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Abstract—Skeleton-based action recognition has attracted considerable attention since the skeleton data is more robust to the dynamic
circumstances and complicated backgrounds than other modalities. Recently, many researchers have used the Graph Convolutional
Network (GCN) to model spatial-temporal features of skeleton sequences by an end-to-end optimization. However, conventional GCNs
are feedforward networks for which it is impossible for the shallower layers to access semantic information in the high-level layers. In
this paper, we propose a novel network, named Feedback Graph Convolutional Network (FGCN). This is the first work that introduces
a feedback mechanism into GCNs for action recognition. Compared with conventional GCNs, FGCN has the following advantages:
(1) A multi-stage temporal sampling strategy is designed to extract spatial-temporal features for action recognition in a coarse to fine
process; (2) A Feedback Graph Convolutional Block (FGCB) is proposed to introduce dense feedback connections into the GCNs. It
transmits the high-level semantic features to the shallower layers and conveys temporal information stage by stage to model video level
spatial-temporal features for action recognition; (3) The FGCN model provides predictions on-the-fly. In the early stages, its predictions
are relatively coarse. These coarse predictions are treated as priors to guide the feature learning in later stages, to obtain more accurate
predictions. Extensive experiments on three datasets, NTU-RGB+D, NTU-RGB+D120 and Northwestern-UCLA, demonstrate that the
proposed FGCN is effective for action recognition. It achieves the state-of-the-art performance on all three datasets.

Index Terms—Feedback Mechanism, Graph Convolutional Network, Skeleton, Action Recognition
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1 INTRODUCTION

IN recent years, the quantity of videos uploaded from var-
ious terminals has exploded. This has driven the demand

for automatic human action analysis based on the content
of videos. In particular, human action recognition using
skeletons has attracted worldwide attention because the
skeleton data is more robust to dynamic circumstances and
complicated backgrounds, compared with other modalities
such as RGB [1] and optical flow [2]. Early deep learning
methods using skeletons for action recognition usually rep-
resent the skeleton data as a sequence of vectors [3], [4], [5],
[6] or a pseudo-image [7], [8], [9]. Then the data is modeled
by a Recurrent Neural Network (RNN) or Convolutional
Neural Network (CNN) respectively. However, these meth-
ods do not explicitly exploit the spatial dependencies among
correlated joints, even though the spatial dependencies are
informative for understanding human actions. More re-
cently, some methods [10], [11], [12], [13] construct spatial-
temporal graphs based on the natural connections in the
human body and on temporal edges which connect the
same joints between adjacent frames. These methods then
use a GCN to extract spatial-temporal features. However,
conventional GCNs [10], [11], [12], [13] are all single-pass
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feedforward networks that are fed with the entire skeleton
sequence. The single-pass feedforward networks cannot ac-
cess the high-level semantic information in the shallower
layers. It is difficult for these models to extract effective
spatial-temporal features, because the useful information is
usually submerged by the motion-irrelevant or undiscrim-
inating clips when they are fed with entire skeletons. For
example, in the action “kicking something”, most clips show
“standing upright”, and in the action “wear a shoe”, most
clips show a subject sitting on a chair. The input of the
entire skeleton sequence also increases the computational
complexity of the model.

Motivated by these observation, we propose a novel
neural network, named Feedback Graph Convolutional Net-
work (FGCN), to extract effective spatial-temporal features
from skeleton data in a coarse to fine process. The FGCN
model is the first to introduce a feedback mechanism into
GCNs for action recognition. Unlike conventional GCNs,
the FGCN model uses a multi-stage temporal sampling
strategy to sparsely sample input skeleton clips. This avoids
inputting the entire skeleton sequence. The input skeleton
sequence is divided into multiple stages in the temporal
domain. Skeleton clips are sampled from each temporal
stage. Each sampled clip is fed into a graph convolutional
network to extract local spatial-temporal features for each
stage. A Feedback Graph Convolutional Block (FGCB) is
proposed to model video level spatial-temporal features by
fusing the local features in a progressive process. The FGCB
is a locally dense graph convolutional network with lateral
connections from each stage to the next stage. The feedback
block FGCB introduces feedback connections into conven-
tional GCNs. From a semantic point of view, it works in a
top down manner, which makes it possible for the shallower
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convolutional layers to access the semantic information in
the high-level layers. The feedback mechanism in FGCB
works with a sequence of causes and effects. The output
of each stage, except the last one, is transmitted to the next
stage to modulate its input.

Another advantage of the FGCN is that it provides
early predictions in a fraction of the action duration. This
is valuable in many applications such as robotics or au-
tonomous driving, in which a short latency time is very
crucial. The predictions are provided by the multi-stage
coarse to fine optimization process. In the early stages the
FGCN is only fed with a part of the skeleton sequence. The
information about the action is limited, so the predictions of
the action are relatively coarse. These predictions are treated
as priors to guide the feature learning in later stages. In
the later stages, the model receives more information about
the action. Thus its predictions tend to be more accurate.
Several temporal fusion strategies are proposed to fuse local
predictions from multiple temporal stages to obtain a video
level prediction.

The main contributions of this paper are summarized as
follows:

• We propose a novel Feedback Graph Convolutional
Network (FGCN) for skeleton-based action recogni-
tion. It extracts spatial-temporal features of actions
by a coarse to fine process and provides predictions
on-the-fly. To our knowledge, this is the first work
that introduces a feedback mechanism into GCNs for
action recognition.

