
decomposition. (c) Our layer: Channel pruning.

output channels c′l+1, simultaneously. In this manner, given
input–output pairs (x, y) from data set D, the loss function is
formulated as

Loss = 1

|D|
∑

(x,y)∈D
�(F(�, x), y)+�(�) (3)

where � = {θ ′l , βl}Ll=1 encompasses all network parameters,
and F(·) is the DNN forward function. The first item �(·) is the
standard loss function, such as cross-entropy loss. The second
item �(�) is a regularization term. In order to encourage the
parameters in each layer to have low-rank and sparse channels,
�(�) is computed by

�(�) = λ1

L∑
l=1

||β2D
l ||2,1 + λ2

L∑
l=1

||(β2D
l )T ||2,1

i.e., ||β2D
l ||2,1 =

rl∑
j=1

√√√√
c′l+1∑
i=1

(β2D
l )2(i, j). (4)

Note that λ1 and λ2 are the penalty coefficients, and i and
j denote the i th row and j th column, respectively. It is worth
mentioning that adding constraints on β means less parameter
optimization and joint optimization, which can help to promote
the training performance. In ablation analysis, it is verified that
adding regularizations to β is more effective and efficient than
adding regularizations to θ , and joint optimization outperforms
separate optimization.

By setting the values of λ1 and λ2, we get different special
cases, as discussed in detail as follows.

1©λ1 �= 0, λ2 = 0: Low-rank decomposition component
In this case, (4) is reduced to

�(�) = λ1

L∑
l=1

||β2D
l ||2,1. (5)

Hence, after training the model, a number of columns of
β2D

l are forced to be zero. The columns in β2D
l with zero

values are pruned, and the corresponding rows of θ
′(2D)
l are

also pruned. Fig. 2(b) shows this case: the original parameter
θ2D

l is decomposed into a basis weight matrix θ
′(2D)
l with rl

filters and a coefficient matrix β2D
l with cl+1 filters (each filter

represents a row of the matrix). Note that each filter size of
βl is rl × 1 × 1, and the initial value of rl is cl+1. During
the optimization process, the filter number (i.e., rl) of θ

′(2D)
l

is trained to be smaller and smaller so that θ
′(2D)
l becomes a

low-rank basis weight matrix. In this case, we achieve low-
rank decomposition of a DNN layer by training with (5). It is
applicable to every type of DNN, including ResNet [3], since
it does not change the input–output dimensions. By using
the coefficient matrix β2D

l with L2,1 regularizer, the low-rank
basis weight θ

′(2D)
l can also be automatically generated without

manual rank selection.
For the need of keeping invariant in input–output dimen-

sions, we use the decomposition case to compress the layer.
This is because the decomposition case degenerated from the
proposed method only decomposes one layer into two layers
and does not influence the input–output dimensions.

2© λ2 �= 0, λ1 = 0: Channel pruning component
In terms of this case, (4) is reduced to

�(�) = λ2

L∑
l=1

||(β2D
l )T ||2,1. (6)

Similarly, β2D
l is trained to have sparse rows by (6). Pruning

the rows with zero values leads to a reduction in the number of
output channels. As shown in Fig. 2(c), the number of output
channels c′l+1 is initialized to cl+1. The number of output
channels becomes smaller as the training proceeds. Hence,
a more compact output fl+1 is obtained, with the saving of
much run-time memory. In comparison with existing channel
pruning methods, such as Slimming [13], this case only needs
one whole training process without multistage pruning and
achieves a high performance.

3© λ1 �= 0, λ2 �= 0: EDP
When λ1 and λ2 are both nonzero, we make use of the low-

rank decomposition component and channel pruning compo-
nent, simultaneously. The initial values of rl and c′l+1 are both
set to cl+1. The DNN is then trained by minimizing the loss
function in (3). After pruning, a low-rank basis weight θ ′l with
a small number (i.e., rl ) of filters and an output feature map
fl+1 with a small number (i.e., c′l+1) of channels are obtained.
In EDP, the two components compensate for the drawbacks
of each other. This ensures an extreme compression rate with
only a small decline in performance.
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Fig. 3. Analysis of the ES strategy of optimization with regularizations. Note that the red imaginary line represents the ES epoch. No: training without an
ES strategy; ES: training with ES strategy. (a) Sparse ratio of parameters. (b) Sparse ratio of FLOPs. (c) Test accuracy comparison.

