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STA-CNN: Convolutional Spatial-Temporal
Attention Learning for Action Recognition
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Abstract—Convolutional Neural Networks have achieved excellent successes for object recognition in still images. However, the
improvement of Convolutional Neural Networks over the traditional methods for recognizing actions in videos is not so significant,
because the raw videos usually have much more redundant or irrelevant information than still images. In this paper, we propose a
Spatial-Temporal Attentive Convolutional Neural Network (STA-CNN) which selects the discriminative temporal segments and focuses
on the informative spatial regions automatically. The STA-CNN model incorporates a Temporal Attention Mechanism and a Spatial
Attention Mechanism into a unified convolutional network to recognize actions in videos. The novel Temporal Attention Mechanism
automatically mines the discriminative temporal segments from long and noisy videos. The Spatial Attention Mechanism firstly exploits
the instantaneous motion information in optical flow features to locate the motion salient regions and it is then trained by an auxiliary
classification loss with a Global Average Pooling layer to focus on the discriminative non-motion regions in the video frame. The STA-CNN
model achieves the state-of-the-art performance on two of the most challenging datasets, UCF-101 (95.8%) and HMDB-51 (71.5%).

Index Terms—Temporal Attention, Spatial Attention, Convolutional Neural Network, Action Recognition
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1 INTRODUCTION

A CTION recognition in videos has been extensively in-
vestigated in computer vision, owning to its great po-

tential in many applications such as intelligent surveillance
[1], human-computer interaction [2], [3], robotics [4], etc.
Inspired by a series of successes in Convolutional Neural
Networks (CNN) for object recognition in still images [5],
[6], [7], many CNN based methods have been proposed
for action recognition. However, recognizing actions in raw
videos is still a challenging task because the raw videos
have much more redundant or irrelevant information in
the spatial and temporal domains, as compared with still
images.

To focus on interesting regions in videos, visual atten-
tion has been applied in action recognition models [8],
[9], [10], [11], [12], [13], [14], [15]. Most previous visual
attention methods in action recognition [8], [9], [10], [16]
are constructed with the Recurrent Neural Network (i.e.
LSTM [17]). They generate an attention map at each timestep
according to the input information at the current timestep
and the history information obtained at previous timesteps.
But these methods are costly in computation and have not
achieved comparable results with the CNN based action
recognition methods [18], [19], [20], [21]. Poses [11], [12], [13]
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Fig. 1. Four video examples in the UCF-101 video dataset. (a) involves
the action “ApplyEyeMakeup”, (b) involves the action “ApplyLipstick”,
(c) and (d) both show the action “SoccerJuggling”. The bottom row
shows the Spatial Attention Map of each video example learned by the
proposed Spatial Attention Network.

and bounding boxes [14], [15] of actors are exploited to focus
on human body parts. However, they rely on manually
defined body parts with the following two limitations: (1)
the precise annotations of poses and bounding boxes are
labor-intensive or device-dependent; (2) not every part of a
subject is discriminative for action recognition. For example,
the discriminative part of example (a) in Fig. 1 is only
around the eyes, while in example (b), the discriminative
part is only around the mouth. Moreover, the previous
attention models apply visual attention only in the spatial
domain, while the temporal attention is lack of studies.

In raw videos, different temporal segments contribute
to action recognition differently. Some segments are dis-
criminative for the classification, while others mislead the
action classifier. For example, the top row in Fig. 2 shows
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Fig. 2. Two video examples from action recognition datasets. The STA-
CNN model employs the Temporal Attention Mechanism to select the
discriminative temporal segments from long and noisy videos. The bars
below the video segments show the learned discriminative confidences
for the segments. These are used as averaging weights in the test stage.

the action “Biking”, but the rider and the bike do not
appear in the first few segments of the video. These seg-
ments are irrelevant for recognizing the action. The bot-
tom row in Fig. 2 shows the action “LongJump”. In this
video, most segments show an athlete running in a sports
ground. These segments have appeared in many actions
of the same dataset, such as “HighJump”, “JavelinThrow”,
“PoleVault”, “SkipJump” and so on. So these segments are
not discriminative for recognizing the action “LongJump”.
These irrelevant and undiscriminating segments mislead the
action classifier when it averages the predictions from all
segments. To eliminate the irrelevant and undiscriminating
segments in videos, previous methods require input videos
to be pre-processed. However, the pre-processing is usually
performed manually, hence it is labor-intensive and cost-
expensive in real-world applications. In this paper, we pro-
pose an unsupervised Temporal Attention Mechanism. It is
able to automatically mine discriminative segments which
strongly support the final decision.