• A multi-stage temporal sampling strategy is pro-
posed to sparsely sample input skeleton clips in the
temporal domain. It supports the FGCN extracting
spatial-temporal features for action recognition in a
progressive process.

• We propose a densely connected Feedback Graph
Convolutional Block (FGCB) with lateral connections
between adjacent temporal stages. Functionally, it
transmits high-level semantic features as priors, to
guide feature learning in the shallower layers.

• The proposed FGCN model is extensively evaluated
on three datasets, NTU-RGB+D, NTU-RGB+D120
and Northwestern-UCLA. It achieves state-of-the-art
performances on all three datasets.

2 RELATED WORKS

2.1 Skeleton-based Action Recognition

As the depth sensor technologies (e.g. Kinect [14]) and pose
estimation algorithms [15], [16] matured, it became possible
to capture skeleton data in real time by locating the key
joints. The skeleton data is robust to illumination change,
scene variation, and complex backgrounds. This robustness
facilitates data-driven methods for skeleton-based action
recognition. Conventional action recognition methods usu-
ally extract hand-crafted features from skeleton sequences.
Some traditional methods [17], [18], [19], [20] rely on view-
invariant features of actions. Examples of these features are
body part-based skeletal quads [17], [18], group sparsity

based class-specific dictionary coding [19], and canonical
view transformed features [20]. Other traditional methods
integrate the information from the different modalities that
are available in 3D action datasets. Many works [21], [22],
[23], [24] combine depth information with the skeleton to
improve performance. The depth information is represented
by HOG features [21], [22] and Fourier Temporal Pyramids
[24], or it is modeled by random decision forests [23]. The
recent successes of deep learning have led to a surge of
deep network based skeleton modeling methods. The most
widely used models are RNN and CNN. RNN-based mod-
els [3], [4], [5], [6] usually concatenate the coordinates (2D
or 3D) of all joints in each frame as a vector and then model
the features of actions by an RNN fed with a sequence of
vectors. LSTM-IRN [25] proposes the Interaction Relational
Network to ensure that the interaction patterns can be
properly learned. CNN-based models [7], [8], [9] stack a se-
quence of vectors to obtain a pseudo-image, then reduce the
skeleton-based action recognition to an image classification
task. The two-stream based model [26] combines RNN and
CNN, operating on vectors of skeletons and RGB images
respectively, to improve performance beyond what can be
obtained with a single network. However, these methods
do not explicitly model the spatial dependence between
correlated joints, which is crucial for understanding human
actions.

2.2 GCN based Action Recognition
The Graph Convolutional Networks (GCNs) [27], [28], [29],
[30], [31] generalize the convolutional operation to deal
with graphs. There are two main ways of constructing
GCNs: spatial perspective and spectral perspective. Spatial
perspective methods [27], [28] directly apply convolution
filters to graph vertexes and their neighbors. In contrast,
spectral perspective methods [29], [30], [31] consider the
graph convolution as a form of spectral analysis by utilizing
the eigenvalues and eigenvectors of the graph Laplacian
matrices. This work follows the spatial perspective based
methods [10], [11], [12], [13]. The ST-GCN model [10] over-
comes the limitations of hand-crafted parts and traversal
rules used in previous methods. It operates on a spatial-
temporal graph to model the structured information about
the joints along both the spatial and temporal dimensions.
Based on ST-GCN, the 2s-AGCN model [11] proposes a
two-stream adaptive graph convolutional network, in order
to exploit the second-order information of the skeleton
for action recognition. The DGNN model [12] represents
the skeleton data as a directed acyclic graph based on
the kinematic dependency between the joints and bones.
The AS-GCN model [13] proposes an actional-structural
graph convolutional network by generating the skeleton
graph with actional links and structural links. However,
conventional GCNs are all feedforward networks in which
shallower layers cannot access the semantic information in
high-level layers.

2.3 Feedback Network
A feedback mechanism exists in the human visual cortex
[32], [33]. It has been a focus of research in psychology [34]
and control theory [35], [36]. In recent years, the feedback
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Fig. 1. Comparison of the conventional GCNs (left) and the proposed FGCN (right). FGCN models spatial-temporal features in a coarse to fine
process with feedback mechanism. Red arrows represent the feedback connections of the Feedback Graph Convolutional Block (FGCB). The pie
charts represent the predicted probabilities of actions.

mechanism has been introduced into deep neural networks
in computer vision [37], [38], [39], [40], [41], [42], because
it allows a network to use the information from the output
to correct previous states. In action recognition, the shut-
tleNet [40] is a biologically-inspired deep network which is
loop connected in order to mimic the brain’s feedforward
and feedback connections. In object recognition, the dasNet
model [37] exploits the feedback structure to alter its convo-
lutional filter sensitivities during classification and to focus
its internal attention on some of its convolutional filters.
The Feedback Network [38] firstly introduces the feedback
mechanism into the convolutional recurrent neural network,
which transmits the output with high-level information
to the input layer. In super resolution, the DBPN model
[41] proposes a deep back-projection network to achieve
error feedback. The SRFBN model [39] designs a feedback
block to handle the feedback connections and refine low-
level representations with high-level information. In human
pose estimation, Joao et al. [42] propose an iterative error
feedback (IEF) by iteratively estimating and applying a self-
correction to the current pose estimation.

