Introduction to Computer Systems

Department of Computer Science and Information Systems

Lecturer: Steve Maybank
sjmaybank@dcs.bbk.ac.uk
Spring 2020

Revision of the Summer 2017 Examination

Question 1a

- Add the decimal integers 15 and 27
- Show your working

	2	7
+	1, carry	5
Answer:	4	2

Question 1b

- Subtract the binary number 101 from the binary number 11001.
- Show your working.

	1	1	borrow, 0	0	1
-		repay	1	0	1
Answer:	1	0	1	0	0

Question 1c

- Write out the binary representation of $2^{6}+2^{4}$
- 2^{6} is 1000000
- 2^{4} is 10000
- Adding: $1000000+10000=1010000$

Question 1d

- Explain how the binary representation of a number specifies that number as a sum of powers of 2
- The ith place in the representation, reading right to left is associated with 2^{i-1}.
- The number is the sum of powers 2^{i-1} for which the digit in the ith place is 1

Question 2a

- Which of the following are Boolean statements?
- $(3+7)^{*} 2$
- $(3+7)==2$
- $\mathrm{C}=4$
- $6<10$
- Answer: those that have a value True or False

Question 2b

- Write out the truth table for A OR B.

A	B	A OR B
0	0	0
1	0	1
0	1	1
1	1	1

- Truth tables for NOT A, A AND B, A XOR B?

Question 2c

- Write out a Boolean expression that is true if x is strictly less than y or strictly greater than $y+5$
- $x<y$ OR $x>y+5$

Question 3a

- Obtain the Brookshear floating point representation of $3+(1 / 4)$
- Recall $\pm 2^{r} * 0 . t$
- Recall sign bit, exponent and mantissa
- +11.01

Question 3b

- What feature allows representations of very large and very small numbers near to 0 ?
- Recall $\pm 2^{r} * 0 . t$

Question 4a

- Explain the terms track and sector for a hard drive
- Why do the tracks have their shape?

Question 4b

- A hard drive has a capacity of 4 TB. The data rate for reading is 100 MB per s.
- How many seconds are required for reading the whole disk?
- 0.1 GB per s
- 1 GB in 10 s
- $1 \mathrm{~TB}=1000 \mathrm{~GB}$
- $4 \mathrm{~TB}=4000 \mathrm{~GB}$ read in $4000 * 10=40000 \mathrm{~s}$

Question 5a

- Give an example of a two-dimensional array of integers.
- Answer: a 3×3 array:

4	1	0
0	4	0
2	3	2

Question 5b

- How is it possible to store a 2 dimensional array in a one dimensional memory?
- Answer: one row at a time:

4	1	0
0	4	0
2	3	2

4	1	0	0	4	0	2	3	2

Question 5c

- Write a pseudo code algorithm to add the numbers in a one dimensional array A and print the result.
- Other tasks: max, min, find i such that

$$
A[i]<A[i+1]
$$

Question 5c Continued

- sum $=0$
- $\mathrm{i}=0$
- while i < length(A)
- sum $=$ sum $+A[i]$
- $\quad \mathrm{i}=\mathrm{i}+1$
- endWhile
- print(sum)

Question 6a

- Explain the action of the instruction with op code 8

Answer: 8RST, bitwise And the contents of registers S and T. Put the result in register R. E.g.

S	0	1	1	0	0	1	1	1
T	0	0	1	1	1	1	1	0
R	0	0	1	0	0	1	1	0

Question 6b

- Write a program to load the contents of memory cell 91 into a register, set the rightmost 4 bits to 0 and store the resulting bit string in cell 92.
- Answer:

1191	Load register 1 with the bit pattern in cell 91
$22 F 0$	Load register 2 with F0 $=11110000$
8312	And registers 1 and 2 , put result in register 3
3392	Store the register 3 bit pattern in cell 92

Question 7a

- Define the term algorithm. Why are algorithms important?
- Answer (bookwork): an ordered set of unambiguous executable steps that defines a terminating process.
- An algorithm is required for any task to be performed by a computer.

Question 7b

- Why is there no algorithm for printing all the integers less than 5 ?
- Answer: the process requires an infinite number of steps

Question 7c

- Implement a loop in a program. Write out a pseudo code example.
- Answer: in a while loop a Boolean expression is evaluated. If the expression is true, then a block of code is executed and the expression is evaluated again. If false, then the code following the while loop is executed

Question 7c (Example)

- Pseudo code example of a while loop
- $\mathrm{i}=0$
- while i < 5
- print(i)
- $\mathrm{i}=\mathrm{i}+1$
- endWhile

Question 8a

- Describe one advantage and one disadvantage of a linked list.
- Answer (bookwork): the different items in the list can be stored anywhere in memory
- To access an element it is necessary to search the list item by item

Question 8b

- Describe the way in which the head pointer and the null pointer are used.
- Answer (bookwork): the value of the head pointer is the location of the first element on the list.
- The null pointer marks the end of the list.

Question 8c

- Replace the item B in the list with the item D

addresses	10	11	12	13	14	15	16	17	18	19
contents	H	12	A	16	C	0	B	14	D	0

initial

H	12	\rightarrow	A	16	\rightarrow	B	14	\rightarrow	C	0

updated | H | 12 | \rightarrow | A | 18 | \rightarrow | D | 14 | \rightarrow | C | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | |

Question 9a

- Why is a sequential file appropriate for storing music?
- Answer: when the music is played the records in the file are accessed in the same order that they are stored in the file. This makes access efficient.

Question 9b

- Describe the structure of an index file.
- Answer (bookwork): The data in the file is stored in a list of records. Each record is identified by a unique key. The file contains an index which consists of pairs (k, a) where k is the key of a record and a is the address of the location where the record is stored.

Question 9c

- An index file contains at most 2^{6} records. The file is stored in a memory with 2^{14} cells. What is the maximum size of the index in bits?
- Answer: Each pair (k, a) requires 6 bits for the key and 14 bits for the address. There are at most 2^{6} pairs. The maximum size of the index is

$$
2^{6} \times(6+14)=1280 \text { bits }
$$

Question 10a

```
function gcd(m, n)
            while (m 
        r=m-n
        m = maximum(n,r)
        n = minimum(n,r)
        endWhile
        return m
    endFunction
```

- What happens if gcd is called with $\mathrm{m}>0$ and $\mathrm{n}=0$?

Question 10a (Continued)

function $\operatorname{gcd1}(\mathrm{m}, \mathrm{n})$
if $\mathrm{n}==0$, return m
endIf
while ($\mathrm{m} \neq \mathrm{n}$)

$$
r=m-n
$$

$$
\mathrm{m}=\operatorname{maximum}(\mathrm{n}, \mathrm{r})
$$

$$
n=\operatorname{minimum}(n, r)
$$

endWhile
return m
endFunction

- Write out a new function gcd1 that returns the GCD if $\mathrm{m} \geq \mathrm{n}>0$ and returns m if $\mathrm{m}>\mathrm{n}=0$.

Question 10b

function $\operatorname{gcd} 2(\mathrm{~m} 1, \mathrm{n} 1)$
if $\mathrm{m} 1 \geq \mathrm{n} 1$
return $\operatorname{gcd}(\mathrm{m} 1, \mathrm{n} 1)$
else
return $\operatorname{gcd}(\mathrm{n} 1, \mathrm{~m} 1)$
endIf
endFunction

- Write out a new function gcd2 that returns the GCD if $\mathrm{m} \geq \mathrm{n}>0$ or if $\mathrm{n}>\mathrm{m}>0$.

