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Optical Flow Estimation Using
the Fisher-Rao Metric

Abstract The optical flow in an event camera is

estimated using measurements in the Address Event

Representation (AER). Each measurement consists

of a pixel address and the time at which a change

in the pixel value equalled a given fixed threshold.

The measurements in a small region of the pixel

array and within a given window in time are ap-

proximated by a probability distribution defined

on a finite set. The distributions obtained in this

way form a three dimensional family parameter-

ized by the pixel addresses and by time. Each pa-

rameter value has an associated Fisher-Rao ma-

trix obtained from the Fisher-Rao metric for the

parameterized family of distributions. The optical

flow vector at a given pixel and at a given time

is obtained from the eigenvector of the associated

Fisher-Rao matrix with the least eigenvalue. The

Fisher-Rao algorithm for estimating optical flow is

tested on eight datasets, of which six have ground

truth optical flow. It is shown that the Fisher-Rao

algorithm performs well in comparison with two

state of the art algorithms for estimating optical

flow from AER measurements.

Keywords address event representation · AER ·
asynchronous image sensor · event camera ·
Fisher-Rao metric · Kullback-Leibler divergence ·
optical flow · OptiTrack motion capture

1 Introduction

The Address Event Representation (AER) [9, 27,

29] is a new paradigm in computer vision. Each

pixel in an AER camera emits a signal when the

change in the pixel value equals a fixed threshold. If

the change in value is less than the threshold, then

no signal is emitted. The pixels emit their signals

asynchronously, i.e. without coordination. There is

no concept of an image frame of pixel values all of

which are obtained at the same instant in time [4].

Cameras which supply data in the AER format are

referred to as event cameras or as silicon retinas.

The latter term arises from an analogy between

the AER and the human retina. The advantages

of event cameras over conventional cameras are a

low power consumption, a very rapid response to

changes in the image and a high dynamic range [6].

Event based vision is surveyed in [17].

1.1 Notation for the AER

Each pixel emits a measurement when the value

recorded by the pixel changes by an amount ±d,

where d is a fixed positive threshold. If the change

in value is less than d in absolute value, then the

pixel in question does not emit any measurement.

The measurements emitted by a pixel q form a list

(q, s(i), ∆(i)), i = 1, 2, 3, . . . (1)

where s(1), s(2), . . . is an increasing sequence of

times and ∆(i) ∈ {0, 1} is the polarity of event i.

The component ∆(i) of the measurement speci-

fies the sign of the change in the pixel value. If

∆(i) = 0, then the value decreases by d and if

∆(i) = 1, then the value increases by d.

The full list of measurements obtained from an

event camera consists of the union of the lists of

measurements (1) over all pixels of the sensor ar-

ray. Event cameras have lower data rates and lower

power consumption than conventional cameras be-

cause there is no wasteful output from pixels for

which there is only a small or zero change in value.

The times s(i) at which the measurements are

emitted are known with a high accuracy. For exam-

ple, in the event camera described by Benosman et

al. [6], the errors in the times s(i) are of the order

of 350µs in regions where there is low to moderate

texture variation. In regions with dense texture the

errors in the times are larger because many pixels

emit measurements simultaneously.

1.2 Optical flow

The changes in an image sequence over time are

often modeled by a vector field, which is usually

referred to as the optical flow [15, 36, 37]. The op-

tical flow is represented by velocity vectors based

at individual pixels in an image. The literature

on optical flow in conventional image sequences is

vast. Fortun et al. [15] provide a survey with 287

references. They list many applications including

action recognition, video indexing and retrieval,

video compression, video restoration, automated

visual surveillance, estimation of crowd motions,

pedestrian behaviour analysis, gesture recognition,

facial expression recognition, automatic robot guid-

ance, obstacle detection and avoidance, medical

image registration, cell tracking, blood flow estima-

tion, the measurement of organ deformations and

fluid mechanics.
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1.3 Method for estimating optical flow

A new method for estimating optical flow from

event camera measurements is investigated. The

patterns in the measurements obtained over a short

interval of time are modelled by probability distri-

butions which are obtained by normalizing local

histograms. The result is a family of probability

distributions parameterised by points (q, t) in R3,

where q is a point in the pixel array and t is a time.

If brightness constancy holds to a good approxima-

tion, as described in Section 3.3, then the distribu-

tions associated with a moving object are trans-

lates of one another in the parameter space R3.

This translation is estimated by comparing prob-

ability distributions. The comparison is based on

the Fisher-Rao metric [2, 14, 25] on the parameter

space R3. The optical flow vector is obtained from

the translation.

Experiments with the Fisher-Rao method were

carried out on eight datasets. Three of these datasets

include the ground truth optical flow obtained by

the OptiTrack motion capture system. An addi-

tional dataset is obtained from the MVSEC dateset

[38,39,40] which includes the ground truth optical

flow

1.4 Overview

Related work is described in Section 2. Optical flow

estimation using the Fisher-Rao metric is described

in Section 3. The implementation of the Fisher-Rao

method for estimating optical flow is described in

Section 4. Experiments with the Fisher-Rao method

are reported in Sections 5, 6 and 7. In particular,

an experimental comparison of the Fisher-Rao al-

gorithm with two state of the art algorithms is de-

scribed in Section 7. Section 8 is a conclusion. The

OptiTrack system for obtaining ground truth op-

tical flow is described in Appendix A. The Fisher-

Rao method for estimating optical flow is sum-

marised in Appendix B by three algorithms in an

informal notation.

2 Related Work

Research on processing techniques suitable for AER

data has been prolific in the past few years. AER

datasets with ground truth are described by Bar-

ranco et al. [5] and by Zhu et al. [38, 39, 40]. The

latter very extensive dataset is used in the exper-

iments described in Section 7. Direct conversions

of state of the art computer vision algorithms to

AER based algorithms are usually achieved by us-

ing the intensity information estimated by the lo-

cal integration of the events (1). This approach

is adopted for event correlation applied to stereo

matching [24], for photoconsistency based estima-

tion of optical flow [6] and for machine learning us-

ing convolution networks [31]. However, local inte-

gration of events does not preserve the event cam-

era’s temporal accuracy. Akolkar et al. [1] show

that the high temporal accuracy of event camera

measurements yields up to 70% more information,

compared with conventional frame based methods.

This is a motivation for focusing on truly event-

based techniques. For example, Benosman et al. [7]

reformulate optical flow estimation as a robust lo-

cal plane fitting problem. The fitted planes are up-

dated as new events arrive. The same technique

is generalized by Ieng et al. [22] to 3D scenes by

fitting planes to ruled surfaces generated by point

clouds. The point clouds can be reconstructed ei-

ther synchronously or asynchronously. The tech-

nique can handle different forms of data such as 3D

events [13, 33], Lidar measurements and 3D points

obtained from image frames by classical triangula-

tion. The plane fitting algorithm in [7] for estimat-

ing optical flow is compared with the Fisher-Rao

method in Section 7.2 below.