3 THE METHOD

3.1 Graph Convolutional Network
GCNs [27], [28] generalize the convolution operation to
learn effective representations from graph structured data.
In action recognition, a skeleton of the human body is
defined as an undirected graph in which each joint in the
skeleton corresponds to a vertex of the graph and each
bone in the skeleton corresponds to an edge of the graph.
Following [10], we construct the spatial temporal graph
on skeleton sequences in two steps. First, the joints within
one frame are connected according to the connectivity of

the human body. Second, each joint in a given frame is
connected to the same joint in the adjacent frames. In this
paper, the spatial temporal graph associated with a video is
denoted by G = {V,E}, where V is the set of vertices in
the graph and E is the set of edges in the graph. The vertex
set is denoted as V = {vti|t = 1, . . . , T ; i = 1, . . . , N}. The
edge set E consists of two subsets. The first subset specifies
the intra-skeleton connections in each frame, denoted as
ES(t) = {vtivtj |(i, j) ∈ Q, t = 1, . . . , T}, where Q is the set
of naturally connected joint pairs in the human body. The
second subset contains the inter-frame edges which connect
the same joints in adjacent frames, ET (i) = {vtiv(t+1)i|t =
1, ..., T − 1, i = 1, . . . , N}.

The graph convolution operation is defined on each
vertex and its neighbor set. For a vertex vti in the graph, its
neighbor set is denoted as N(vti) = {vtj |d(vti, vtj) ≤ D},
where d(vti, vtj) is the number of edges in the shortest path
from vtj to vti. We set D = 1 for the 1-distance neighbor set.
The graph convolution operating on the vertex vti and its
neighbor set N(vti) is formulated as:

Fout(vti) =
∑

vtj∈N(vti)

1

Z[l(vtj)]
Fin(vtj)W[l(vtj)], (1)

where Fin and Fout denote the input and output features
of this convolutional layer. l(vtj) is the label function which
allocates a label from 0 to K−1 for each vertex in N(vti). Fol-
lowing the spatial configuration partition strategy proposed
in ST-GCN [10], we set K = 3 to partition the neighbor
set N(vti) into 3 subsets. W(·) is the weighting function
which provides a weight vector according to the label l(vtj).
Z[l(vtj)] denotes the number of vertices in the subset of
N(vti) with the label l(vtj).

In the implementation, the connections between vertices
in a graph are recorded in an N × N adjacency matrix A.
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Fig. 2. The detailed architecture of the proposed Feedback Graph Convolutional Block (FGCB).It transmits the high-level semantic features to the
shallower layers. Temporal information is accumulated stage by stage to model global spatial-temporal features for action recognition.

The adjacency matrix corresponding the kth subset of the
neighbor set N(vti) is denoted as Ak. With this adjacency
matrix, the operation of graph convolution in Eqn. 1 can be
formulated as:

Fout =

K−1∑
k=0

Wk(Λ
− 1

2

k AkΛ
− 1

2

k Fin)� (Mk), (2)

where � denotes the dot product and Λii
k =

∑
j Aij

k is a
diagonal matrix. Wk is the weight vector of the convolution
operation, which corresponds to the weighting function
W(·) in Eqn. 1. In practice, Ak is allocated with a learnable
weight matrix Mk which is an N × N attention map that
indicates the importance of each vertex. It is initialized as
an all-one matrix.

3.2 Feedback Graph Convolutional Network

Traditional GCNs based methods [10], [11], [12], [13] for ac-
tion recognition are all fed with the entire skeleton sequence
in a feedforward network. However, the useful informa-
tion is usually submerged by the motion-irrelevant and
undiscriminating clips when the networks are fed with the
entire skeleton sequence. Single-pass feedforward networks
cannot access semantic information in the shallower layers.
To tackle these problems, we propose a Feedback Graph
Convolutional Network (FGCN) which extracts spatial-
temporal features by a multi-stage progressive process. The
architecture of the FGCN is shown in Fig. 1. Specifically, in
the FGCN model, a multi-stage temporal sampling strategy
is designed to sparsely sample a sequence of input clips
from the skeleton data. These clips are first fed into graph
convolutional layers to extract the local spatial-temporal fea-
tures. Then, a Feedback Graph Convolutional Block (FGCB)
is proposed to fuse the local spatial-temporal features from
multiple temporal stages by transmitting the high-level in-
formation in each stage to the next stage to modulate its in-
put. Finally, several temporal fusion strategies are proposed
to fuse the local predictions from all temporal stages to give
a video level prediction.

Formally, the multi-stage temporal sampling strategy
samples input skeleton clips from the skeleton sequence
S in two steps. First, it divides each skeleton sequence
into T temporal stages with equal durations, denoted as
S = {s1, s2, . . . , st, . . . , sT }. Second, in each temporal stage,
a skeleton clip is sampled randomly as the input of the deep
model, denoted as {c1, c2, . . . , ct, . . . , cT }, where ct is the
skeleton clip sampled from the corresponding stage st. Each
sampled clip ct is fed into the backbone network to extract

the local spatial-temporal features in the corresponding
temporal stage, formulated as:

Ft = fGConvs(ct), t = 1, 2, . . . , T (3)

where Ft is the local spatial-temporal features extracted by
graph convolutional layers of backbone network. The ST-
GCN model [10] is used as the backbone of the FGCN. It is
denoted as fGConvs(·) in Eqn. 3 and GConvs in Fig. 1.