In the spatial domain of videos, researchers [18], [20]
have found that the most important information for ac-
tion recognition is contained in the following two types
of regions: (1) motion salient regions; for example (c) and
(d) in Fig. 1 both contain the action “SoccerJumping”. The
motion salient regions are the leg and the soccer ball, which
are sufficient for recognizing the action. (2) discriminative
non-motion regions. For example (a) in Fig. 1 contains
the action “ApplyEyeMakeup” and (b) contains the action
“Applylipstick”. They have the same scene and motion. The
discriminative regions are the non-motion eyes in the exam-
ple (a) and the non-motion mouth in the example (b). To
focus on both types of regions described above, we propose
a Spatial Attention Network (SAN). The SAN is pre-trained
on optical flow predicting datasets to extract flow features
and the locations of motion salient regions. In addition, we
use a Global Average Pooling (GAP) layer to replace fully
connected pooling layers in order to keep the remarkable lo-
cation ability of convolutional units until the final layer [22],
[23]. Meanwhile, the SAN is trained with a classification loss
to highlight the discriminative non-motion regions. Finally,
the Spatial Attention Layer generates the Spatial Attention
Map to guide the Action Classification Network in learning
effective spatial-temporal features from the motion salient
regions and the discriminative non-motion regions in the

video frame.
The main contributions of this work are summarized as

follows:

• We propose a novel Temporal Attention Mechanism
which automatically mines discriminative temporal
segments from raw videos. Only the selected seg-
ments are used to update weights of the network. It
eliminates the interference of irrelevant and undis-
criminating segments in the raw videos.

• We propose a weakly-supervised Spatial Attention
Mechanism which selectively focuses on motion
salient and discriminative non-motion spatial region-
s. It generates a Spatial Attention Map to guide the
Action Classification Network in learning effective
spatial-temporal features for action recognition.

• The proposed Spatial-Temporal Attentive Convolu-
tional Neural Network (STA-CNN) incorporates the
Temporal Attention Mechanism and the Spatial At-
tention Mechanism into a unified convolutional net-
work. It achieves the state-of-the-art performance on
the UCF-101 and HMDB-51 datasets.

2 RELATED WORKS

Action recognition in videos is a very challenging task
and has long been an active research topic in computer
vision. Inspired by the success of CNN models in objec-
t recognition [5], [6], [7], [24], [25], many convolutional
models have been proposed to recognize actions [18], [19],
[20], [21], [26], [27] in recent years. For example, the Slow
Fusion model [26] fuses spatial and temporal information at
multiple semantic levels. The Two-stream models [18], [19]
train two convolutional networks separately, i.e., the Spa-
tialNet is trained on the RGB frame to extract appearance
features and the TemporalNet is trained on flow frames
to model motion features. The confidence scores of the
two networks are fused in order to improve classification
performance. The Fusion Two-stream model [21] demon-
strates that fusing appearance and motion features after the
last convolutional layer achieves a better performance. The
Temporal Segment Network (TSN) [20] splits an input video
into three segments in the temporal domain and trains the
Spatial ConvNet and the Temporal ConvNet by averaging
the predictions from the three segments for the long-range
temporal structure modeling. The 3D convolutional models
[27], [28], [29] extend the 2D convolution to the spatial-
temporal domain. They can abstract the spatial-temporal
features at multiple semantic levels naturally and effectively.
The C3D model [27] is pre-trained on a large-scale video
dataset to learn general features which are used to train a
linear SVM for action classification. I3D [29] proposes a very
deep Inflated 3D-CNN model by extending the Inception
model [7] to 3D in order to extract spatial-temporal features
of actions. The previous 3D convolutional deep models [27],
[28] are typically learned within a short snippet of videos,
so they fail to model actions over their full temporal extent.
The LTC-CNN model [30] operates on longer temporal
extents of videos in order to improve the accuracy of action
recognition.

Human perception includes an important mechanism for
focusing attention selectively on the interested regions in
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a scene. This selective attention mechanism has long been
an important topic in the vision community. An attention
model is proposed in [31] for sequence to sequence training
in machine translation, where two types of visual attention
have been studied firstly, namely hard attention and soft
attention. In hard attention, spatial regions are selected by
making binary choices. For example, Mnih et al. [32] and
Ba et al. [33] apply hard attention to object recognition to
extract the most salient features in images. Soft attention
mechanisms use the weighted averages instead of hard
binary selection. Soft attention is extended to the image
captioning task in [34] since image captioning can be essen-
tially considered as image to language translation. To apply
an attention mechanism in action recognition, we exploit
the hard attention in the temporal domain to select the
discriminative segments, and exploit the soft attention in
the spatial domain to selectively focus on the motion salient
regions.

Several previous action recognition approaches have em-
ployed attention mechanisms [8], [9], [10], [11], [12], [13],
[14], [15]. Sharma, et al. [8] first propose a soft attention
based Recurrent Neural Network (i.e., LSTM) for action
recognition. At each time step, an attention map is learned
to weight convolutional features. The Attention VideoLSTM
[10] replaces the full connections in the LSTM with convo-
lutional connections. It is able to generate a 2D attention
map directly for spatial features pooling. The work [16]
proposes an interpretable and easy plug-in spatial-temporal
attention mechanism. It learns a salience mask in order to
focus on the most salient features in the spatial domain and
it employs a convolutional LSTM based attention mecha-
nism to identify the most relevant frames in the temporal
domain. The Hierarchical Attention Network [9] proposes
a hierarchical attention structure to model the temporal
transitions between frames as well as video segments. It
effectively incorporates the short-term motion information
and long-term temporal structures. These LSTM based at-
tention methods require very large computational resources
but achieve inferior performances compared with the CNN
based action recognition methods [18], [19], [20], [21]. A 3D-
CNN based attention model [35] is proposed to provide
tighter crops around relevant video regions using a saliency
based attention transformation. Some recent works generate
more fine-grained representations by extracting features
around human pose keypoints [11], [12], [13] or from person
bounding boxes [14], [15]. These forms of attention are
helpful for classification performance, but they require an-
notating bounding boxes and poses of subjects. Optical flow
is a good representation of instantaneous motion in video
frames [36], [37]. So it is exploited to guide a convolutional
network to pay attention on the motion salient regions of
the video frame [36] or to enhance the spatial features using
the corresponding motion features [37]. However, these
methods require computing the optical flow fields for every
two consecutive frames in videos.