B. Optimization

Optimization: The optimization objective is to minimize the
loss defined in (3)

min
�

1

|D|
∑

(x,y)∈D
�(F(�, x), y)+�(�). (7)

For the convenience of subsequent analysis, (7) is rewritten as

min
�

g(�)+�(�)

i.e., g(�) = 1

|D|
∑

(x,y)∈D
�(F(�, x), y). (8)

The term g(�) is a widely used DNN loss function (e.g.,
the cross-entropy loss for classification tasks) which is smooth
and convex. In this task, �(·) = −∑M

c=1 pc(xi) log qc(xi),
which is the cross-entropy loss. Note that M denotes the num-
ber of possible class labels, qc(xi) is a predicted probability
after the soft-max function that observation i is of class c, and
pc(xi) denotes a binary indicator (0 or 1) of whether class label
c is the correct classification for observation i . The second
term, �(�), is convex but not differentiable. In order to solve
the resulting nonsmooth unconstrained optimization problem,
we make use of the proximal gradient descent method [36].
For the first term g(�), the gradient update can be obtained
by the quadratic approximation

�+ = argmin
z

1

2α
||z − (�− α∇g(�))||2F +�(z) (9)

in which α is the learning rate (LR), �+ is the next estimate
of the network parameters, z is all possible approximation
solution of the network parameters that we are going to
predict, and � is from the previous iteration.

As �(�) is only relevant to {βl}Ll=1, we update {θl}Ll=1 and
{βl}Ll=1 separately. In detail, we choose the initial �(0) and
then repeat

{θl}(n+1) = {θl}(n) − α∇g(�(n))

{βl}(n)′ = {βl}(n) − α∇g(�(n))

n = 0, 1, 2, . . . (10)

{βl}(n+1) = Sαλ1({βl}(n)′)+ Sαλ2({βT
l }(n)′).

n = 0, 1, 2, . . . (11)

Simultaneously, using the soft-thresholding algorithm [37],
we can obtain

[Sαλ1(βl)] j

=
⎧⎨
⎩

βl(:, j)− αλ1βl(:, j)

||βl(:, j)||2 , if ||βl(:, j)||2 > αλ1

0, otherwise
(12)

where j denotes the column index, and βl(:, j) represents the
j th column of βl . Similarly

[Sαλ2(β
T
l )]i

=
⎧⎨
⎩

βl(i, :)− αλ2βl(i, :)
||βl(i, :)||2 , if ||βl(i, :)||2 > αλ2

0, otherwise.
(13)

Substituting (12) and (13) into (11), the optimization problem
can be solved.

Early Stopping: According to the experiments, imposing the
constraints throughout the whole training process probably
is not optimal. Fig. 3 shows the curves of sparse ratios at
different epochs. It manifests that both the parameters’ sparse
ratio and the FLOPs’ sparse ratio reach saturation after certain
epochs. In addition, when we early stop the regularizations at
the saturation point and continue training the pruned model
during the remaining epochs, the accuracy further increases,
as shown in Fig. 3(c). Therefore, we leverage the ES strategy
of regularizations in the training process. Note that ES is
different from fine-tuning. In most of the existing methods,
such as Slimming [13] and GrOWL [35], training with regu-
larizations and fine-tuning are two separate training processes.
Hyperparameters (e.g., LR) are reset in each training process.
On the contrary, the ES is only a small training period in the
whole compressed scheme, where the LR continuously decays,
and other parameters are continuously updated.

C. PM Module

After optimization, it is usual to prune the redundant para-
meters of the network. However, in the EDP, it is not enough to
only conduct a pruning operation. The decomposition compo-
nent decomposes one layer into two layers, which brings about
a deeper network and some redundant blocks. On the one hand,
the deeper network may influence the training convergence.
On the other hand, the parameters of the two decomposed
layers may be more than that of one single layer. It is because
the row number rl of βl and the output channel number c′l+1
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TABLE I

TEST ACCURACY OF DIFFERENT TRAINING STRATEGY
IN DIFFERENT (λ1, λ2) SETTINGS

Algorithm 1: Proposed Method EDP
Input: Model network, Data set D, LR α.
Output: a lightweight network.