All the local features extracted from the T temporal
stages flow into the Feedback Graph Convolutional Block
(FGCB) to enable the learning of global spatial-temporal
features for action recognition. Each local feature is fed
into the corresponding temporal step of the FGCB feedback
block. As shown in Fig. 2, FGCB receives two inputs at stage
t: one input is the output features from the previous stage
t−1, denoted as Ht−1; the other is the local features from the
current stage, denoted as Ft. Particularly, the input feature
at the first stage, F1, is regarded as the initial feature H0.
Based on these two inputs, the feedback process of FGCB is
formulated as:

Ht = fFGCB(Ht−1, Ft), 1 ≤ t ≤ T, (4)

where Ht is the output of FGCB at stage t, and the function
fFGCB(·) represents the feedback block. More details about
FGCB can be found in Section 3.3.

Following FGCB, a fully connected layer and a softmax
loss layer are used at each stage to predict actions. The pre-
diction process from the output Ht of FGCB is formulated
as:

Pt = fpred(Ht), 1 ≤ t ≤ T, (5)

where Pt ∈ RC denotes the local prediction at stage t and
C is the number of actions. The function fpred(·) represents
the operations of the fully connected layer and the softmax
layer. After operating on T temporal stages, we obtain T
local predictions {P1,P2, . . . ,PT }. Several temporal fusion
strategies are proposed to fuse these local predictions ob-
tained from different stages for a video level prediction PS .
It is computed as:

PS = ftf (P1,P2, . . . ,PT ), (6)

where PS ∈ RC and the function ftf (·) defines a temporal
fusion strategy. In this paper, we propose three temporal
fusion strategies, i.e. last-win-all fusion, average fusion and
weighting fusion. The FGCN model is trained end-to-end
with the cross-entropy loss as follows:

L(y,PS) = −
C∑
i=1

Yi log(Pi
S), (7)
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Fig. 3. The predictions of FGCN-spatial and FGCN-motion are fused for final action prediction. The model FGCN-spatial is fed with spatial graphs,
and the other model, FGCN-motion, is fed with motion graphs.

where y is the action label of the skeleton S, if y = i, Yi is
set as 1, otherwise it is set as 0.

3.3 Feedback Graph Convolutional Block
The Feedback Graph Convolutional Block (FGCB) is the
core component of the FGCN model. On the one hand,
the feedback block FGCB transmits the high-level semantic
information to the shallower layers to refine their encoded
features. On the other hand, the output of each stage flows
into the next stage to modulate its input. To enable FGCB
to effectively transmit information from high-level layers to
shallower layers and from the previous stage to the next
stage, we propose a densely connected graph convolutional
network, i.e., FGCB. It adds shortcut connections from each
layer to all subsequent layers. At a temporal stage t, FGCB
receives the high-level information from the output Ht−1
of the previous stage in order to modulate the middle-
level feature Ft at the current stage. In our model, FGCB
consists of L spatial-temporal graph convolutional layers.
The spatial-temporal graph convolutional layer is denoted
as GConv(ks, kt,m) in Fig. 2, where ks and kt are the sizes
of convolution kernel in the spatial and temporal domains
respectively, and m denotes output channels of the graph
convolutional layer.

As shown in Fig. 2, the first convolutional layer in FGCB
receives two inputs Ht−1 and Ft. Ht−1 is the high-level
semantic features from the output of the last temporal stage
t − 1 of FGCB. The middle-level feature Ft is extracted
from the input clip at stage t by the backbone network, as
formulated in Eqn. 3. Then Ht−1 and Ft are concatenated in
the channel dimension, denoted as [Ft,Ht−1]. The output of
the first layer in FGCB is formulated as:

h1
t = f1

FGCB([Ft,Ht−1]), (8)

where t = 1, 2, . . . , T and the function f1
FGCB(·) denotes

the first graph convolution layer of FGCB, and h1
t denotes

the output features of the first layer. Following the first layer,
the lth layer receives the output features from all preceding
layers, h1

t ,h2
t , . . . ,hl−1

t , as input:

hl
t = f l

FGCB([h1
t ,h2

t , . . . ,hl−1
t ]), (9)

where l = 1, 2, . . . , L and [h1
t ,h2

t , . . . ,hl−1
t ] refers to the

concatenated features of the preceding layers. Similar to the
first layer, the final layer in FGCB compresses and fuses the
features from the outputs of all preceding layers to produce
the output of FGCB:

hL
t = fL

FGCB([h1
t ,h2

t , . . . ,hL−1
t ]), (10)

The features, hL
t , are treated as the output of the feedback

block.
Ht = hL

t . (11)

3.4 Two-stream Framework of FGCN

The joints and bones of a skeleton only contain spatial
information of actions. However, many actions are difficult
to recognize from the spatial information alone, for example
“wear a shoe” versus “take off a shoe”, “wear glasses”
versus “take off glasses”, etc. Inspired by [12], we model the
spatial-temporal features by exploiting both the spatial in-
formation and the temporal movement information of skele-
ton sequences. Based on the defined spatial temporal graph
G in Section 3.1, the joints and bones of the spatial graph
Gt = {Vt,Et} are specified as Vt = {vti|i = 1, . . . , N} and
Et = {vtivtj |(i, j) ∈ Q}. The joint or bone of the motion
graph is defined as the difference of the corresponding joint
vectors or bone vectors in two adjacent frames.