Rueckauer and Delbruck [34] evaluate nine al-

gorithms for estimating the components of the op-

tical flow normal to moving edges. The first algo-

rithm searches for moving edges using the time dif-

ferences between nearby events. The motions of the

edges are measured. The next four algorithms are

based on the Lucas-Kanade approach in which the

optical flow is assumed to be locally constant and

linear constraints on the optical flow are obtained

using the motion constraint equation together with

estimates of the intensity gradient. The remaining

four algorithms are based on planes fitted to the

measurements. The nine algorithms are evaluated

on computer generated data obtained firstly from

a translating square and secondly from a rotating

bar. The algorithms are then evaluated on three ex-

perimental datasets obtained using a rotating cam-

era. In contrast with [34], our Fisher-Rao method

is a new way of estimating optical flow that does

not assume that the optical flow is locally constant

and that does not require estimates of the inten-

sity gradient. In Section 6, the Fisher-Rao method

is applied to two of the datasets in [34].

Bardow et al. [3] estimate the optical flow and

the full intensity image from event camera data by
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minimizing a complicated objective function that

penalizes high optical flow gradients, high inten-

sity gradients and large deviations from the motion

constraint equation for optical flow. The objective

function also includes terms to take into account

the fact that only differences in image intensities

can be measured. The objective function is mini-

mized using iteration, to yield estimates of optical

flow and of the full intensity image. In contrast,

our Fisher-Rao method for estimating optical flow

does not require the full intensity image. In any

case, the task of obtaining the full intensity image

is ill-posed in that regularisation is required in or-

der to obtain a unique solution. Our Fisher-Rao

matrix is obtained by a standard least squares cal-

culation which has a unique solution without the

necessity for regularisation.

Brosch et al. [11] and Brosch et al. [12] con-

struct filters for event camera data by analogy with

the filters found in biological vision. The filtered

data are used to estimate the components of the

optical flow normal to moving edges. In contrast,

our Fisher-Rao method does not assume that the

event measurements originate from moving edges

and it does not require any filtering, except for a

single Gaussian smoothing of a spike count array.

Barranco et al. [4] estimate normal velocities

along a moving contour using event camera mea-

surements. Motion boundaries are located by find-

ing connected groups of pixels such that each pixel

emits at least one event during a specified time in-

terval. The components of the normal velocity are

estimated separately by considering first the hori-

zontal motion and then the vertical motion. Exper-

iments are carried out using data from a dynamic
and active vision based sensor, DAVIS, which is re-

ferred to as the ApsDVS sensor by Berner et al. [8].

The DAVIS sensor provides both AER measure-

ments and complete frames of intensity values. The

data from the frames is used to improve the accu-

racy of the estimates of contour motion. The esti-

mates of the optical flow and the moving contours

are checked using AER measurements synthesized

from conventional image sequences. In contrast,

the Fisher-Rao method does not require frames of

intensity values and it does not attempt to identify

any contours in the image. The Fisher-Rao method

estimates full optical flow vectors, rather than par-

ticular components of the flow vectors.

Zhu et al. [40] discretize event camera measure-

ments in the time domain. The discrete measure-

ments are input to a neural network to estimate

optical flow. Discrete measurements from a stereo

pair are input to a second neural network to es-

timate ego motion and scene depths. Gallego et

al. [16] specify a constant value for the optical flow

in a small 3D neighbourhood. Each measurement

in the neighbourhood defines a trajectory param-

eterised by time. The point on the trajectory at a

fixed reference time is obtained. An objective func-

tion is defined using the resulting set of points. The

objective function is maximised iteratively over the

space of possible values for the optical flow. In con-

trast, our Fisher-Rao method does not assume that

the optical flow is locally constant and it does not

require the iterative maximisation of an objective

function.

Gherig et al. [18] describe a general framework

for obtaining a grid based representation for event

camera measurements. The measurements are ini-

tially represented by a weighted sum of Dirac func-

tions. The Dirac functions are convolved with a

kernel and the convolved measurements are sam-

pled in space and time to produce a fourth order

array, taking the event polarities in (1) into ac-

count. A range of different arrays can be produced

by varying the weighting of the Dirac functions,

varying the kernel or by projection from the fourth

order array. Applications to object recognition and

optical flow estimation are described. The optical

flow is estimated using EV-FlowNet [39].

Liu and Delbruck [28] record events in three

time slice memories. The first memory simply ac-

cumulates events. The optical flow associated with

an incoming event is estimated by matching blocks

of data in the second time slice memory with blocks

of data in the third time slice memory. The three

memories are updated periodically: the previous

first time slice becomes the new second time slice,

and the previous second time slice becomes the

new third time slice. Three different methods for

choosing the times to make the updates are eval-

uated experimentally. In contrast, our Fisher-Rao

method does not rely on block matching. Instead,

it estimates optical flow by matching probability

distributions using the Fisher-Rao metric. The re-

sults of the matching are invariant under the choice

of parameterisation of the image.

Ghosh et al. [19] use slow feature analysis to

extract features from event camera measurements.

The features remain stable when events are missed.

A convolutional neural network is used to classify

actions given the filter responses. In [20] Ghosh et

al. summarise the information in sets of events us-

ing neighbourhood spike count arrays. Features are

extracted from the spike count arrays using princi-
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pal components analysis and slow feature analysis.

The features are applied to the tracking of cars in a

traffic dataset. Algorithms for high speed tracking

using event camera measurements are described by

Lagorce et al. [26].

The use of local histograms for matching in con-

ventional images is well established [21, 23, 35].

In this paper the local histograms are normalised

to produce probability distributions. Once these

distributions are obtained, the optical flow is es-

timated using powerful methods taken from prob-

ability theory, in particular, methods based on the

Fisher-Rao metric. The Fisher-Rao metric is de-

scribed by Amari [2] and by Cover and Thomas [14].

As far as the authors are aware, there is no previous

application of the Fisher-Rao metric to the estima-

tion of optical flow using AER measurements.

3 Optical Flow Estimation Using the

Fisher-Rao Metric

The relevant properties of the Fisher-Rao metric

are described in Section 3.1. The metric is applied

to a family of discrete probability distributions ob-

tained in Section 3.2 by dividing the AER measure-

ment space into rectangular cuboids and counting

the number of events in each cuboid. Brightness

constancy is discussed in Section 3.3. The details

of the Fisher-Rao method for estimating optical

flow are given in Section 3.4.

3.1 Overview

The event camera measurements in a small spa-

tiotemporal volume are summarized by a probabil-

ity distribution defined on a three dimensional grid

centred at the mid point (q, t) of the spatiotempo-

ral volume, where q is a pixel and t is a time. In

this way, a three parameter family of probability

distributions is obtained. These distributions have

the role of spatiotemporal features. The Fisher-Rao

metric is a Riemannian metric defined on the pa-

rameter space for the probability distributions. In

this case the parameter space is a subset of R3. The

metric is specified at each point (q, t) of the param-

eter space by a 3× 3 symmetric non-negative ma-

trix J(q, t). Further information is given by Amari

[2], Cover and Thomas [14] and Kullback [25]. The

squared distance between the probability distribu-

tion with parameters (q, t) and the probability dis-

tribution with parameters (q+∆q, t+∆t) is given

to leading order by

(∆q,∆t)J(q, t)(∆q,∆t)>. (2)

The squared distance (2) is estimated directly

from the two probability distributions using the

Kullback-Leibler divergence [14, 25]. The matrix

J(q, t) is estimated in turn using the squared dis-

tances obtained for a range of different values of

(∆q,∆t). It is assumed that brightness constancy

holds to a good approximation over a short time

interval. With this assumption a moving object

gives rise to a sequence of distributions that are

close together in the Fisher-Rao metric. If (q, t)

and (q + ∆q, t + ∆t) are the parameter values for

two distributions in this sequence, then the squared

distance (2) is small, and (∆q,∆t) is an estimate of

the eigenvector (∆qe, ∆te) of J(q, t) with the least

eigenvalue. The optical flow vector at (q, t) is given

by ∆qe/∆te. If two of the eigenvalues of J(q, t)

are small, then the full optical flow cannot be esti-

mated. Instead, one component only of the optical

flow can be estimated. This is the well known aper-

ture problem. Further details are included at the

end of Section 3.4, below.