3 OUR SPATIAL-TEMPORAL ATTENTION MODEL

In this section, we present the details of the proposed
Spatial-Temporal Attentive Convolutional Neural Network
(STA-CNN). The STA-CNN model incorporates a Temporal
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Fig. 3. The architecture of the STA-CNN model. The Spatial Attention
Network generates a Spatial Attention Map to guide the Action Clas-
sification Network extracting effective features from informative spatial
regions. The most discriminative segments are selected by the Temporal
Attention Mechanism. Only the selected segments are used to update
the weights in the backward pass.

Attention Mechanism and a Spatial Attention Mechanism.
Firstly, the unsupervised Temporal Attention Mechanism
is introduced to mine the discriminative segments in the
temporal domain of videos. Then, we introduce the weakly-
supervised Spatial Attention Mechanism which introduces
a Spatial Attention Network to focus on both motion salient
regions and discriminative non-motion regions in the spatial
domain of videos. Finally, the overall architecture of the
STA-CNN model is presented in Fig. 3.

3.1 Unsupervised Temporal Attention Mechanism

In the real-world application of action recognition, the raw
videos usually contain many irrelevant or undiscriminating
segments, as shown in Fig. 2. These segments usually mis-
lead the action classifier. To eliminated the interference of
the irrelevant and undiscriminating temporal segments, we
propose an unsupervised Temporal Attention Mechanism.
The Temporal Attention Mechanism mines the discrimina-
tive segments based on the prediction confidence of each
video segment. It does not require any extra annotation than
class label.

More specifically, we firstly divide each video V into
N segments with equal time intervals in the temporal
domain, denoted by V = {sn}Nn=1. Then an input snippet
is randomly selected from each segment. Without loss of
generality, the snippets selected from the video are also de-
noted by sn, n = 1, 2, ..., N . Each snippet contains T frames
sn = [i1, i2, ..., iT ], n = 1, 2, ..., N . All of the snippets are
fed into the classification network. The predictions of these
segments are computed through the forward pass, denoted
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Input: Dataset (V, y) ∈ D, SGD parameter η, λ, iter.
Output: Network weights W , and W is initalized

from ImageNet pre-trained model.
1 t = 0;
2 while t < iter do
3 t = t+ 1;
4 Randomly sample a batch B ∈ D;
5 Forward pass:

For V ∈ B, V = {sn}Nn=1, compute predictions
{p(sn)}Nn=1;

6 Sort p(sn) by the discriminative confidence in
Eqn. (1) and update indicator βn: βn = 1[[αn ∈
top n{α1, ..., αN}]];

7 L =
∑

B

∑
n βnl(sn; θ);

8 Backward pass:
Apply SGD to update the weights W using only
the most discriminative segments.
W = W − η5L− λ4W

9 end
10 return θ;
Algorithm 1: The training process of the unsuper-
vised Temporal Attention Mechanism.

as p(sn), n = 1, ..., N . Each prediction is a C dimensional
vector p(sn)∈RC , where C is the number of action classes.
The discriminative confidence of each segment is defined as
the reciprocal of information entropy which measures the
average indeterminacy of a distribution. The discriminative
confidence αn of the prediction p(sn) is defined by:

αn =
1

H(sn)
, (1)

H(sn) = −
C∑

j=1

pj(sn) log pj(sn), (2)

When the prediction p(sn) is reliable, it is usually sparse
with a low entropy of the distribution, i.e., only a few entries
of p(sn) have large values, while the other entries are small
or approach 0. Conversely, when p(sn) is not reliable, its
entries (class probabilities) tend to spread evenly over all
the action categories, so the entropy H(sn) will be large.

The proposed Temporal Attention Mechanism uses hard
attention. It allocates a binary weight to each video segment,
i.e., the most discriminative (top n) segments are allocated 1,
and the others are allocated 0. In the backward pass during
training, only the most discriminative segments are used
to update weights of the network. The training process of
the Temporal Attention Mechanism is shown in the box
Algorithm 1.

Two temporal segment strategies for the Temporal At-
tention Mechanism are proposed. As described in above,
the first temporal segment strategy divides a video into
N segments with equal time intervals. Then, one input
snippet is selected randomly from each segment. In the
backward pass, only the most discriminative (top n) video
snippets are used to update the weights of the network. This
temporal segment strategy is denoted by TS(N, top n). The
second temporal segment strategy divides a video into N
segments with equal times intervals and selects M input

snippets from each segment. Then, the most discriminative
(top m) input snippets are selected from each segment. In
the backward pass, only the selected N × top m snippets
are used to update weights of the network. This segment s-
trategy can cover long-term temporal information for action
recognition. It is denoted by TS(N×M,N×top m).

3.2 Weakly-supervised Spatial Attention Mechanism
The Spatial Attention Mechanism includes two individual
subnetworks: one is the Action Classification Network and
the other is the Spatial Attention Network. The Action
Classification Network is the backbone of the STA-CNN
model. It is used to extract spatial-temporal features for
classifying actions. The Spatial Attention Network is pre-
trained on the flow predicting datasets and exploits the
GAP layer followed with a classification loss to generate a
Spatial Attention Map which focuses on the motion salient
and discriminative non-motion spatial regions. The Spatial
Attention Map is used to guide the Action Classification
Network in learning effective features in the informative
spatial regions for action recognition.