1 Decompose network and initialize model parameters �0;
2 t = 0;
3 while t < EpochE S do
4 for each iteration ∈ epoch t do
5 Update: �← �− α∇g(�) using data set D;
6 for each βl ∈ {βl}Ll=1 do
7 Update βl via (11), (12) and (13);
8 end
9 end

10 t = t + 1;
11 end
12 Remove the redundant parameters leveraging PM module;
13 Continue the training until the end (Epochend);
14 Obtain a lightweight network with acceptable accuracy

degradation.

are determined based on learning, unlike the existing low-rank
decomposition methods that rl is set to be much less than c′l+1.
Thus, in this case, it is better to merge the two layers and get
more compact architecture.

Therefore, we present a PM module to prune the redundant
channels and to merge the redundant decomposed layers.
Specifically, we first prune the zero-value columns and rows
of {βl}Ll=1 to get a pruned model. Based on the pruned model,
if there exists

c′l × c′l+1 × klkl � c′l × rl × klkl + rl × c′l+1 × (1 · 1)

	⇒ rl �
c′lc
′
l+1klkl

c′lklkl + c′l+1

(14)

we conduct merging operation on the two decomposed layers
and obtain a single convolutional layer with the size of c′l+1×
c′l × kl × kl . Experimental results in Table I show that the PM
module further improves the model performance and brings
about the smaller model size. It compensates for the drawback
that ES slightly increases the model size.

D. Learning Procedure

We summarize the proposed method in Algorithm 1.
In the whole training process, the original network is first
decomposed and updated repeatedly by optimizing (3) jointly.
At EpochE S, we early stop the regularization �(�) and utilize

TABLE II

VGG ARCHITECTURE VARIANTS FOR THE CIFAR DATA SET IN THIS
ARTICLE. THE CONVOLUTIONAL KERNEL IS 3× 3

the PM module to prune the zero-value channels and merge the
redundant decomposed layers. After that, we continue training
the network until the end. At this moment, we finish the whole
training process and get a lightweight network with slight
accuracy degradation.

IV. EXPERIMENT

A. Settings

1) Data Sets: We evaluate the proposed method on
three data sets: CIFAR-10, CIFAR-100 [38], and ILSVRC
2012 ImageNet [39]. There are 50 000 training images and
10 000 test images with resolution 32 × 32 in CIFAR-
10/100 data sets. CIFAR-10 is drawn from 10 classes, whereas
CIFAR-100 is split into 100 categories. All the images
in the CIFAR-10 data set are normalized using mean =
[0.4914, 0.4822, 0.4465] and std = [0.2470, 0.2435, 0.2616],
and CIFAR-100 data set is normalized using mean =
[0.5071, 0.4867, 0.4408] and std = [0.2675, 0.2565, 0.2761].
ImageNet is a large-scale data set, which contains 1.28 mil-
lion training images and 50 000 validation images from
1 000 classes. Images are resized to 256 × 256 size and
normalized with mean = [0.485, 0.456, 0.406] and std =
[0.229, 0.224, 0.225].

2) Networks: On the CIFAR-10 data set, we evaluate the
proposed method using VGG-16 [2] and ResNet56 [3]. As the
original VGG-16 [2] is specially designed for ImageNet clas-
sification, we use a variation version (i.e., VGG-small) taken
from [40] in the experiment. To be specific, the architecture
consists of 13 convolutional layers and 2 much smaller fully
connected (FC) layers. Considering the convergence and the
performance, we adopt batch normalization (BN) [41] after
each convolutional layer and remove dropout after the FC
layer. On the CIFAR-100 data set, we use VGG-19 as in [2],
with one FC layer. These VGG architecture variants are shown
in Table II. On the ImageNet data set, we evaluate the method
on ResNets [3] (including ResNet 34, 50, and 101) and
MobileNet V2 [42].