Given the joints and bones from two adjacent frames,
denoted as vti, v(t+1)i and vtivtj , v(t+1)iv(t+1)j respectively,
the joint of the motion graph is defined as m(vti) = v(t+1)i−
vti. Similarly, the bone of the motion graph is defined as
m(vtivtj) = v(t+1)iv(t+1)j − vtivtj . The motion graph is for-
mulated as Gm

t = {Vm
t ,Em

t }, Vm
t = {m(vti)|i = 1, . . . , N}

and Em
t = {m(vtivtj)|(i, j) ∈ Q}. In this paper, the spatial

graph Gt and the motion graph Gm
t are fed into two

separate FGCN models to predict action labels. The model
fed with spatial graphs Gt is denoted as FGCN-spatial, the
other fed with motion graphs Gm

t is denoted as FGCN-
motion. The final prediction is obtained by weighting the
output scores of the softmax layers from the two models, as
shown in Fig. 3.
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Fig. 4. Evaluating the influence of two key hyper-parameters on the
cross-view benchmark of the NTU-RGB+D dataset, (a) the influence of
the number of stages, (b) the influence of the number of frames in each
stage.

4 EXPERIMENTS

In this section, we evaluate the proposed FGCN method
by conducting extensive experiments on three 3D skele-
ton action datasets, NTU-RGB+D, NTU-RGB+D120, and
Northwestern-UCLA. First, the ablation experiments are
conducted on the widely used dataset NTU-RGB+D. Then,
our FGCN model is compared with state-of-the-art methods
on all three datasets.

4.1 Datasets

NTU-RGB+D [43] is a widely used dataset for skeleton-
based action recognition. The dataset contains more than
56,000 skeleton sequences categorized into 60 action classes.
It provides 25 major body joints with 3D coordinates for
every human in each frame. Two benchmark evaluations
are recommended: cross-subject and cross-view. For cross-
subject, both training and test sets consist of 20 subjects, and
have 40,320 and 16,560 sequences respectively. The cross-
view setup divides the data according to camera views. The
training set has 37,920 sequences captured from the front
and two side views, while the test set has 18,960 sequences
captured from left and right 45 degree views.

NTU-RGB+D120 [44] is currently the largest in-door
captured 3D skeleton dataset. It is an extension of the NTU-
RGB+D with 120 action classes and more than 114,000 video
samples. The newly added action classes make the action
recognition task more challenging. For example, different
actions may have similar body motions but different sub-
jects. There may be fine-grained hand or finger motions, etc.
The dataset has 106 subjects and 32 setup IDs. Cross-subject
and cross-setup benchmarks are defined. For cross-subject,

TABLE 1
Comparing different temporal fusion strategies on the cross-view

benchmark of the NTU-RGB+D dataset.

Temporal Fusion Strategies Weights Cross-view
w1 w2 w3 w4 w5

Last-win-all fusion 0 0 0 0 1 89.88
Weight fusion-1 0.05 0.05 0.1 0.2 0.6 93.09
Weight fusion-2 0.1 0.15 0.2 0.25 0.3 93.05
Weight fusion-3 0.1 0.2 0.4 0.2 0.1 92.61
Average fusion 0.2 0.2 0.2 0.2 0.2 93.57

53 subjects constitute the training set, and the remaining 53
subjects constitute the test set. Similarly,the 32 setup IDs are
also divided equally into two parts for training and testing
in cross-setup.

Northwestern-UCLA [45] is a multi-view 3D event
dataset captured simultaneously by three Kinect cameras
from different viewpoints. This dataset includes 1494 video
sequences covering 10 action categories performed by 10
subjects from 1 to 6 times. It provides 3D spatial coordinates
of 20 major body joints. As reported in [45], all the samples
from the first two cameras are picked for training. The
samples from the remaining camera are for testing.

4.2 Implementation Details
All experiments are implemented with the PyTorch deep
learning framework. The Stochastic Gradient Descent (SGD)
optimizer is used during training with a batch size of 32 and
a momentum of 0.9. The initial learning rate is set as 0.1. The
learning rate is divided by 10 at the 40th and 60th epoch. The
training process stops at the 80th epoch. In our experiments,
the input video is divided into 5 stages temporally and 64
consecutive frames are sampled randomly from each stage
to form an input clip. To make a fair comparison with the
baseline model ST-GCN [10], ST-GCN is used as the back-
bone of the FGCN model. The hyper-parameters of FGCB
are set empirically. We set the number of layers in FGCB as
4 (i.e., L = 4) to balance the computational complexity and
performance. The spatial kernel size, temporal kernel size
and output channels of the convolutional layers in FGCB
are set as ks = 3, kt = 3 and m = 256 respectively.

4.3 Ablation Study
In this section, we design four ablation experiments to
evaluate the influence of the multi-stage temporal sam-
pling strategy, the feedback block FGCB, temporal fusion
strategies and different inputs on the performance of our
FGCN model. These experiments are all conducted on the
challenging skeleton dataset NTU-RGB+D.