3.2.1 Spatial Attention on Motion Salient Regions
The optical flow information is a good indication of the
instantaneous motion. So the Spatial Attention Network is
pre-trained on the flow predicting datasets [38] to enable
the network to extract the flow features and the locations of
the motion salient regions in the video frame. The Spatial
Attention Network consists of ten convolutional layers and
six max-pooling layers, denoted as fsan(X;Wsan), where
Wsan are the weights of the Spatial Attention Network
and X denotes the input of the network. To expand the
spatial size of the predicted flow and obtain the dense flow
prediction, the Expanded Part is used at the end of Spatial
Attention Network. The Expanded Part includes four con-
volutional layers and four unpooling layers (extending the
feature maps, as opposed to pooling) and it is denoted as
fexp(X;Wexp), whereWexp are the weights of the Expanded
Part. The architecture of the Spatial Attention Network and
the Expanded Part is shown in Fig. 4.

Formally, the input snippets, selected from a video, are
denoted as sn, n = 1, ..., N . The video snippet sn is fed into
the network to predict flow:

f̂flow(sn) = fexp(fsan(sn;Wsan);Wexp), (3)

where f̂flow(sn) denotes the predicted flow from the input
snippet sn. The real flow is estimated from the input snippet
sn, denoted as fflow(sn). The Spatial Attention Network
and the Expanded Part are jointly trained by the Mean
Square Error with a relaxation factor:

Lflow =
∑
V

N∑
n=1

||max(|f̂flow(sn)− fflow(sn)| − θ, 0)||2 (4)

where θ = e−2fflow is a threshold to relax the difference
between the predicted flow and the real flow. The real
flow fflow(sn) usually has noise, so we ignore the cases in
which |f̂flow(sn) − fflow(sn)| is smaller than θ. Therefore,
by Eqn. 4, we only minimize the sum of relatively large
squared distances. Introducing the relaxation factor to the
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Fig. 4. The architecture of the Spatial Attention Network and the Expanded Part which are extended from the FlowNetSimple model [38].

loss function for training not only avoids noise interference
and also accelerates the training of the network.

3.2.2 Spatial Attention on Discriminative non-motion Re-
gions
Pre-training on the flow predicting datasets enables the Spa-
tial Attention Network to locate the motion salient regions
in the video frame, but it ignores the information in non-
motion spatial regions and some of these information is
discriminative for action recognition. To focus on the dis-
criminative non-motion regions, we introduce classification
information to the Spatial Attention Network. A GAP layer,
instead of usually used multiple fully connected pooling
layers, is added at the end of the Spatial Attention Network.
It is followed with a softmax and cross-entropy loss layer.
On the one hand, the GAP layer retains the remarkable
localization ability of the convolutional units until the final
layer [22], [23]. On the other hand, adding the classification
loss to the Spatial Attention Network enables it to focus only
on the remarkably discriminative regions from all the spatial
locations.

Specifically, the convolutional features in the last convo-
lutional layer of the Spatial Attention Network are denoted
as fsan(sn;Wsan) ∈ RM×K×K , where K and M denote
the spatial size and the number of channels respectively.
The weights of the Spatial Attention Network Wsan are
initialized from the model which is pre-trained on the flow
predicting datasets. Then the features fsan(sn;Wsan) are
reorganized as a matrix Xn ∈ RM×K2

. The Matrix Xn

consists of stacked feature vectors fromK2 spatial locations,
i.e., Xn = [xn1, xn2, ..., xnK2 ], where xni ∈RM denotes the
feature at the spatial location i. For a class c, the class scores
Sc are denoted by

Sc =

M∑
m=1

wm
c

K2∑
i=1

xmni =

K2∑
i=1

M∑
m=1

wm
c x

m
ni, (5)

where c = 1, ..., C , and C is the number of action classes.
wm

c is the weight corresponding to the class c for unit

m. Then, we define âni =
∑M

m=1 w
m
c x

m
ni, i = 1, 2, ...,K2.

It indicates the discrimination of the spatial location i in
supporting the identification of class c. The scores of all
the classes are denoted as ŷsan = [S1, S2, ..., SC ]. Based on
these class scores ŷsan , the auxiliary classification loss is
computed as:

Laux(ŷsan, yaction) =

C∑
c=1

ycactionlogSc, (6)

where yaction is the ground truth of the input video, i.e., if
the input video belongs to the class c, then ycaction is set as
1, and the other dimensions ytaction, t 6= c are set as 0. The
convolutional weights of the Spatial Attention Network are
updated by the auxiliary classification loss with the GAP
layer in Eqn. 6. It stores the localization information of
discriminative spatial regions in the convolutional features.