The advantages of the Fisher-Rao algorithm for

estimating optical flow are as follows.

• The Fisher-Rao algorithm has a small number

of parameters. There is no learning stage and

no requirement for application specific features.

It is not necessary to estimate the pixel grey

levels.

• The use of the Fisher-Rao metric ensures that

the squared distances in (2), on which the Fisher-

Rao algorithm depends, are fundamental quan-

tities, in that they are unaffected by the choice

of the parameterisation of the family of proba-

bility distributions.

• The aperture problem can be described cleanly,

using the eigenvalues of the Fisher-Rao matrix.

3.2 Implementation details

Each point (q, t) of the parameter space has a box

neighbourhood, as noted in [20]. To be specific, let

m, n be odd positive integers and let τ > 0 be a

time interval. An event (r, s), r ≡ (r1, r2), is in the

box neighbourhood of (q, t) if

|ri − qi| ≤ (m− 1)/2, i = 1, 2,

and

|τ−1(s− t)| ≤ (n− 1)/2,
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where |.| is the absolute value.

The events in the box neighbourhood of (q, t)

are used to define a neighbourhood spike array,

L(q, t), as in [20]. The array L(q, t) has dimensions

m × m × n. Each element of L(q, t) corresponds

to a voxel in R3. Let b.c be the floor function. A

point (r, s) in the box neighbourhood of (q, t) is in

the voxel corresponding to the array indices i, j, k

defined by

i = br1 − q1c+ (m+ 1)/2,

j = br2 − q2c+ (m+ 1)/2,

k = bτ−1(s− t)c+ (n+ 1)/2.

The array element Lijk(q, t), 1 ≤ i, j ≤ m, 1 ≤ k ≤
n, is equal to the number of events in the voxel cor-

responding to (i, j, k). The array L(q, t) is scaled to

produce a discrete probability distribution, g(q, t),

defined on the set

{(i, j, k), 1 ≤ i, j ≤ m, 1 ≤ k ≤ n}.

The sum of the elements gijk(q, t) over i, j and k

is equal to one.

It is convenient to choose coordinates in R3

such that q = (0, 0) and t = 0. With this choice,

the probability distribution g(q, t) is denoted by g0.

Let a = (a1, a2, a3) be a vector in R3. Then ga is

defined to be the probability distribution obtained

from the neighbourhood spike array L(r, s) centred

at the point r = (a1, a2), s = a3τ . The probabil-

ity distributions ga for a in {−1, 0, 1}3 are used in

Section 3.4 to estimate the 3× 3 matrix J(0) that

specifies the Fisher-Rao metric at q = 0, t = 0.

3.3 Optical flow

Suppose that a moving object is observed by a cam-

era for a short period of time. It is assumed that

brightness constancy holds, in that the appearance

of a point on the object does not change signifi-

cantly as the point moves through a short distance

in the field of view. If a point is observed at the

pixel (i0, j0) at time t0 and if the same point is ob-

served at the pixel (i1, j1) at a later time t1 near

to t0, then the value of the pixel (i0, j0) at time

t0 is approximately equal to the value of the pixel

(i1, j1) at time t1. This brightness constancy is the

basis of many methods for estimating optical flow

[15]. The optical flow (u, v) at (i0, j0) at time t0 is

estimated by

(u, v) ≈

(t1 − t0)−1(i1 − i0, j1 − j0) pixels s−1. (3)

Let τ = t1 − t0. It follows from (3) that

(i1, j1, t1) ≈ (i0, j0, t0) + (uτ, vτ, τ). (4)

The optical flow (u, v) and the time interval τ to-

gether define a translation (uτ, vτ, τ) in the mea-

surement space R3. The magnitude of this transla-

tion is proportional to τ .

In some cases it is not possible to establish a

unique match between points (i0, j0, t0) and (i1, j1, t1).

For example, if the optical flow is due to a moving

straight edge and if (i0, j0, t0) matches (i1, j1, t1),

then (i0, j0, t0) also matches any point (i2, j2, t1)

for which (i2 − i1, j2 − j1) is parallel to the edge.

The component of the optical flow parallel to the

edge cannot be measured. This ambiguity is known

as the aperture problem.

3.4 Estimation of the optical flow

The optical flow is estimated at a point (q, t), where

q is a pixel and t is a time. The estimate is obtained

using the Fisher-Rao matrix J(q, t). As noted at

the end of Section 3.2, it is convenient to choose

coordinates in R3 such that q = (0, 0) and t = 0.

In this context, the Fisher-Rao matrix is written

as J(0), in place of the notation J(q, t) used in

Section 3.1. Let a be a vector in R3 and let ga be

the associated probability distribution, as defined

in Section 3.2.

A particular value for ∆(i) in (1) is chosen, for

example ∆(i) = 1. The Fisher-Rao matrix is ob-

tained using the fact that a scaled version of the

Fisher-Rao matrix is a leading order approxima-

tion to the Kullback-Leibler divergence [2, 25] as

shown in (6) below. The Kullback-Leibler diver-

gence D(0||a) of ga from g0 is defined by

D(0||a) =

m∑
i,j=1

n∑
k=1

g0,ijk ln(g0,ijk/ga,ijk). (5)

If D(0‖a) is sufficiently smooth as a function of

a, then the leading order term in a Taylor expan-

sion of D(0‖a) at a = 0 is quadratic in a [25], in

that

D(0‖a) =
1

2
aJ ′(0)a> +O(‖a‖3),

where J ′(0) is a symmetric 3× 3 non-negative ma-

trix. The matrix J ′(0) is estimated using the 26

values of D(0‖a) for a in {−1, 0, 1}3, a 6= 0, to-

gether with the approximation

D(0‖a) ≈ 1

2
aJ ′(0)a>. (6)

In fact it is only necessary to estimate accurately

the eigenvector of J ′(0) associated with the least
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eigenvalue. The relevant values of D(0‖a) are those

near to zero.

Let a = (uτ, vτ, τ), where (uτ, vτ, τ) is as de-

fined in (4). The square of the distance between

the distributions g0 and ga is estimated by

(uτ, vτ, τ)J ′(0)(uτ, vτ, τ)>. (7)

It follows from brightness constancy, as described

in Section 3.3, that the measurements used to esti-

mate ga are translates in R3 of the measurements

used to estimate g0. It follows that ga is equal to

g0, thus the Fisher-Rao distance between ga and g0
is zero and (uτ, vτ, τ)> is an eigenvector of J ′(0)

with eigenvalue 0.

In the above calculations the terms ∆(i) in (1)

have the value 1. The measurements for which∆(i) =

0 are also used to obtain a set of probability distri-

butions and an associated Fisher-Rao matrix J ′′(0).