3) Implementation Details: We implement all experiments
using PyTorch [51] on multiple NVIDIA GTX 1080 Ti GPUs
in the training process and an Intel Core i7-6850K in the
test process. During training, all the networks are trained
using SGD. The batch size is set to be 100 on CIFAR-
10/100 and 256 on the ImageNet data set. It takes 300 epochs
for training on CIFAR-10/100 and 90 epochs on the ImageNet
data set. The models are trained using an initial LR of 0.05 on
CIFAR-10 and 0.01 on the CIFAR-100/ImageNet data set. The
LR is multiplied by 0.1 at 50% and 75% of the training epochs

Authorized licensed use limited to: Birkbeck University of London. Downloaded on November 05,2020 at 14:03:18 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RUAN et al.: EDP SCHEME FOR CONVOLUTIONAL NEURAL NETWORK COMPRESSION 7

TABLE III

PERFORMANCE COMPARISON OF VGG-SMALL AND RESNET56 ON CIFAR-10. NOTE THAT THE TOP TWO RESULTS ARE HIGHLIGHTED WITH RED
AND PINK FONTS, RESPECTIVELY. THE “--” INDICATES THAT THE RESULTS ARE NOT LISTED IN THE ORIGINAL ARTICLE

TABLE IV

PRUNED RESULTS OF VGG19 ON CIFAR-100

on CIFAR-10/100 and 30 and 60 epoch on the ImageNet data
set. We utilize a weight decay of 10−4 and a momentum of 0.9.
Besides, we set EpochE S to be 120 (for CIFAR-10/100 data
sets) and 10 (for ImageNet data set) in all experiments.

4) Evaluation Metrics: We evaluate the proposed method
using the number of network parameters and FLOPs (multiply
adds). Note that the FLOPs are counted for the operations on
convolutional and FC layers. Some calculations such as BN
and other overheads are not accounted for. We also report the
ratio of parameters or FLOPs reduction, as given by

RParams = Pruned Params

Original Params

RFLOPs = Pruned FLOPs

Original FLOPs
. (15)

In addition, the inference time and run-time memory are
leveraged to further evaluate the proposed method.

5) Competing Methods: To analyze the effectiveness of
EDP, 17 state of the arts are taken into account for comparison,

including Li et al. [43], SVD [31], ThiNet [52], Slimming [13],
NRE [44], GrOWL [35], NISP [53], SFP [33], DCP [47],
AMC [49], FPGM [48], SSR [54], ASFP [46], AOFP [55],
KSE [50], HRank [45], and DMC [56].

B. Performance Comparisons

In this section, we compare the method on three data sets
including CIFAR-10, CIFAR-100, and ImageNet, with VGG,
ResNets, and MobileNet V2 architecture. The results of these
competing methods are reported according to the original
article.

1) CIFAR-10: On CIFAR-10, we compare the EDP with
baseline, GrOWL [35], Li et al. [43], NRE [44], SVD [31],
Slimming [13], SFP [33], ASFP [46], DCP [47], AMC [49],
FPGM [48], KSE [50], and HRank [45] in Table III.
Among these compared methods, Li et al. [43], NRE [44],
Slimming [13], SFP [33], DCP [47], ASFP [46], FPGM [48],
and HRank [45] are the state-of-the-art channel pruning meth-
ods. SVD [31] is a low-rank decomposition method, and
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TABLE V

PRUNED RESULTS OF RESNETS ON ILSVRC 2012 IMAGENET

GrOWL [35] learns to group parameters with a high corre-
lation. GrOWL+L2 represents the GrOWL method adding L2

regularizer in optimization. AMC [49] is an AutoML-based
pruning method. KSE [50] is a kernel-level redundancy-based
compression method. For VGG-small, shown in Table III,
the proposed method achieves an accuracy of 93.52% and
a 95.59% pruned parameter ratio, performing the best among
the comparative methods. Moreover, Slimming [13], the best
competing method, achieves a comparable accuracy of 93.48%
but a much lower pruned parameter ratio of 86.65%. Compared
with the baseline, EDP compresses VGG-small more than
95% parameters and 80% FLOPs, with less than 0.1% accu-
racy loss. For a more compact architecture ResNet56, EDP
still outperforms all the compared methods and compresses
ResNet56 more than 54% parameters and 57% FLOPs, without
any accuracy degradation.

2) CIFAR-100: On CIFAR-100, the EDP is compared with
baseline, Li et al. [43], Slimming [13], and SVD [31].
As shown in Table IV, the results completely exceed all the
competing methods, not only on the accuracy but also on
the ratios of parameters’/ FLOPs’ reduction. Among these
methods, Li et al. [43] achieved high accuracy but has a
low compressed ratio. Slimming [13] obtained a relatively
small compressed model, but the accuracy is not high. On the
contrary, the EDP, containing both the advantages of decom-
position and channel pruning, shows its superior effectiveness.