3.2.3 Spatial Attention Layer

After the pre-training on the flow predicting datasets and
the training by auxiliary classification loss with a GAP layer,
the locations of motion salient regions and discriminative
non-motion regions (called informative spatial regions in
following) are extracted by the Spatial Attention Network
and are stored in the convolutional feature maps. The S-
patial Attention Layer is designed to generate the Spatial
Attention Map by using the location information of infor-
mative spatial regions. The Spatial Attention Layer is added
at the end of the Spatial Attention Network. It is shown
as SAL in Fig. 3. In the Spatial Attention Layer, firstly,
the convolutional features of the Spatial Attention Net-
work fsan(sn;Wsan)∈RM×K×K are organized as a matrix
Xn = [xn1, xn2, ..., xnK2 ]. Then, the Spatial Attention Layer
learns a unified spatial importance from the convolutional
features at each spatial location as:

ani =

M∑
m=1

wm
i x

m
ni, i = 1, ...,K2 (7)
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Fig. 5. The Weighted Spatial Pooling layer weights the convolutional
feature cube Fn by the Spatial Attention Map An.

where ani denotes the importance at spatial location i for
identifying the action in the video. The wi ∈ RM are the
weights of the Spatial Attention Layer corresponding to
the spatial location i. Then, a softmax function is used to
normalize the spatial importance as:

āni =
eani∑K2

k=1 e
ank

, (8)

where, āni ∈ [0, 1], i = 1, ...,K2. So the Spatial Attention
Map is defined as An = [ān1, ān2, ..., ānK2 ]. The softmax
function can enlarge the contrast of the spatial importance.

3.2.4 Classification Using Spatial Attention Map

The Spatial Attention Map An ∈ RK2

stores the loca-
tion information of the motion salient regions and the
discriminative non-motion regions. The map is used to
guide the Action Classification Network to automatically
extract features from the informative spatial regions of
the video frame. In the Action Classification Network, the
feature cube in the last convolutional layer is denoted as
f(sn;Wcla) ∈ RD×K×K , where Wcla are the weights of
the Action Classification Network, and the terms K and
D denote the spatial size and the number of channels
of convolutional feature maps respectively. Same with the
Spatial Attention Network, the feature cube f(sn;Wcla) is
sliced as K2 feature vectors in the spatial domain. Each
feature is a D dimensional vector, denoted as a matrix
Fn = [fn1, fn2, ..., fnK2 ]. Meanwhile, each feature vector
fni, i = 1, ...,K2 has a corresponding weight ani from the
Spatial Attention Map An. The weight ani indicates the
importance of the corresponding feature fni at the spatial
location i for action recognition. The process of the Weight-
ed Spatial Pooling, denoted as WSP module in Fig. 3, is
formulated as:

f =
1

K2

K2∑
i=1

anifni, (9)

where f is the pooled feature. It is fed to the following
fully-connected layer and softmax layer for classification. In-
tuitively, the detail process of the Weighted Spatial Pooling
is illustrated in Fig. 5. The Spatial Attention Network and

TABLE 1
Evaluating the effectiveness of the Temporal Attention Mechanism and
temporal sampling strategies, finetuned on the UCF-101 dataset split1.

Models Spatial ConvNet Temporal ConvNet
DCW AVE DCW AVE

BN-Inception [20] 84.1% 84.5% 86.5% 87.2%
TAM-TS(3, 1) 85.0% 84.7% 87.4% 87.3%
TAM-TS(6, 1) 85.3% 84.9% 87.5% 87.3%
TAM-TS(9, 1) 85.5% 84.9% 87.7% 87.2%
TAM-TS(9, 3) 86.1% 85.4% 88.1% 87.5%

TAM-TS(3×3, 3×1) 86.5% 85.8% 88.4% 87.9%

the Action Classification Network are jointly trained by the
classification loss:

L = L(ŷcla, yaction) + λ · Laux(ŷsan, yaction). (10)

The first item is the cross entropy loss of the Action Clas-
sification Network, L(ŷcla, yaction) =

∑C
c=1 y

c
actionlogŷ

c
cla,

where ŷccla denotes the prediction scores of class c from
the Action Classification Network. The second item is the
auxiliary classification loss of the Spatial Attention Network,
as shown in Eqn. 6. The parameter λ is a balance between
the two losses.

3.3 Overall Architecture
In this work, a novel STA-CNN model is proposed. The
architecture of the STA-CNN is constructed by the Spatial
Attention Network and the Action Classification Network,
followed by the Temporal Attention Mechanism for select-
ing temporal segments from videos, as shown in Fig. 3.
The Action Classification Network in the STA-CNN model
uses the BN-Inception network [7] which is pre-trained on
ImageNet [39]. Similar to the Two-stream models [18], [19],
[20], [21], the STA-CNN model trains the Spatial ConvNet
on RGB frames and trains the Temporal ConvNet on flow
frames. Then the softmax scores of the two ConvNets are
fused to classify actions. When training on RGB frames,
the weights of the Spatial Attention Network are initialized
from the model which is pre-trained on the flow predicting
datasets. When training on flow frames, the convolutional
layers of the Spatial Attention Network share weights with
the Action Classification Network.

4 EXPERIMENTS

4.1 Experiments Setting
Datasets: The STA-CNN deep model is evaluated on two of
the most challenging video datasets, UCF-101 and HMDB-
51. The UCF-101 [40] is a dataset of realistic action videos,
collected from YouTube, and having 101 action categories
with 13320 videos (27 hours in total). The UCF-101 dataset
has a large diversity of actions and large variations in camer-
a motion, object appearance, cluttered background, etc. The
HMDB-51 dataset [41] is a large realistic collection of videos
from movies and the web. It contains 6849 videos divided
into 51 action categories. We use the raw videos without
stabilization. We begin by comparing different architectures
on the first split of the UCF-101 dataset. For comparison
with the state-of-the-art, we follow the standard evaluation
protocol and report the average accuracy over three splits
on both of the datasets.
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Fig. 6. The sensitivity analysis for the effect of top n and top m on the
UCF-101 dataset split1.