Let J(0) be defined by

J(0) = J ′(0) + J ′′(0). (8)

The optical flow at the point (q, t) corresponding

to the point 0 ≡ {0, 0, 0} is estimated using the

eigenvector of J(0) with the least eigenvalue.

The eigenvalues of J(0) can be used to detect

the aperture problem described in Section 3.3. If

two of the eigenvalues of J(0) are near to zero and

the third eigenvalue is significantly different from

zero, then only one component of the optical flow

can be measured accurately, i.e. the aperture prob-

lem appears. In detail, let (u, v) be the optical flow.

If J(0) has two eigenvalues equal to zero, then it

has the form J(0) = e>e, where e is a row vector

with coordinates e = (e1, e2, e3). It follows from the

definition of (u, v) that for a short time interval τ ,

0 = (uτ, vτ, τ)J(0)(uτ, vτ, τ)>

= (ue1 + ve2 + e3)2τ2,

thus

(u, v)(e1, e2)> = −e3.

The magnitude of the component of the optical

flow parallel to (e1, e2) is obtained by taking the

scalar product of (u, v) with the unit vector in the

direction (e1, e2), namely

(e21 + e22)−1/2(u, v)(e1, e2)>,

which is equal to

−(e21 + e22)−1/2e3. (9)

The component of the optical flow normal to (e1, e2)

cannot be measured.

4 Implementation

The algorithm described in Section 3.4 for estimat-

ing the optical flow requires some modifications

and choices of parameters in order to obtain accu-

rate results in practice. In the following description

it is assumed that the quantity ∆(i) in (1) is fixed,

for example ∆(i) = 1. Let the pixel array in the

event camera have dimensions xmax × ymax, and

let m, n be odd positive integers.

Let t be a time. It is convenient to define a

single large spike count array At with dimensions

xmax × ymax × (n+ 2). Let E be the list of events

and let Ẽ be the sub-list of E defined by

Ẽ = {(r, s), (r, s) ∈ E, |s− t| ≤ τ(n+ 1)/2}.

The spike count array At is defined by

At(i, j, k) =

#{(r, s), (r, s) ∈ Ẽ, k = bτ−1(s− t)c+ (n+ 3)/2},

for 1 ≤ i ≤ xmax, 1 ≤ j ≤ ymax and 1 ≤ k ≤ n+ 2,

where #{.} is the number of elements in the set

{.}.
The array At contains all the spike count arrays

L(r + (a1, a2), t+ a3τ), (10)

such that r is a pixel and (a1, a2, a3) ≡ a is in

{−1, 0, 1}3. Let ãt(q) be the (m + 2) × (m + 2) ×
(n+ 2) sub-array of At defined by

ãt(q) = At(q1 − (m+ 3)/2 : q1 + (m+ 3)/2,

q2 − (m+ 3)/2 : q2 + (m+ 3)/2), (11)

where : is the MATLAB notation for a range of

array entries. The sub-array ãt(q) is referred to as

a block centred at (q, t). It contains the 27 sub-

arrays obtained by setting r = q in (10). Let nq be

the number of non-zero entries in ãt(q). A list Ct

is made of the pixels q for which

nq ≥ (m+ 2)2(n+ 2)f (12)

where f is a fixed parameter taking a value in [0, 1].

The optical flow is estimated only for the pixels

contained in Ct.

A small strictly positive quantity ε is added to

each element of At to ensure that the elements are

all strictly larger than zero. This is to avoid nu-

merical instabilities in the calculation (5) of the

Kullback-Leibler divergence. The resulting array

is smoothed with a mask that approximates to a

Gaussian function with covariance σ2I where I is

the 3× 3 identity matrix. Let Bt be the smoothed

array.
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Let b̃t(q) be the block obtained by replacing

At in (11) with Bt. For each pixel q in Ct, let ga
for a in {−1, 0, 1}3 be the set of 27 probability

distributions obtained from b̃t(q). At this point,

it is convenient to choose coordinates such that

q = (0, 0) and t = 0. The Fisher-Rao matrix J ′(0)

is estimated using (6). There are six parameters to

be estimated, namely J ′11(0), J ′12(0), J ′13(0), J ′22(0),

J ′23(0) and J ′33(0). There are 26 equations of the

form

D(0‖a) =
1

2
aJ ′(0)a>, a ∈ {−1, 0, 1}3, a 6= 0. (13)

A solution J ′(0) to (13) is estimated using least

squares.

Similar calculations are carried out using the

measurements with ∆(i) = 0, to obtain a Fisher-

Rao matrix J ′′(0). If J ′(0) and J ′′(0) are both de-

fined, in that the corresponding sub-arrays ãt(0)

and ãt(0) each have a sufficient number of non-zero

entries, then they are added, as in (8), to yield a

matrix J(0). If J ′(0) or J ′′(0) is not defined, then

the calculation is abandoned.

Let λ1 ≥ λ2 ≥ λ3 be the eigenvalues of the

matrix J(0). Thresholds β1, β2 are chosen and J(0)

is accepted only if λ3 is sufficiently small, in that

λ1 ≥ β1λ3 and λ2 ≥ β2λ3. (14)

If λ3 is comparable in magnitude to λ1 and λ2, then

there is no match between nearby probability dis-

tributions and the optical flow is not defined. Let

w ≡ (w1, w2, w3)> be the eigenvector correspond-

ing to the least eigenvalue of an accepted matrix

J(0). The optical flow at the corresponding pixel

(x, y) is estimated by

(u, v) = (w1/w3, w2/w3).

The units for the components u, v of the optical

flow are pixels τ−1. The estimate (u, v) of the op-

tical flow is accepted only if ‖(u, v)‖ ≤ maxFlow,

where maxFlow is a physically plausible threshold

and ‖.‖ is the Euclidean norm.

The time complexity for computing the array

At is linear in the number of events. The time

complexity for smoothing the array At and obtain-

ing the list Ct of pixels is O(xmaxymax(n + 2)).

The time complexity for estimating each Fisher-

Rao matrix is the sum of the O(m2n) cost of cal-

culating the Kullback-Leibler divergences (5) and

the O(1) cost of the least squares estimate of J(0).

The time complexity also depends on the parame-

ter f in (12). If f is large then few flow vectors are

obtained.

A summary of the algorithm for estimating op-

tical flow is included in Appendix B.

5 Experiments with Five Datasets

This section describes experiments to test the Fisher-

Rao method for estimating optical flow using five

new datasets, namely Data 1, Data 2, Data 3, Data

4 and Data 5. The datasets Data 1, Data 2, Data 3

and Data 4 were obtained using the Asynchronous

Time-based Image Sensor (ATIS) [32] made by Proph-

esee. Data 5 was obtained using the next genera-

tion sensor, H-VGA. Ground truth optical flow was

obtained for Data 3, Data 4 and Data 5 using the

OptiTrack motion capture system [30]. Further in-

formation about OptiTrack is given in Appendix A.

The relevant properties of the proposed datasets

are summarized in Table 2. The sixth dataset, MV/SEC,

is described in Section 7.1 below. The parameter

values used to test the Fisher-Rao algorithm on

these datasets are summarised in Table 3. Changes

in the parameter values from one dataset to the

next were avoided, as far as possible. For example,

five of the six datasets in Table 3 use the same size

11×11×11 arrays to construct the box neighbour-

hoods, as described in Section 3.2. This indicates

that the tuning of the parameter values is stable.