In the first experiment, we evaluate the influence of two
key hyper-parameters, i.e., the number of stages and the
number of frames sampled in each stage, on the perfor-
mance of our FGCN model. In this experiment, the FGCN
model is fed with joints only, using the average temporal
fusion strategy. It is evaluated on the cross-view benchmark
of the NTU-RGB+D dataset. In Fig. 4(a), the performances
of FGCN with different numbers of stages are reported. Up
to a certain point, the performance of FGCN increases as
the number of stages increases, because more high-level
information is fed back and used by the model. When
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TABLE 2
Evaluating the effectiveness of the proposed multi-stage temporal
sampling strategy and feedback block FGCB on the NTU-RGB+D

dataset.

Models Cross-subject Cross-view
ST-GCN [10] 81.5 88.3

Multi-stage ST-GCN 84.25 91.54
FGCN (FGCB+multi-stage sampling) 87.04 93.57

the number of stages surpasses a threshold (i.e., 7 stages),
there is a drop in the performance of FGCN. Because most
videos contain 300∼400 frames. If the FGCN model is fed
with 7 stages and fed with 64 frames in each stage, there
are large overlaps between adjacent temporal stages. So
there is no randomness for the input clip sampling process.
The FGCN model achieves similar performances when the
skeleton sequence is divided into 5 or 6 stages. In the
subsequent experiments, we set the number of temporal
stages as 5, to balance performance against computational
cost. In Fig. 4(b), we evaluate the performance of FGCN
fed with different numbers of frames in each stage. The
FGCN model achieves the similar performances when it is
fed with 80 frames or 64 frames in each temporal stage. The
computational cost of the model fed with 80 frames in each
stage is much higher than the cost of the model fed with
64 frames. To balance performance against computational
cost, we set the number of frames as 64 in the subsequent
experiments.

In the second experiment, we compare three different
temporal fusion strategies, i.e. last-win-all fusion, average
fusion, and weight fusion, on the cross-view benchmark of
the NTU-RGB+D dataset. All models in this experiment are
fed with joints only. The results of these models are listed
in Tab. 1. Among these three fusion strategies, the average
fusion strategy achieves the best performance. Based on the
results, we use the average fusion strategy to fuse the local
predictions for the video level prediction in the subsequent
experiments.

In the third experiment, we evaluate the effectiveness of
the proposed multi-stage temporal sampling strategy and
the feedback block FGCB separately. Firstly, we propose the
Multi-stage ST-GCN model by introducing the proposed
multi-stage sampling strategy into the baseline model ST-
GCN [10]. The Multi-stage ST-GCN model achieves 91.54%
on the cross-view benchmark of the NTU-RGB+D dataset,
as shown in Tab. 2. It outperforms the original ST-GCN
model [10] by 3.24%. This improvement demonstrates the
effectiveness of the proposed multi-stage sampling strategy.
The FGCN model involves the densely connected feedback
block FGCB and the multi-stage temporal sampling strategy.
As shown in Tab. 2, FGCN fed with joints only achieves
93.57% on the cross-view benchmark of the NTU-RGB+D
dataset. It outperforms both the original ST-GCN model
[10] and the Multi-stage ST-GCN model. The FGCN model
outperforms the baseline model ST-GCN by 5.54% and
5.27% on the cross-subject and cross-view benchmarks of
the NTU-RGB+D dataset respectively. These improvements
demonstrate the effectiveness of the proposed feedback
block FGCB. The confusion matrices of FGCN and ST-GCN
models for the former 30 actions are shown in Fig. 5, and

TABLE 3
Evaluating the effectiveness of the FGCN model fed with different

inputs on the NTU-RGB+D dataset.

Models Cross-subject Cross-view
FGCN-joint 87.04 93.57
FGCN-bone 86.96 93.22

FGCN-joint+FGCN-bone 89.24 95.28
FGCN-spatial 88.32 94.82
FGCN-motion 85.96 93.57

FGCN-spatial+FGCN-motion 90.22 96.25

Fig. 5. The confusion matrices of the models, ST-GCN-joint and FGCN-
joint, on the NTU-RGB+D dataset.

the complete confusion matrices are shown in the supple-
mentary materials. These improvements of FGCN indicate
that introducing the feedback mechanism into GCNs is very
effective for action recognition.

In the fourth experiment, we evaluate the effectiveness
of the fusion of FGCN models that are fed with different
inputs, i.e., joints and bones, spatial graphs and motion
graphs, on the NTU-RGB+D dataset. Firstly, we fuse the
softmax scores of two FGCN models, where one model is
fed with joints of the spatial graph, denoted as FGCN-joint,
the other is FGCN-bone which is fed with bones of the spa-
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Fig. 6. Early prediction of the proposed FGCN model. The prediction accuracies at each stage of actions are presented. The FGCN model is fed
with joints only and it is evaluated on the cross-view benchmark of the NTU-RGB+D dataset.

TABLE 4
The accuracies of FGCN with different observation ratios of actions.