Training: The STA-CNN model is trained with randomly
selected snippets. Each frame in a snippet is resized to
256 × 340 and then cropped into 224 × 224 in the spatial
domain. Horizontal flipping, corner cropping, and multi-
scale cropping are used to prevent over-fitting. All models
are trained by Stochastic Gradient Descent (SGD) with the
momentum and weight-decay as 0.9 and 0.0005 respectively.
For the Spatial ConvNet training, each snippet has two
frames, and the batch size is set as 128. The base learning
rate is set as 0.001 and it is divided by 10 for every 20 epochs.
The training stops at the 50th epoch. For the Temporal
ConvNet training, each snippet has five flow frames that
contain the horizontal and vertical components of the flow
field. Also, the batch size of the Temporal ConvNet is set as
128. The base learning rate is set as 0.005 and it is divided
by 10 for every 120 epochs. The training stops at the 300th

epoch.
Test: The test video is divided into 25 segments in the

temporal domain. A snippet is selected from each segment.
Each frame in the snippet is also resized to 256 × 340
and then is cropped into 224 × 224 in the spatial domain.
The standard ten test samples, i.e., one center sample and
four corner samples, are cropped spatially. The previous
approaches [18], [19], [20], [21] average the predictions of
all segments for video-level predicting. In this paper, only
the top 15 discriminative segments are used to predict the
action. Then, the predictions of video segments are weighted
by the discriminative confidences αn which are computed
from the corresponding predictions by Eqn. 1. If a segment
is discriminative for classification, the discriminative confi-
dence of its prediction is reasonably large, and vice versa. So
the Discriminative Confidence Weighted (DCW) prediction
pdcw is formulated as:

pdcw =

25∑
n=1

βnαnp(sn), (11)

where, βn = 1[[αn∈ top 15{α1, ..., αN}]].

4.2 Evaluating the Effectiveness of the Temporal Atten-
tion Mechanism
We firstly evaluate the effectiveness of the Temporal Atten-
tion Mechanism on the UCF-101 dataset split1. As shown in
the upper part of Tab. 1, there are three temporal attention
models which are constructed by introducing the Temporal
Attention Mechanism into the baseline model BN-Inception
[20]. The BN-Inception model [20] is fed with a snippet
sampled from each video, which could be regarded as that
the video is first divided into one segment and then an

TABLE 2
Evaluating the effectiveness of the Spatial Attention Network, finetuned

on the UCF-101 dataset split1.

Models Multiple
Segments

Auxiliary
Loss

Spatial
ConvNet

Temporal
ConvNet

BN-Inception [20] - - 84.5% 87.2%
SAM-CNN1 - + 85.2% 88.3%
SAM-CNN2 + - 85.8% 87.7%
SAM-CNN3 + + 86.8% 89.3%

input snippet is randomly sampled from the segment. It
could be denoted by the first temporal sampling strategy
TS(N, top n), in which N = 1 and top n = 1. To evaluate
the effectiveness of the Temporal Attention Mechanism intu-
itively, we set top n = 1 as the baseline model BN-Inception
[20] with different temporal segments (i.e. N = 3, 6, 9).
From the results in Tab. 1, all of the temporal attention
models, TAM-TS(3, 1), TAM-TS(6, 1) and TAM-TS(9, 1),
outperform the baseline model BN-Inception [20], especially
when the DCW method is use for action prediction. In
the subsequent experiments, we set N = 9 to balance the
performance and computational complexity.

To evaluate the two temporal sampling strategies, we
design two models, TAM-TS(3 × 3, 3 × 1) and TAM-
TS(9, 3), with same computational cost. Their experimental
results are listed in the last two lines of Tab. 1. The TAM-
TS(3×3, 3×1) model outperforms the TAM-TS(9, 3) mod-
el. The improvement indicates that the temporal segment
strategy TS(N ×M,N × top m) is better than the strategy
TS(N, top n), because the strategy TS(N×M,N× top m)
can model the long-term evolution of actions.

Then, we conduct experiments to analyze the sensitiv-
ity of the hyper-parameter top n in Fig. 6(a). Based on
the experiments above, we set N = 9 and set top n =
1, 3, 6, 9 to obtain the TAM-TS(9, 1), TAM-TS(9, 3), TAM-
TS(9, 6) and TAM-TS(9, 9) models respectively. As shown
in Fig. 6(a), TAM-TS(9, 3) and TAM-TS(9, 6) achieve better
performances than the other models. These experimental re-
sults indicate that in a certain range, using more predictions
of temporal segments in back-propagation improves the
performance of our temporal attention model. However, the
last segments with lower discriminative confidences include
more noise and irrelevant information, so these segments
will reduce the performance of our temporal attention mod-
el. Moreover, we design three models with top m = 1, 2, 3,
denoted as TAM-TS(3×3, 3×1), TAM-TS(3×3, 3×2) and
TAM-TS(3×3, 3×3) respectively, to analyze the sensitivity
of the hyper-parameter top m. The results of these models
are shown in Fig. 6(b). The model TAM-TS(3 × 3, 3 × 1)
achieves the best performance among these three temporal
attention models. Based on the results, we set top m = 1 in
the subsequent experiments.