5.1 Data 1

The data were obtained in a laboratory using an

ATIS event camera which was rotated about a fixed

axis while viewing two flat pages. The camera was

initially at rest, then it was rotated about the axis

and finally brought to rest at the end of the mo-

tion. The first measurement was obtained at time

tmin = 8513875µs and the last measurement was

obtained at time tmax = 11791554µs. The esti-

mated optical flow is shown in Fig. 1 for four con-

secutive time intervals, each one of length 400000µs,

with the parameter τ in Sections 3.3 and 3.4 given

by τ = 400000/(n + 2)µs. The size of the pixel

array was 240× 304.

A pixel in Fig. 1 is blue if the events with

∆(i) = 0 predominate. A pixel is yellow if the

events with ∆(i) = 1 predominate. If the num-

ber of events with ∆(i) = 0 is equal to the number

of events with ∆(i) = 1, then the pixel is white.

The estimated optical flow vectors are shown su-

perposed in red. Each flow vector is scaled up by a

factor of 10 in order to make it more visible. If the

number of flow vectors is large, then some vectors

are removed in order to improve the visibility of

the remaining vectors. The parameters used to ob-

tain the results in Fig. 1 are m = 11 pixels, n = 11

pixels, f = 1/20, σ = 2 pixels, β1 = 10, β2 = 4,
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Dataset Sensor Camera Object Object GT Flow
Motion Motion

Data 1 ATIS rotation static two planes no
Data 2 ATIS static translation car no
Data 3 ATIS rotation static plane yes
Data 4 ATIS static random plane yes
Data 5 H-VGA static random plane yes
MVSEC DAVISm346B hexacopter static indoors yes

Table 1 Summary of the properties of six of the datasets. The rightmost column is ground truth optical flow.

Dataset m×m× n (pixels3) τ(µs) f β1, β2 σ (pixels) maxFlow (pixels τ−1) ε

Data 1 11× 11× 11 4× 105/(n+ 2) 1/20 10, 4 2 5 0.01
Data 2 11× 11× 11 105/(n+ 2) 1/20 10, 4 2 5 0.01
Data 3 11× 11× 11 4× 105/(n+ 2) 1/20 10, 4 2 5 0.025
Data 4 11× 11× 11 105/(n+ 2) 1/30 10, 4 4 5 0.025
Data 5 5× 5× 5 62500/(n+ 2) 1/160 10, 4 2 2 0.025
MVSEC 11× 11× 11 105/(n+ 2) 1/240 5, 2 2 1.5 10−5

Table 2 Parameter values for the Fisher-Rao algorithm. For m, n and τ , see Section 3.2. For f , maxFlow, ε, β1, β2,
σ: see Section 4.

maxFlow = 5 pixels τ−1 and ε = 0.01, using the

notation in Section 4. The parameter values are

chosen empirically. The parameters m, n and the

time interval 400000µs are chosen large enough to

ensure that the probability distributions are sta-

ble. The threshold maxFlow is necessary in order

to remove outliers from the optical flow vectors.

5.2 Data 2

The data consist of measurements obtained by an

ATIS event camera placed in a city street. The

camera was mounted on a tripod and directed to-

wards the road traffic. The pixel array is of size

240× 304. The first measurement was obtained at

tmin = 13µs and the last was obtained at tmax =

5.06×107µs. The four images shown in Fig. 2 were

obtained from consecutive time intervals, each one

of length 105µs. The parameter τ was given by

τ = 105/(n + 2)µs. As in Fig. 1, each optical flow

vector is scaled up by a factor of 10 and some flow

vectors are not shown in order to improve the visi-

bility of the remaining vectors. The parameters m,

n, f , β1, β2, σ, maxFlow and ε have the same values

as in Section 5.1 for Data 1.

Grey level image frames are available for Data

2. See for example Fig. 3. However, these frames

were not used in the estimation of the optical flow.

5.3 Comparison with ground truth for Data 3 and

Data 4

The ATIS datasets Data 3 and Data 4 are used

to test the Fisher-Rao method by comparing the

estimated optical flow with a ground truth optical

flow provided by a motion capture system. The po-

sition and orientation of a moving camera relative

to a planar set of points are measured over time.

The ground truth optical flow is obtained by pro-

jecting the points into the camera. The motions

of the camera and the motions of the planar set

of points are measured using the motion capture

system OptiTrack [30], which consists of 8 Flex13

cameras. The motion capture has a sub-millimeter

spatial resolution and an acquisition frequency of

120Hz. All technical specifications, including infor-

mation about accuracy, can be found on the web

page [30]. Further information about the calcula-

tions used in OptiTrack is given in Appendix A.

In order to track the event-based camera, mark-

ers are put on its casing so that when the camera

moves the trajectory of the casing can be updated

in real time. The camera observes a planar printed

pattern which contains a set of points that provide

the data for the Fisher-Rao algorithm. The pla-

nar pattern also contains markers from which the

ground truth optical flow is calculated.

The Fisher-Rao algorithm estimates the optical

flow using time slices of 400ms (2.5Hz) in Data 3

and slices of 100ms (10Hz) in Data 4. The ground

truth image velocities are computed from the se-

quences of positions of the tracked points obtained

at times between two consecutive Fisher-Rao esti-

mates of the optical flow.

The camera motion to obtain Data 3 is simi-

lar to that used for Data 1: the camera is placed

on a tripod and rotated about a vertical axis, first

clockwise and then counterclockwise, while the pla-
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Fig. 1 Optical flow for Data 1 obtained from two flat pages viewed by a rotating camera. Blue: ∆ = 0 predominates.
Yellow: ∆ = 1 predominates. White: number of events with ∆ = 0 equals the number of events with ∆ = 1.

nar pattern is held stationary. An example of the

optical flow obtained by the Fisher-Rao algorithm

is shown in Fig. 4. The flow vectors are scaled up

by a factor of 15 and some flow vectors are not

shown in order to improve the visibility of the flow

field. Histograms of the directions errors, i.e. the

differences between the orientations of the ground

truth optical flow vectors and the orientations of

the estimated optical flow vectors, are shown in

the upper part of Fig. 5 for the two sweeps of the

camera. The mean amplitude error shown for the

two sweeps in Fig. 5 is the mean of the Euclidean

norms of the differences between the empirical flow

vectors and the corresponding ground truth flow

vectors. The parameters are m = 11 pixels, n = 11

pixels, f = 1/20, σ = 2 pixels, β1 = 10, β2 = 4,

maxFlow = 5 pixels τ−1 and ε = 0.025. The value

of τ is τ = 400000/(n+ 2)µs.

A normal distribution is fitted to the scaled his-

togram of the directions errors. The mean value of

the distribution is −1.5 × 10−3 rad and the stan-

dard deviation is 5× 10−3 rad. The estimated am-

plitudes are close, with a mean Euclidean error of

7 pixels s−1. The last sample in sweep 1 and the

first sample in sweep 2 produce large errors because

the pattern leaves the field of view and there are

only a few pixels for which the optical flow can be

estimated.

Data 4 differs from Data 3 in that the cam-

era is static while the pattern moves in the world

reference frame. An example of the optical flow

obtained by the Fisher-Rao algorithm is shown in

Fig. 4b. The flow vectors are scaled up by a fac-

tor of 10 and some flow vectors are not shown in

order to improve the visibility of the flow field.