Stage 1st stage 2nd stage 3rd stage 4th stage 5th stage
Observation

ratios 20% 40% 60% 80% 100%

Accuracy (%) 91.27 92.38 93.49 93.65 93.97

tial graph. As shown in the upper part of Tab. 3, the fusion
model FGCN-joint+FGCN-bone achieves a clear improve-
ment over both the FGCN-joint and the FGCN-bone. Then,
we report the experimental results of FGCN fed with spatial
graphs and motion graphs in Tab. 3. The FGCN-spatial
model fed with spatial graphs (joints and bones) achieves
88.32% on cross-subject and 94.82% on cross-view. It is com-
parable with the performance of the FGCN-joint+FGCN-
bone model that fuses the softmax scores of two models. The
FGCN-motion fed with motion graphs achieves 85.96% on
cross-subject and 93.57% on cross-view. Finally, we fuse the
softmax scores of FGCN models fed with spatial graphs and
motion graphs. The FGCN-spatial+FGCN-motion achieves
90.22% on cross-subject and 96.25% on cross-view, and it
achieves a clear improvement over both the FGCN-spatial
and the FGCN-motion.

4.4 Early Predictions

In this section, we present the prediction accuracies at each
stage of actions to show the advantages of the early pre-
diction by the FGCN model. The FGCN model is fed with
joints only and it is evaluated on the cross-view benchmark
of the NTU-RGB+D dataset. The early prediction benefits
from the multi-stage coarse to fine process. The predictions
at multiple temporal stages become more accurate stage by
stage. As shown in Fig. 6, the predictions of FGCN are rel-
atively coarse in the early stages, because the FGCN model

TABLE 5
Comparisons with the state-of-the-art methods on the NTU-RGB+D

dataset.

Models Cross-subject Cross-view
ResNet152-3S (ICMEW 2017) [46] 85.0 92.3

ST-GCN (AAAI 2018) [10] 81.5 88.3
DPRL+GCNN (CVPR 2018) [47] 83.5 89.8

SR-TSL (ECCV 2018) [48] 84.8 92.4
PB-GCN (BMVC 2018) [49] 87.5 93.2

Bayesian GC-LSTM (ICCV 2019) [50] 81.8 89.0
AS-GCN (CVPR 2019) [13] 86.8 94.2

AGC-LSTM (CVPR 2019) [51] 89.2 95.0
2s-AGCN (CVPR 2019) [11] 88.5 95.1

DGNN (CVPR 2019) [12] 89.9 96.1
GR-GCN (ACM MM 2019) [52] 87.5 94.3

BAGCN (arXiv 2019) [53] 90.3 96.3
MS-G3D (CVPR 2020) [54] 91.5 96.2

STIGCN (ACM MM 2020) [55] 90.1 96.1
CGCN (arXiv 2020) [56] 90.3 96.4

NAS-GCN (AAAI 2020) [57] 89.4 95.7
Sym-GNN (T-PAMI 2021) [58] 90.1 96.4

AGE-Ens:S(J+B)&V(J+B) (arXiv 2021) [59] 91.0 96.1
FGCN (ours) 90.2 96.3

is only fed with a part of the action sequence, in which the
information about the action is limited. In the later stages the
predictions of FGCN model become more accurate, because
the model receives more information about the action and it
is guided by the prior information in former stages.

Based on the results in this experiment, we report the
accuracies with different observation ratios (i.e., 20%, 40%,
60%, 80% and 100%) of actions in Tab. 4. The accuracy in
each stage is the average of the accuracies over all actions.
As shown in Tab. 4, the FGCN model achieves 91.27% in
the first stage. It outperforms the most comparable baseline
model ST-GCN [10] by 3%. When FGCN is fed with more
observations of actions in the subsequent stages, it gets
higher accuracies.
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TABLE 6
Comparisons with the state-of-the-art methods on the NTU-RGB+D120

dataset.

Models Cross-subject Cross-setup
Internal Feature Fusion (T-PAMI 2017) [60] 58.2 60.9

Multi-Task Learning (CVPR 2017) [7] 58.4 57.9
Skeleton Visualization (PR 2017) [8] 60.3 63.2
TS Attention LSTM (TIP 2017) [61] 61.2 63.3
Multi-Task RotClips (TIP 2018) [62] 62.2 61.8

ST-GCN (AAAI 2018) (reported in [63]) 72.4 71.3
AS-GCN (CVPR 2019) (reported in [63]) 77.7 78.9
FSNet (T-PAMI 2019) (reported in [44]) 59.9 62.4

TSRJI (SIBGRAPI 2019) [64] 67.9 62.8
Shift-GCN (2-stream) (CVPR 2020) [65] 85.3 86.6
Shift-GCN (4-stream) (CVPR 2020) [65] 85.9 87.6

ST-TR (CVIU 2021) [66] 85.1 87.1
GVFE + AS-GCN (ICPR 2021) [63] 79.2 81.2

FGCN (ours) 85.4 87.4

4.5 Comparison with State-of-the-art

In this section, we compare the performance of the FGCN
model with the state-of-the-art methods developed in recent
years on the NTU-RGB+D dataset, the NTU-RGB+D120
dataset, and the Northwestern-UCLA dataset.