3) ImageNet: On the ImageNet data set, EDP is further
compared with Li et al. [43], ThiNet [52], NISP [53],
AMC [49], SFP [33], SSR [54], ASFP [46], AOFP [55],
FPGM [48], HRank [45], and DMC [56] on ResNets with dif-
ferent depths and MobileNet V2, as shown in Tables V and VI.
For ResNet34, although ASFP [46] archives the highest accu-
racy, the pretrained model (i.e., baseline) also has the highest
accuracy, and the compressed ratio is low. On the contrary,

TABLE VI

PERFORMANCE COMPARISON OF THE COMPRESSED MOBILENETV2
(A LIGHTWEIGHT NETWORK) ON THE IMAGENET DATA SET

the proposed method gets the second high accuracy but
achieves the highest compressed ratio and low accuracy loss.
For ResNet50, the compressed model achieves the highest test
accuracy with a high compressed ratio. Especially, it reaches
a very high value of FLOPs reduction ratio, far larger than
most other methods (close to or even more than 10%). For
ResNet101, a deep residual network, the EDP obtains the
highest compressed ratio among the four methods (SFP [33],
AOFP [55], FPGM [48], and the EDP). The accuracy of the
compressed model even outperforms the baseline, improving
0.46% in top-1 and 0.14% in top-5. For lightweight network
compression (i.e., MobileNet V2), as shown in Table VI,
the method also obtains the best performance. These results
indicate that the method is effective and superior to compared
methods on both small-scale and large-scale data sets, due
to fusing decomposition and pruning scheme and adaptively
learning to compress networks.

C. Ablation Analysis

In Section IV-C, we conduct extensive experiments to
further analyze and discuss the effectiveness of the proposed
method. Without explicit explanation, the results are obtained
by compressing VGG-small on the CIFAR-10 data set. More-
over, the “baseline” results are trained from scratch.

Authorized licensed use limited to: Birkbeck University of London. Downloaded on November 05,2020 at 14:03:18 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RUAN et al.: EDP SCHEME FOR CONVOLUTIONAL NEURAL NETWORK COMPRESSION 9

Fig. 4. Accuracy curves at different compression rates. The proposed method
works best among different compression methods.

1) Effectiveness of Each Component in EDP: To verify
the effectiveness of EDP, we analyze each component of the
proposed method. Fig. 4 shows the accuracy of EDP and
its individual component at different compression rates. The
results of compared methods, such as low-rank decomposition
method–SVD [31], channel pruning method–Slimming [13],
and SVD + Slimming, are also reported. In particular, SVD
performs SVD on the layers of a DNN model which is pre-
trained with nuclear norm regularizer. Different compression
rates are achieved by choosing the different ranks of the
parameter matrix. Slimming imposes L1 regularization on the
scaling factors in BN and then prunes channels with low
scaling factors. Further, we combine both SVD and Slimming
on one model as a competing method of the full method EDP.
According to the results, both of the two components of EDP
outperform the competing methods, and the whole proposed
method outperforms all the other methods by a large margin.

Concretely, in Fig. 4, “The low-rank decomposition compo-
nent” is one of the components of the method, and it belongs
to case 1© in Section III-A. It takes only a single process
to achieve the low-rank decomposition component, with less
accuracy loss. On the contrary, SVD suffers from rapid perfor-
mance drop when the network has a high compression rate.
Fig. 4 shows that at a similar performance, the model size
of the low-rank decomposition component is only 50%–65%
of that of the SVD model. Thus, the low-rank decomposition
component is superior to some typical low-rank decomposition
method–SVD.

“The channel pruning component” is the second compo-
nent of the proposed method, and it belongs to case 2© in
Section III-A. Similar to the low-rank decomposition compo-
nent, the channel pruning component is automatically achieved
during the optimization procedure. On the contrary, for Slim-
ing, the performance of compressed DNN without fine-tuning
is extremely low (approximately 10% accuracy). Thus, it takes
three stages (i.e., training with regularizer, pruning, and fine-
tuning) for sliming to compress a model. The experimental
results verify that at a similar performance, the model size of
the channel pruning component is only 50% or even less of
that of the Slimming model. Besides, at the same compression
rate, the channel pruning exceeds Slimming by 0.5%–2.0%.