The parameters are m = 11 pixels, n = 11 pix-

els, f = 1/30, σ = 4 pixels, β1 = 10, β2 = 4,

maxFlow = 5 pixels τ−1 and ε = 0.025. The value

of τ is τ = 100000/(n + 2)µs. Fig. 6 shows the

distribution of the directions errors and the mean
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Fig. 2 Optical flow for Data 2 obtained from a street scene viewed by a fixed camera.

Fig. 3 Example of a grey level image frame for Data 2.

amplitude errors, calculated as for Data 3. The er-

rors are higher than for Data 3 because the pat-

tern was moved manually with a velocity varying

in amplitude and direction, as required to retain

the pattern within the field of view. The estimated

mean and standard deviation of the directions er-

rors are respectively −7.5× 10−2 rad and 4× 10−2

rad. The lower performance of the Fisher-Rao flow
in this experiment is likely to be due to the varying

velocity of the pattern. The matrices for the Fisher-

Rao metric are estimated over spatiotemporal vol-

umes whose dimensions have to fit the motion. If

the volume is too small, then not enough events are

available to estimate the flow and if the volume is

too big, then the velocity estimate is an averaged

value.

5.4 Data 5

Data 5 was obtained using a new generation H-

VGA of the ATIS sensor. H-VGA and ATIS are

compared in Table 1. The H-VGA sensor has an

increased spatial resolution, a higher signal to noise

ratio, sharper images and better performance in

low light, as compared with the ATIS sensor. As a
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Fig. 4 a) Optical flow for Data 3; b) Optical flow for Data 4.
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ATIS H-VGA
Resolution 240× 304 480×360
Dynamic range (dB) 143 120
Min. contrast sensitivity (%) 13 12
Pixel size (µm2) 30×30 15×15
Fill factor (%) 20 25

Table 3 Comparison of the ATIS sensor and the H-VGA
sensor.

result, more accurate estimates of the optical flow

can be obtained from H-VGA measurements.

An example of the optical flow obtained from

Data 5 is shown in Fig. 8. Some flow vectors are

omitted in order to make the flow field clearer. The

flow vectors are also scaled up by a factor of 10.

The ground truth optical flow is obtained from Op-

tiTrack using markers attached to a plane surface

held by the experimenter, as shown in Fig. 8. The

results of the Fisher-Rao algorithm are compared

with ground truth only for the optical flow arising

from the moving plane.

The increase in quality of the estimated opti-

cal flow can be seen by comparing the error curves

for Data 4, given in Fig. 6, with those of Data 5,

given in Fig. 7. In both cases the flow arises from a

plane moved with an unconstrained velocity while

keeping the camera static. The directions errors for

Data 5 have a more uniform and narrower distri-

bution than the direction errors for Data 4. The

mean amplitude error is also lower, going from few

pixels s−1 to a maximum of 20 pixels s−1. The

parameters for Data 5 are m = 5 pixels, n = 5

pixels, f = 1/160, σ = 2 pixels, β1 = 10, β2 = 4,

maxFlow = 2 pixels τ−1 and ε = 0.025. The value

of τ is τ = 62500/(n+ 2)µs. The errors in estimat-

ing optical flow with the H-VGA sensor are less

than the errors obtained using the ATIS sensor,

even though the parameters m, n, which control

the size of the window for each probability distri-

bution, are reduced from m = n = 11 pixels to

m = n = 5 pixels.

6 Experiments with the

Rueckauer-Delbruck Data

The Fisher-Rao algorithm was applied to two of

the datasets in [34], namely the translating square

(translSquare) and the rotating disk (rotDisk). These

datasets were chosen because the ground truth is

known. The results for translSquare and rotDisk

are discussed in Sections 6.1 and 6.2 respectively.

6.1 Translating square

The data set translSquare is computer generated.

It shows a textureless square of size 40×40 pixels2

translating with a constant velocity of (20, 20) pix-

els s−1. The first measurement is obtained at time

tmin = 50, 000µs and the last measurement is ob-

tained at time tmax = 5, 000, 000µs. Nineteen con-

secutive subintervals of width ∆s = 247500µs are

chosen from [tmin, tmax], such that the central (i.e.

10th) subinterval is

[(tmin + tmax)/2−∆s/2, (tmin + tmax)/2 +∆s/2].

It is not possible to obtain the full optical flow

vectors along the sides of the square because of

the aperture problem. The normal components of

the optical flow vectors are obtained using (9). The

parameters used by the Fisher-Rao algorithm are

m = 11 pixels, n = 11 pixels, f = 1/100, β1 =

5, σ = 2 pixels, maxFlow = 2 pixels ∆s−1. The

condition λ2 ≥ β2λ3 in (14) is discarded because

the eigenvalues λ2, λ3 of the Fisher-Rao matrix

both tend to be small compared with λ1.

It was found that very few spatiotemporal vol-

umes contain enough measurements with ∆(i) = 0

and with ∆(i) = 1 to enable the calculation of

both of the matrices J ′(0), J ′′(0) in (8). If only

one of J ′(0), J ′′(0) is available, then J(0) is set

equal to that matrix. The optical flow estimated

by the Fisher-Rao algorithm for the 10th subinter-

val is shown in Fig. 9a. The flow vectors are scaled

up by a factor of 10 and some flow vectors are re-

moved to improve the visibility of the remaining

vectors. The estimated optical flows are similar for

the other 18 subintervals.

Under ideal conditions, each normal flow vec-

tor is parallel or anti-parallel to a coordinate axis

and has a norm of 20 pixels s−1. The errors in

the directions of the normal flow vectors over all

19 subintervals have a mean value of -0.00014 ra-

dians and a standard deviation of 0.046 radians.

The scale factor to convert the Fisher-Rao flow to

a flow in pixels s−1 is (n + 2)/(10−6∆s). The er-

rors in the magnitudes of the normal flow vectors

over all 19 subintervals have a mean value of -0.80

pixels s−1 and a standard deviation of 2.86 pixels

s−1.

6.2 Rotating disk

The data set rotDisk [34] is obtained from a 240×
180 pixel Dynamic and Active-pixel Vision Sen-

sor (DAVIS). The camera observes a disk divided
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Fig. 7 Comparison of the Fisher-Rao optical flow with ground truth for Data 5, obtained from a moving pattern
viewed by a static H-VGA camera.

Fig. 8 Example of optical flow obtained using Data 5.

into eight sectors with varying grey levels. The

disk is kept stationary while the camera rotates

about a fixed axis. The disk appears to rotate in

a clockwise direction about a centre c = (115, 86).

The first measurement is obtained at time tmin =

341678µs and the last measurement is obtained

at time tmax = 3508437µs. Nineteen consecutive

subintervals of width ∆s = 158338µs are defined

following the example in Section 6.1.

It is not possible to obtain the full optical flow

vectors because of the aperture problem. The bound-

aries between the different sectors of the disc are

straight lines with uniform grey levels on either

side. As in Section 6.1, the normal component of

the optical flow is obtained using (9). In this par-

ticular case the normal optical flow coincides with

the full optical flow. The parameters used by the

Fisher-Rao algorithm are the same as for translSquare.

The condition λ2 ≥ β2λ3 in (14) is discarded.