4.3 Evaluating the Effectiveness of the Spatial Atten-
tion Mechanism

In the second experiment, the effectiveness of the Spatial
Attention Mechanism is evaluated on the UCF-101 dataset
split1. In the experiment, three spatial attention models are
designed for comparison with the baseline BN-Inception
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TABLE 3
Evaluating the effectiveness of the Spatial-Temporal Attention on the

UCF-101 dataset split1.

Models Spatial
ConvNet

Temporal
ConvNet Fusion

BN-Inception 84.5% 87.2% 92.0%
STA-TS(6, 1) 85.5% 87.9% 93.1%
STA-TS(9, 3) 86.4% 88.7% 94.0%

STA-TS(3×3, 3×1) 86.9% 89.5% 94.2%

model [20]. The three spatial attention models introduce the
Spatial Attention Mechanism into the baseline model. The
experimental results of these spatial attention models and
the baseline model are listed in Tab. 2. A “+” in the column
Multiple Segments indicates that the predictions of multiple
temporal segments are averaged during training. A “-” in
this column indicates that there is no averaging predictions
of multiple temporal segments. The input video is divided
into three temporal segments in these experiments. A “+”
in the column Auxiliary Loss indicates that the auxiliary
classification loss is added to the Spatial Attention Network.
A “-” indicates that the auxiliary classification loss is not
added to the Spatial Attention Network.

As shown in Tab. 2, the spatial attention models ob-
viously outperform the baseline model. For example, the
SAM-CNN3 model outperforms the BN-Inception model by
2.3% and 2.1% fed with RGB and flow frames respectively.
The SAM-CNN3 model outperforms the SAM-CNN2 model
fed with RGB and flow frames respectively. It indicates that
adding the auxiliary classification loss module to the Spatial
Attention Network in training can improve the performance
obviously. The SAM-CNN3 model outperforms the SAM-
CNN1 model fed with RGB and flow frames respectively.
The improvement indicates that averaging multiple tem-
poral predicting is also effective for our Spatial Attention
Mechanism.

4.4 Evaluating the Effectiveness of the Spatial-
Temporal Attention

In the third experiment, the temporal attention and the spa-
tial attention are unified into a single convolutional network,
referred as the STA-CNN model. This model is trained end-
to-end. In the experiment, the effectiveness of the Spatial-
Temporal Attention models is evaluated on the UCF-101
dataset split1. The Spatial-Temporal Attention models in-
troduce the Temporal Attention Mechanism and the Spatial
Attention Mechanism into the BN-Inception model, where
the BN-Inception model is used as the baseline. The clas-
sification performances of the Spatial-Temporal Attention
models and the baseline model are reported in Tab. 3.

As shown in Tab. 3, all of the Spatial-Temporal Attention
models outperform the baseline model. In particular, the
STA-TS(3 × 3, 3 × 1) model outperforms the BN-Inception
model by over 2% fed with RGB and flow frames respective-
ly. On comparing the fusing results of Spatial ConvNet and
Temporal ConvNet, the STA-TS(3×3, 3×1) model outper-
forms the BN-Inception model by 2.5%. These experimental
results indicate that the proposed STA-CNN deep model is
very effective for action recognition.

TABLE 4
Comparing with current state-of-the-art methods.

Models UCF-101 HMDB-51

Two-stream [18] (NIPS 2014) 88.0% 59.4%
TSN [20] (TPAMI 2018) 94.2% 69.4%

Fusion Two-stream [21] (CVPR 2016) 93.5% 69.2%
Action Visual Attention [8] (NIPS 2015) - 42.3%
Hierarchical Attention [9] (arXiv 2016) 92.7% 64.3%
Attention VideoLSTM [10] (CVIU 2018) 91.5% 63.0%

Collaborate Two-stream [42] (CSVT 2018) 94.0% 68.7%
Pyramid Attention [43] (ECCV 2018) 95.5% 70.7%
Attention Clusters [44] (CVPR 2018) 94.6% 69.2%

Interpretable ST-attention [16] (ICCV 2019) 87.1% 53.1%
C3D [27] (ICCV 2015) 85.2% -