The full method EDP consists of the low-rank decomposi-
tion component and channel pruning component, which has
the best performance in Fig. 4. EDP integrates these two

Fig. 5. Layer-wise comparison of rank number and channel number.
(a) Channel number. (b) Rank number.

components by inserting two regularizers both on the proposed
coefficient matrix βl , and the overall framework is optimized
uniformly to get an optimal model. Hence, the weights’
matrixes of DNN compressed by EDP naturally fulfill the low-
rank and channel sparsity properties, which enable a higher
compression rate with less performance gap. On the contrary,
the competing method SVD+Slimming performs only similar
or even worse, compared with individual SVD and individual
Slimming. In this case, the arbitrary two-method combination
is only able to obtain a suboptimal model and severely harms
the performance of the original model.

2) Layer-Wise Comparisons: The layer-wise channel num-
bers and rank numbers of different compressed DNNs are
shown in Fig. 5. For the comparison of the channel number
in Fig. 5(a), we can see that the proposed method prunes much
more channels in deep layers than in shallow layers, which
indicates that the last several layers are more redundant. Com-
pared with channel pruning method–Slimming, the method has
more sparse channels. Even so, the pruned method with a
higher compression rate achieves comparable accuracy. The
layer-wise comparison of the rank of weight matrix is also
shown in Fig. 5(b), between SVD and the proposed method.
It depicts that the ranks of EDP are significantly lower than
that of SVD, especially in the middle layers. Hence, the coop-
eration of the EDP’s two components shows the effectiveness
to make the weight matrix to be low rank.

3) Visualization: We also give some subjective analysis
of the proposed method. Fig. 6 shows the filters of the
first convolutional layer of VGG-small trained on CIFAR-10.
In particular, the 64×3×3×3 tensor is represented by 64 RGB
images with 3 × 3 size. Moreover, the values of the filters
are normalized to [0, 255]. As shown in Fig. 6, the filters
of the proposed method are much sparser compared with the
baseline. Since most of the filters are all zero, it is easier
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TABLE VII

DETAILED RESULTS OF PARAMETERS AND FLOPs OF VGG-SMALL ON CIFAR-10

Fig. 6. Filter visualization results. Note that the filters come from the first
layer of VGG-small. (a) Baseline. (b) Proposed method.

for EDP to achieve low rank as well as channel sparsity. We
also give a detailed observation of the layer-wise compression
results. Table VII shows the details of the compressed VGG-
small on CIFAR-10. Note that the absolute compressed ratio in
some block is the removed parameter proportion of all network
parameters, whereas the relative compressed ratio means the
removed parameter proportion of all the block parameters.
Compared with the baseline, each layer of the compressed
architecture has fewer parameters and FLOPs, which verifies
the effectiveness of the compression method. Besides, it can be
found that deeper layers have much higher relative compressed

ratios of parameters and FLOPs than the shallower layers. This
reflects that the redundant parameters are densely distributed
in deep layers, which is consistent with the conclusion in [35].
This may mean that the network maintains the diversity and
large information of the inputs in the first few convolutional
layers.

4) Sensitivity of Hyperparameter Settings: For the hyper-
parameter (i.e., λ1 and λ2) selection of the proposed method,
we adopt a “grid-search” approach using the training data,
which are tuned exponentially at first and then selected by a
fine grid search approach. Especially, for λ1 and λ2, the grid
search is divided into two steps: one for loose grid search in
[0.0001, 0.001, 0.01, 0.1] to find a relatively good FLOPs’
accuracy tradeoff, and then, the other for a fine grid search
in a small subset near the relatively good point. As shown
in Fig. 7, λ1 = 0.01 and λ2 = 0.001 are selected in the
loose grid search stage, and then, we adjust λ1 in [0.006,
0.007, 0.008, 0.009, 01] and λ2 in [0.001, 0.002, 0.003, 0.004,
0.005] to choose the optimal hyperparameters. In the loose
grid search stage, the hyperparameters are tuned exponentially
in a relatively wide range. In the fine grid search stage,
we find that the hyperparameters are not sensitive at this
range, and the accuracy keeps steady with slight fluctuation.
These observations show that the λs are not difficult to be
tuned.
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Fig. 7. Test accuracy at different hyperparameter settings. (a) Loose grid
search of λ1. (b) Fine grid search of λ1. (c) Loose grid search of λ2. (d) Fine
grid search of λ2.