As in the case of the translating square, if only

one of J ′(0), J ′′(0) in (8) is available, then J(0)

is set equal to that matrix. The estimated optical

flows for the second subinterval and the eleventh

subinterval are shown in Figs 9b and 9c respec-

tively. The flow vectors are scaled up by a factor

of 10 and some flow vectors are removed in order

to improve the visibility of the remaining vectors.

The flow vectors in the remaining subintervals are

similar.

The flow vector data have the form (q, (u, v)),

such that (u, v) is the normal component of the

flow vector and q is the base point. Flow vectors

with ‖q − c‖ ≤ 20 are discarded. There remain

251,179 flow vectors from all nineteen subintervals.

The angular velocity of each flow vector is given by

‖q − c‖−1‖(u, v)‖. The average angular velocity is

0.48 radians s−1 with a standard deviation of 0.13

radians s−1. Ideally, the angle between (x, y) − c
and (u, v) should be π/2 radians. The deviations

of this angle from π/2 have a mean value of 0.0065

radians and a standard deviation of 0.12 radians.

It is apparent by visual inspection that the up-

per vertical bar in Fig. 9b moves clockwise to the

corner of the image in Fig. 9c. The change in ori-

entation of the bar is estimated to be 0.69 radians.

The time interval is 9∆s, thus the angular velocity
is estimated to be 0.48 radians s−1, in agreement

with the value obtained by the Fisher-Rao algo-

rithm.

7 Comparison with the State of the Art

In this section the Fisher-Rao algorithm is com-

pared with two state of the art algorithms for es-

timating optical flow from event camera measure-

ments. The first algorithm has two forms, namely

EV-FlowNet2R and EV-FlowNet4R (Zhu et al. [39]).

The results are described in Section 7.1. The sec-

ond algorithm fits planes to sets of events [6, 7].

The results are described in Section 7.2.
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Fig. 9 Examples of optical flow obtained from (a) translSquare and (b), (c) from rotDisk.
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Fig. 10 Comparison of the Fisher-Rao optical flow with ground truth for the MVSEC data:(a) Fisher-Rao flow; (b)
ground truth flow; (c) histogram of directions errors; d) graph of mean end point errors.

7.1 Comparison with EV-FlowNet2R and

EV-FlowNet4R

The data for the comparison between the Fisher-

Rao algorithm and EV-FlowNet2R were obtained

from the Multi Vehicle Stereo Event Camera (MVSEC)

dataset [38, 39, 40]. The dataset contains stereo

event camera measurements from a car, motorcy-

cle, hexacopter and hand held camera. The data

were obtained from both indoor and outdoor envi-

ronments. The Fisher-Rao algorithm was applied

to the indoor hexacopter measurements. Zhu et al.

[39] obtained the ground truth optical flow using

the Vicon motion capture system with 20 cam-

eras to observe the hexacopter. The camera was
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Algorithm t = 0.05(s) t = 0.1(s) t = 0.2(s)
EV-FlowNet2R 1.03 - 2.25
EV-FlowNet4R 1.14 - 2.75
Fisher-Rao 1.88 2.05 2.95

Table 4 Mean amplitude errors for three algorithms ap-
plied to the MVSEC data indoor flying1.

a DAVIS m346B with a resolution of 346 × 260

pixels2.

The list of events was obtained from the file in-

door flying1 data.hdf5. The ground truth optical

flow and a list of time stamps were obtained from

the MVSEC file indoor flying1 gt flow dist.npz. Let

ts be the list of time stamps and let t be a time

interval. Nine time slices were chosen, namely

[ts(i)− t/2, ts(i) + t/2], (15)

for 681 ≤ i ≤ 689. The time step τ is given by

τ = t/(n + 2) = t/13. The remaining parameter

values are m = 11 pixels, n = 11 pixels, f = 1/240,

σ = 2 pixels, β1 = 5, β2 = 2, maxFlow = 3/2

pixels τ−1 and ε = 10−5.

Fig. 10a shows the optical flow obtained by the

Fisher-Rao algorithm for the first time slice, with

t = 105µs. In order to make Fig. 10 clearer, the

original flow vectors are scaled by 130/4. The units

for this scaled flow are 1/4 pixels s−1. The corre-

sponding ground truth flow is shown in Fig. 10b

for time stamp 681. The original ground truth flow

vectors are scaled by 5 to ensure that the units are

the same as for Fig. 10a. A histogram of directions

errors is shown in Fig. 10c and a graph of mean

amplitude error as a function of the time slice is

shown in Fig. 10d. The histogram of directions er-

rors is accumulated over all nine time slices.

Mean amplitude errors for the algorithms EV-FlowNet2R,

EV-FlowNet4R and Fisher-Rao are shown in Ta-

ble 2 for the data indoor flying1. The entries for

EV-FlowNet2R and EV-FlowNet4R in Table 2 are

taken from Table 1 in [39], where they are referred

to as average end point errors. The mean amplitude

errors for the Fisher-Rao algorithm, for example

as shown in Fig. 10d, are scaled to give the val-

ues obtained after one second of the flow. In order

to make the comparison with EV-FlowNet2R and

EV-FlowNet4R in Table 2 it is necessary to scale

the errors to give the values obtained after t sec-

onds of the flow. It is apparent from Table 2 that

the errors for the Fisher-Rao algorithm are near to

the errors for EV-FlowNet2R and EV-FlowNet4R.

The advantage of the Fisher-Rao algorithm is that

it is much simpler to initialize. Grey level images

and ground truth optical flow are not required. It

is not necessary to train a complicated deep neural

network. It is only necessary to tune the values of

the nine parameters listed in Table 3. The experi-

mental results show that the Fisher-Rao algorithm

is stable, in that only minor changes in the val-

ues of the parameters are required if the dataset is

changed.

7.2 Comparison with a Plane Fitting Algorithm

The Fisher-Rao algorithm is compared with a state

of the art event based algorithm for estimating op-

tical flow. The algorithm fits planes to sets of mea-

surements in R3 [6, 7]. The algorithm is applied

to Data 3 and its results compared with those ob-

tained from the Fisher-Rao algorithm. The param-

eters of the algorithms are made as similar as pos-

sible: the size of the spatial neighborhood is set to

11 × 11 pixels2 and only the latest events within

this spatial neighborhood are used for estimating

the flow. A local plane fitting is carried out for

each incoming event and the optical flow is esti-

mated using the orientation of the plane. The plane

based algorithm only estimates the components of

the flow normal to the moving edges that generate

the events, as shown in the image in Fig. 11.

As the results of the Fisher-Rao algorithm have

already been compared with the ground truth in

Section 5.3, only the directions of the estimated

flow vectors are compared. The histograms of di-

rections computed by the two algorithms are shown

in Fig. 12. The most interesting result that can

be obtained from the histograms is a comparison

of the robustness of each algorithm to the aper-

ture problem. The estimated flow directions for the

Fisher-Rao algorithm agree with ground truth. The

estimated flow directions for the plane based algo-

rithm have a larger spread around the ground truth

direction.

8 Conclusion

A new algorithm for estimating optical flow from

event camera measurements has been described.

The algorithm is based on the Fisher-Rao metric,

which is defined on the parameter spaces for fami-

lies of probability distributions. In this application,

the distributions are obtained from the measure-

ments in small spatiotemporal volumes referred to

as box neighbourhoods. The time component of the

measurement is quantized, to ensure that each dis-

tribution is defined on a three dimensional neigh-
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Fig. 11 Comparison of the Fisher-Rao algorithm with the plane based algorithm in [7] using zooms of the flows.
The red arrows show the normal flow obtained in [7]. The green arrows show the Fisher-Rao flow.