For the NTU-RGB+D dataset, we display the accuracy of
skeleton-based action recognition methods, such as CNN-
based methods [46], RNN-based methods [48], [50], [51] and
GCN based methods [10], [11], [12], [13]. As shown in Tab. 5,
the proposed FGCN model achieves 8.7% and 8.0% im-
provements on the cross-subject and cross-view benchmarks
respectively over the most comparable method ST-GCN
[10]. The STIGCN model [55] is constructed with the novel
simple and highly modularized graph convolutional blocks
that aggregate multi-granularity information from both the
spatial and temporal paths. It achieves 90.1% and 96.1% on
the cross-subject and cross-view benchmarks of the NTU-
RGB+D dataset respectively. The FGCN model outperforms
it on both the cross-subject and cross-view benchmarks.
In [57], the authors exploit the Neural Architecture Search
(NAS) to automatically design a GCN for skeleton-based
human action recognition. The resulting model, NAS-GCN,
achieves 89.4% and 95.7% on the cross-subject and cross-
view benchmarks of the NTU-RGB+D dataset respectively.
FGCN outperforms it by about 1% on both the cross-
subject and cross-view benchmarks. Moreover, the FGCN
model outperforms other state-of-the-art methods, such
as 2s-AGCN [11], AS-GCN [13], and GR-GCN [52]. Our
FGCN model achieves the state-of-the-art performance on
both cross-subject and cross-view benchmarks of the NTU-
RGB+D dataset.

For the NTU-RGB+D120 dataset, the results on cross-
subject and cross-setup benchmarks of the recent state-of-
the-art methods are listed in Tab. 6. The proposed FGCN
model achieves 85.4% on cross-subject and 87.4% on cross-
setup and it outperforms the most comparable ST-GCN
model [10] by 13.0% and 16.1% on the cross-subject and
cross-setup benchmarks respectively. The FSNet [67] pro-
poses a novel window scale selection method to predict
ongoing actions. It achieves 59.9% and 62.4% on the cross-
subject and cross-setup benchmarks of the NTU-RGB+D120
dataset respectively. Our FGCN model outperforms it on
both the cross-subject and cross-setup benchmarks. Shift-

TABLE 7
Comparisons with the state-of-the-art methods on the

Northwestern-UCLA dataset.

Models Accuracy(%)
Actionlet ensemble (T-PAMI 2013) [24] 76.0

Lie group (CVPR 2014 ) [18] 74.2
HBRNN-L(CVPR 2015) [3] 78.5

Skeleton Visualization (PR 2017) [8] 86.1
Ensemble TS-LSTM (ICCV 2017) [71] 89.2

AGC-LSTM (CVPR 2019) [51] 93.3
JS+JM+BS+BM (ICME 2019) [68] 91.3

HiGCN (ICIG 2019) [69] 88.9
MSNN (CSVT 2020) [70] 89.4

FGCN (ours) 95.3

GCN [65] is constructed with the novel shift graph opera-
tions and lightweight point-wise convolutions. The fusion
of 4 networks, i.e.,Shift-GCN (4-stream), achieves 85.9%
and 87.6% respectively on the cross-subject and cross-setup
benchmarks of the NTU-RGB+D120 dataset. Our FGCN
model achieves a comparative performance with the Shift-
GCN (4-stream) model. The FGCN model fuses the pre-
dictions of two networks (i.e., FGCN-spatial and FGCN-
motion). It outperforms the most comparable Shift-GCN (2-
stream) model by nearly 1% on the cross-setup benchmark
of the NTU-RGB+D120 dataset. The FGCN model outper-
forms other state-of-the-art methods with large margins. For
example, the FGCN model outperforms Two-Stream Atten-
tion LSTM [61] by over 24% on both the cross-subject and
cross-setup benchmarks. Our FGCN model outperforms
the most recent methods, such as GVFE + AS-GCN [63]
and ST-TR [66] on both the cross-subject and cross-setup
benchmarks of the NTU-RGB+D120 dataset.

For the typical 3D action recognition dataset
Northwestern-UCLA, we compare the proposed FGCN
model with the state-of-the-art methods in recent years. The
results of these models are reported in Tab. 7. The FGCN
model outperforms the part-based hierarchical recurrent
neural network HBRNN-L [3] by 16.8%. The recent
method AGC-LSTM proposes an attention enhanced graph
convolutional LSTM network to capture discriminative
features from the co-occurrence relationship between
spatial configuration and temporal dynamics. The FGCN
model outperforms it by 2%. Moreover, the FGCN model
outperforms the recent methods, such as JS+JM+BS+BM
[68], HiGCN [69] and MSNN [70]. The proposed FGCN
model achieves state-of-the-art performance on the
Northwestern-UCLA dataset.

5 CONCLUSION

In this paper, we propose a novel FGCN model to extract
effective spatial-temporal features of actions in a coarse
to fine process. Firstly, we propose a multi-stage tempo-
ral sampling strategy to sample sparse skeleton clips in
multiple temporal stages and exploit graph convolutional
layers to extract local spatial-temporal features for each
stage. Then, we introduce the feedback mechanism into
conventional GCNs by proposing the feedback block FGCB
which is a densely connected graph convolutional network.
The FGCB transmits the semantic information from high-
level layers to shallower layers and from the former stages
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to the later stages. Moreover, the FGCN provides early pre-
dictions which help agents in applications to make timely
decisions on-the-fly. The proposed FGCN model is exten-
sively evaluated on the NTU-RGB+D, NTU-RGB+D120 and
Northwestern-UCLA datasets. It has achieved state-of-the-
art performance on all three datasets. In future work, we
will extend the feedback mechanism into CNNs to deal with
RGB videos for action recognition, e.g., the feedback block
FGCB is stacked on a CNN to model the motions in RGB
videos by a coarse to fine process.
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