Fig. 8. Sensitivity analysis of ES epoch. (a) Accuracy versus EpochE S
curve with VGG-small on the CIFAR-10 data set at 90% pruned FLOPs rate.
(b) Accuracy versus EpochE S curve with ResNet50 on the ImageNet data set
at 50% pruned FLOPs rate.

On the other hand, we also analyze the sensitivity of the
ES epoch EpochE S. It is also selected by the “grid-search”
approach. In the loose grid search, we search EpochE S in
[1, 120, 240] for CIFAR-10 data set and [1, 40, 80] for
ImageNet data set, and then, a fine grid search is conducted in
a small subset near a relatively good point. As shown in Fig. 8,
EpochE S = 120 (for CIFAR-10) and EpochE S = 1 (for
ImageNet) are selected in the loose grid search stage, and
then, we adjust EpochE S in [40, 60, 80, 100, 140] for CIFAR-
10 and EpochE S in [5, 8, 10, 12, 15] for ImageNet to choose
the optimal EpochE S. When EpochE S = 120 and 10, the test
accuracy reaches the best. Hence, we set EpochE S to be 120
(for CIFAR-10) and 10 (for ImageNet) in all the experiments.
The accuracy at different EpochE S is shown in Fig. 8. It can
be seen that EpochE S has low sensitivity in the fine grid range
and is not difficult to be tuned.

5) Joint Optimization Versus Separate Optimization: The
proposed EDP optimizes (7) jointly, with low-rank decomposi-
tion component (i.e., the first item of �(�)) and channel prun-
ing component (i.e., the second item of �(�)). To evaluate

Fig. 9. Accuracy curves at different compression ratios of joint optimization
and separate optimization.

TABLE VIII

COMPARISON RESULTS OF ADDING THE REGULARIZATION TO θ AND β
WITH VGG SMALL ON THE CIFAR-10 DATA SET. NOTE THAT “OURS

(θ )” INDICATES ADDING THE REGULARIZATION TO θ

TABLE IX

TEST ACCURACY AT DIFFERENT PRESET PRUNED RATIOS. IN THE EXPER-
IMENTS, WE USE VGG-SMALL AND RESNET56 ON THE CIFAR-

10 DATA SET AND RESNET50 ON THE IMAGENET DATA SET

the effectiveness of the joint optimization scheme, we compare
it with separate optimization. In the experiment of separate
optimization, we optimize case 1© and case 2© in sequence.
As shown in Fig. 9, the joint optimization outperforms separate
optimization. The test accuracy of joint optimization is 0.5%
higher than that of separate optimization at the same pruning
rate. Besides, joint optimization has fewer hyperparameters
and simpler pruning process, which helps the EDP to be
efficient and effective.

In addition, in the proposed joint optimization, all the
constraints are imposed on β. In order to verify that it is more
effective to impose constraints on β instead of θ , we compare
the performance of adding regularization to β and θ . As shown
in Table VIII, the test accuracy of adding regularizations to
θ is 0.81% lower than that of adding regularizations to β.
Moreover, the pruning rate and training time are also inferior
to the proposed method. Therefore, adding regularizations to
β is more effective and efficient than adding regularizations
to θ .
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TABLE X

TRAINING TIME RESULTS BETWEEN BASELINE AND THE PROPOSED METHOD. IN THE EXPERIMENTS, WE USE VGG-SMALL ON THE CIFAR-10
DATA SET AND RESNET50 ON THE IMAGENET DATA SET. TOTAL TIME↓(%) DENOTES THE TOTAL TIME DROP PERCENTAGE,

THE HIGHER THE BETTER

TABLE XI

TRAINING EPOCHS’ COMPARISON OF VGG-SMALL ON THE CIFAR-10 DATA SET. WE CONDUCT THE EXPERIMENTS ONLY USING
150 EPOCHS AT DIFFERENT PRUNED RATIOS

6) Preset Compressed Ratio: The proposed method adap-
tively learns a compact model with a proper compressed
ratio and high accuracy. When presetting the compressed
ratio, EDP can also be deployed and show a good per-
formance in Table IX. Specifically, after obtaining a sparse
network, we rank the parameter magnitudes at each layer
and prune a certain proportion of parameters that ranked the
last. In Table IX, the compressed model even performs better
than baseline (i.e., 94.34% versus 93.60% and 93.79%, versus
93.61%). This may be because fewer parameters can avoid
over-fitting. At the same pruned FLOPs ratio on CIFAR-10,
the test accuracy of ResNet56 decreases more evidently than
that of VGG-small, due to Resnet56 more compact than
VGG-small. Moreover, the EDP prunes FLOPs to 70% only
with the accuracy degradation of less than 0.5%, for VGG-
small and ResNet56. On a larger data set (i.e., ImageNet),
we prune ResNet50 and obtain better performance than base-
line at pruned FLOPs of 40%, which further manifests the
effectiveness of the proposed method.