LTC-CNN [30] (PAMI 2017) 92.7% 67.2%
MiCT-Net [45] (CVPR 2018) 94.7% 70.5%

ResNet-3DCNNs [46] (CVPR 2018) 90.7% 63.8%
KVM [47] (CVPR 2016) 93.1% 63.3%

CoViAR [48] (CVPR 2018) 94.9% 70.2%
ARTNet [49] (CVPR 2018) 94.3% 70.9%

PBNet-8-4+iDT [50] (TIP 2019) 95.1% 72.5%
STMN+iDT [51] (TIP 2019) 94.5% 70.2%

STA-CNN (RGB+flow) 95.3% 70.2%
STA-CNN (RGB+flow+warpflow) 95.8% 71.5%

4.5 Comparison with State-of-the-art

The STA-CNN deep model is compared with current state-
of-the-art methods on the UCF-101 and HMDB-51 datasets
in Tab. 4. The results of the STA-CNN model are obtained
by averaging the standard three splits provided in [40], [41].
When fusing the softmax scores of Spatial ConvNet and
Temporal ConvNet, the STA-CNN model achieves the state-
of-the-art performance on both of the datasets. To improve
the classification performance further, we fuse the softmax s-
cores of three networks fed with RGB, flow and warped flow
frames respectively. The resulting STA-CNN model achieves
95.8% on the UCF-101 dataset and 71.5% on the HMDB-
51 dataset. Compared with Two-stream based methods, the
STA-CNN model outperforms the Two-stream [18] by 7.8%
and 11.2% on the UCF-101 and HMDB-51 datasets respec-
tively. It also outperforms the Temporal Segment Network
(TSN) model [20] by 1.6% and 2.1% on the two datasets
respectively. Then compared with the visual attention based
methods, our STA-CNN model significantly outperforms
all the LSTM based visual attention models [8], [9], [10]
on the two datasets. The STA-CNN model outperforms the
recently proposed spatial-temporal attention model [16] by
8.7% and 18.4% on UCF-101 and HMDB-51 respectively. The
STA-CNN model also outperforms the CNN based attention
models, such as the Collaborative Two-stream model [?], the
Pyramid Attention Network [43] and the Attention Clusters
[44]. Moreover, our STA-CNN model outperforms the 3D
convolutional models on both datasets, such as the C3D
[27], the LTC-CNN [30] and the MiCT-Net [45]. Also, the
result of the STA-CNN model is better than the results of
the recent methods such as ARTNet [49], PBNet-8-4+iDT
[50] and STMN+iDT [51].
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Fig. 7. Eight video examples in the UCF-101 video dataset. In each
example, the top image is the original RGB frame, and the bottom one
is the corresponding Spatial Attention Map enhanced frame.

4.6 Visualization

To get an intuitive understanding of the Spatial Attention
Mechanism, the Spatial Attention Map generated by the
Spatial Attention Network is visualized in Fig. 1. Firstly, the
Spatial Attention Map is resized to the input size, 224×224.
Then the resized Spatial Attention Map is used to weight
each channel of the corresponding RGB frame. In Fig. 1,
the top row shows four action examples from the UCF-
101 dataset, and the bottom row shows the corresponding
Spatial Attention Map weighted RGB frames. For example,
in (a), the Spatial Attention Network pays attention on the
eyelid as shown in (e). In the example (d), the attention
model focuses on the soccer ball and foot as shown in (h).
These examples indicate that the Spatial Attention Network
locates the motion salient regions and discriminative non-
motion regions accurately. More visualizing examples of the
Spatial Attention Map are shown in Fig. 7.

Also, we visualize the discriminative confidences of
video temporal segments in Fig. 2 to give an intuitive
understanding of the Temporal Attention Mechanism. First-
ly, ten video segments are sampled from each video with
equal time intervals. Then, the discriminative confidence
is computed for each segment by Eqn. 1. In the top row
of Fig. 2, the first few segments are not suitable for clas-
sifying the action “Biking” because the rider and the bike
have not yet appeared in the scene. In the bottom row of
Fig. 2, the confidences of the first segments are relatively
low, because a person running in a sports ground appears
in “HighJump”, “JavelinThrow”, “PoleVault”, “SkipJump”
and so on. When the athlete jumps from the take-off line, the
discriminative confidence clearly increases. These examples
indicate that the Temporal Attention Mechanism can mine

the discriminative temporal segments accurately.

4.7 Computational Complexity Analysis

The attention mechanism based methods [8], [9], [10], [11],
[12], [13], [14], [15], [16], [42], [43], [44] improve the per-
formance of action recognition but at the same time in-
crease computational complexity. However, the computa-
tional complexity of our attention method is acceptable.
Firstly, Our STA-CNN model is based on 2D-CNN and
follows the two-stream architectures [18], [19], [20]. It has
much lower computational complexity than RNN (LSTM)
based methods [8], [9], [10], [16], [52] and 3D-CNN based
methods [27], [28], [29], [30]. Then, compared with the 2D-
CNN based action recognition models [18], [19], [20], on
the one hand, the Temporal ConvNet of our STA-CNN
model does not consume additional computing resources,
because the Spatial Attention Network shares weights with
Action Classification Network when it is fed with optical
flow fields and the Spatial Attention Network reuses the
features extracted by Action Classification Network. On
the other hand, the Spatial ConvNet of our STA-CNN
model does need additional computing resources for the
Spatial Attention Network to extract flow features from
RGB images. In the future work, we will try to further
reduce the computational complexity of the STA-CNN by
using more efficient deep networks such as MobileNet [53]
and shuffleNet [54], or using model compression such as
distillation [55] and pruning [56].

5 CONCLUSIONS

This paper has proposed a Spatial-Temporal Attentive Con-
volutional Neural Network (STA-CNN), which incorporates
the Temporal Attention Mechanism and the Spatial At-
tention Mechanism into a unified convolutional network
for action recognition. The Temporal Attention Mechanism
automatically mines the discriminative temporal segments
from long and noisy videos based on the discriminative
confidence of each segment. The Spatial Attention Mecha-
nism exploits both the motion information in flow features
and the discriminative information learned from classifica-
tion loss to locate the informative spatial regions in video
frames. The proposed STA-CNN model is able to mine the
discriminative segments in the temporal domain and at the
same time focus on the informative regions in the spatial
domain. It has achieved the state-of-the-art performance on
two of the most challenging action recognition datasets.
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