(a) (b) (c)

Fig. 12 Comparison of the Fisher-Rao algorithm with the plane based algorithm; a) Fisher-Rao based histogram
for the directions of the flow vectors; b) plane based histogram for the directions of the flow vectors; c) ground truth
histogram.

bourhood spike array. The parameter space for the

family of distributions is also three dimensional.

The parameter value corresponding to a given dis-

tribution is, by definition, the centre of the spa-

tiotemporal volume from which the distribution is

obtained. The Fisher-Rao metric is used to find dis-

tributions that are near translates of each other in

space time. The corresponding translations provide

estimates of the optical flow vectors. Experiments

with event camera measurements show that excel-

lent estimates of the optical flow can be obtained,

provided the flow does not fluctuate too rapidly.

The Fisher-Rao algorithm requires a sufficient

number of measurements to establish the probabil-

ity distributions from which the optical flow is ob-

tained. In the experiments reported in Sections 5,

6 and 7, time slices of several hundred milliseconds

are required to accumulate the measurements. The

event cameras native time precision is the order of

a microsecond. An optical flow algorithm to meet

this time precision might be obtained using a slid-

ing window technique, but this is a topic for future

research.
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A Ground Truth Flow Using OptiTrack

The world reference frame is by default the OptiTrack’s
frame. Poses relative to the world reference frame are
defined by a rotation matrix and a translation vector.
For example, the pose of the camera casing is specified
by the pair (Rca,Tca), in which Rca is the rotation ma-
trix and Tca is the translation vector. If a point has
coordinates X in the world reference frame then the co-
ordinates of the point in the camera casing frame are
given by

RcaX + Tca.

The ground truth measurement of the optical flow
is based on the following information.

• the camera casing pose, (Rca,Tca) provided by Op-
titrack,

• the planar pattern pose, (Rp,Tp) provided by Opti-
track,

• the camera pose, (Rc,Tc), which is not provided by
Optitrack; it has to be updated as the camera moves.

The camera and the planar pattern move indepen-
dently. In order to calculate the projections of the planar
pattern points into the camera, it is necessary to update
the camera projection matrix P = K[R,T], where (R,T)
is the pose of the camera relative to the pattern and K
is a 3× 3 matrix of intrinsic parameters.

Standard calibration techniques provided by Bouguet
(2015) are used at time t = 0, i.e. before the acquisition
starts, to estimate K and the initial pose (R,T)|t=0 of
the camera relative to the pattern. A point with coor-
dinates X in the world reference frame has coordinates
RpX + Tp in the pattern frame, and coordinates

R(RpX + Tp) + T (16)



19

camera poseCamera casing  
pose (tracked by 

optitrack)

Object pose (tracked 
by optitrack)

World coordinate 
frame (optitrack)

(R,T)

(Rca,Tca)

(Rc,Tc)

(Rp,Tp)

(∆R,∆T)

tracking markers 

optitrack tracking camera

Optitrack 
tracking 
cameras

Optitrack 
tracking 
cameras

tracking 
markers 

Fig. 13 Relative poses of the components in the tracking setup for obtaining the ground truth optical flow.

in the frame defined by the initial pose of the camera.
It follows that

(Rc,Tc)|t=0 = (RRp, RTp + T)|t=0.

Let (∆R,∆T) be the pose of the camera with re-
spect to the casing. A point with coordinates X in the
world coordinate frame has coordinates RcX+Tc in the
camera frame. It follows from the definition of (∆R,∆T)
that X also has coordinates

∆R(RcaX + Tca) +∆T

in the camera frame, thus

(∆R,∆T) = (RcR
>
ca,Tc −RcR

>
caTca)|t=0. (17)

The pose (∆R,∆T) is constant when the camera moves.
It is used to estimate the camera pose when the casing
pose changes. A rearrangement of (17) yields

(Rc,Tc) = (∆RRca,∆T +∆RTca).

Finally, when the camera and the pattern both move,
the coordinates of X in the camera frame are given by
RcX + Tc and also by (16). It follows that

(R,T) =

(∆RRcaR
>
p ,∆T +∆RTca −∆RRcaR

>
p Tp).

Fig. 13 shows all the coordinate frames used for the
pose estimation. The camera pose and the camera pro-
jection matrix P = K[R,T] are updated continuously.
With these requirements, the projections of known 3D
points to the camera’s image can be computed at the
acquisition frequency of the OptiTrack (120Hz).

B Algorithms

The Fisher-Rao algorithm for estimating optical flow
is summarised by the following three algorithms. Algo-
rithm 1 takes a set of events as input and returns a list
of smoothed blocks. Algorithm 2 takes a smoothed block
as input and returns a Fisher-Rao matrix. Algorithm 3
takes a Fisher-Rao matrix as input and returns an opti-
cal flow vector.

B.1 Algorithm 1

Input: list E of events, odd positive integers m, n, time
t, time interval τ , threshold f , ε > 0, standard deviation
σ, dimensions xmax, ymax of the pixel array.
Output: list of smoothed blocks

1. Ẽ = {((i, j), s) ∈ E, |s− t| ≤ τ(n+ 1)/2}.
2. Define the xmax × ymax × (n+ 2) array At by

At(i, j, k) =

#{((i, j), s) ∈ Ẽ, k = bτ−1(s− t)c+ (n+ 3)/2}
3. Define the blocks ãt(q) for pixels q = (q1, q2) by

ãt(q) = At(q1 − (m+ 3)/2 : q1 + (m+ 3)/2,

q2 − (m+ 3)/2 : q2 + (m+ 3)/2)

4. nq = number of non-zero entries in ãt(q).
5. Ct = {q, nq ≥ (m+ 2)2(n+ 2)f}.
6. Add ε to all entries of At.
7. M = Gaussian mask with covariance

σ2IdentityMatrix.

8. Bt = convolve At with M
9. Define the smoothed blocks b̃t(q) for pixels q = (q1, q2)

by

b̃t(q) = Bt(q1 − (m+ 3)/2 : q1 + (m+ 3)/2,

q2 − (m+ 3)/2 : q2 + (m+ 3)/2).

10. Return {b̃t(q), q in Ct}.

B.2 Algorithm 2

Input: A smoothed block b̃t(q).
Output: Fisher-Rao matrix at q.

1. Extract from b̃t(q) the 27 probability distributions
ga for a in {−1, 0, 1}3.

2. Calculate the Kullback-Leibler divergences D(0‖a)
for a in {−1, 0, 1}3.

3. Find the symmetric matrix J that minimises∑
a∈{−1,0,1}3

‖D(0‖a)− 2−1aJa>‖2.

4. Return J
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B.3 Algorithm 3

Input: Fisher-Rao matrix J, parameters β1, β2,maxFlow.
Output: Optical flow vector (u, v).

1. Obtain the eigenvalues λ1 ≥ λ2 ≥ λ3 of J.
2. If λ1 < β1λ3 or λ2 < β2λ3 then stop the calculation.
3. Find the eigenvector w = (w1, w2, w3) of J with

eigenvalue λ3.
4. (u, v) = (w1/w3, w2/w3).
5. If ‖(u, v)‖ > maxF low, then stop the calculation.
6. Return (u, v)