7) Training Complexity Analysis: Although the imposed
regularizers may influence the training complexity, the overall
framework is efficient. For the training time, we compare the
training time per epoch between the method and baseline (the
original network architecture). As shown in Table X, baseline
costs 0.53 h/epoch during [0; E) to train ResNet50 on the
ImageNet data set, whereas the method spends 0.63 h/epoch
and 0.43 h/epoch during [0; EpochE S) and [EpochE S; E)
epochs, respectively. Although it takes more time for the
proposed method during [0; EpochE S) epochs, comparable
training time costs less at later epochs due to the PM module
and ES strategy. Overall, the training time spends only 10.8%
hours more than baseline on CIFAR-10 and 14.4% hours less
than baseline on the ImageNet data set. This indicates that
the training time complexity of the proposed method is com-
parable with baseline. For the convergence speed, as shown
in Table XI, the method spends fewer epochs on training and

Fig. 10. Inference time and run-time memory comparison using VGG-small
on CIFAR-10.

performs better than others. Therefore, it can be concluded
that the proposed training scheme is efficient.

8) Inference Time and Run-Time Memory Consump-
tion: Besides the number of network parameters and FLOPs,
we also evaluate the proposed method on inference time and
run-time memory. Fig. 10 shows the results of VGG-small
on CIFAR-10. For the inference time, Fig. 10 shows that
the proposed method accelerates the DNN model by more
than 3 times and outperforms all the competing methods.
In terms of the run-time memory, it can be found that the
run-time memory consumption of the proposed method is the
lowest among the competing methods. Moreover, SVD takes
138.50 M CPU memory, even more than the memory occupied
by baseline. As SVD is a decomposition method, it generates
more layers with feature maps. More feature maps must result
in more run-time memory consumption. Fortunately, the chan-
nel pruning component decreases the redundant feature maps,
overcoming the shortcoming of decomposition.
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TABLE XII

OBJECT DETECTION COMPARISON FOR FASTER R-CNN [57]
METHOD ON THE PASCAL VOC2007 DATA SET [58]

9) Generalization Ability on Detection Tasks: As described
above, the method is effective in image classification. To fur-
ther analyze the generalization of the method, we conduct
experiments with the compressed model. Specially, we use
ResNet50 as a backbone network to deploy Faster R-CNN [57]
for object detection and then compress Faster R-CNN by
reducing 40% FLOPs of the backbone network. In the exper-
imental implementation, we evaluate the performance with
inference time (Fps) and mean average precision (mAP) on the
PASCAL VOC 2007 data set [58], which consists of about 5K
training/validation images and 5K testing images. As shown
in Table XII, the pruned model shows a good result. The
mAP of the method is slightly lower than the baseline, but the
inference speed is faster than the baseline. This demonstrates
that the method has good generalization on other tasks.

V. CONCLUSION

In this article, we have proposed an effective decomposition
and pruning (EDP) scheme via a compressed-aware block.
The block can be used to replace every layer of a CNN
in a plug-and-play way so as to efficiently compress the
network. EDP takes only one single process to train a DNN
and obtain a high compression rate with barely declining
accuracy. To be specific, we have embedded the compressed-
aware block by decomposing the original network layer into
two layers: one represents the weight basis of this layer and the
other represents the coefficient matrix. By adding regularizers
on the coefficient matrix during training, a low-rank weight
basis and sparse channels have been obtained. Moreover,
a PM module has been presented to prune redundant channels
and merge redundant decomposed layers, which can further
compress and optimize the DNN. Experiments have shown
that EDP outperforms the state of the arts on pruned ratio,
test accuracy, inference time, and run-time memory and is
generally applicable to different data sets and networks.

In the future, we will explore the layer pruning for deeper
networks. Moreover, we will consider integrating the proposed
method with other compression methods (e.g., quantization) in
real applications.
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