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Abstract—This paper investigates classification by dictionary
learning. A novel unified framework termed self-taught semi-
supervised dictionary learning with non-negative constraint
(NNST-SSDL) is proposed for simultaneously optimizing the
components of a dictionary and a graph Laplacian. Specifically,
an atom graph Laplacian regularization is built by using sparse
coefficients to effectively capture the underlying manifold struc-
ture. It is more robust to noisy samples and outliers because
atoms are more concise and representative than training samples.
A non-negative constraint imposed on the sparse coefficients
guarantees that each sample is in the middle of its related atoms.
In this way the dependency between samples and atoms is made
explicit. Furthermore, a self-taught mechanism is introduced to
effectively feed back the manifold structure induced by atom
graph Laplacian regularization and the supervised information
hidden in unlabeled samples in order to learn a better dictionary.
An efficient algorithm, combining a block coordinate descent
method with the alternating direction method of multipliers is
derived to optimize the unified framework. Experimental results
on several benchmark datasets show the effectiveness of the
proposed model.

Index Terms—Semi-supervised dictionary learning,
negative constraint, atom graph regularization, self-taught

non-

I. INTRODUCTION

LASSIFICATION is widely used in the fields of in-

dustrial informatics for fault diagnosis, face recognition,
visual tracking, action recognition, etc. [1], [2], [3], [4],
[5]. Deep learning [6], [7], [8] and sparse coding [9], [10]
are the two most popular methods for classification in the
last decade. The former method, which is characterized by
training deep neural networks to extract data features and learn
functional relationship, has demonstrated a great potential in
classification tasks. The success of deep learning is due to
the powerful expressivity of deep neural networks. However,
this also implies a very large hypothesis space which makes
deep learning algorithms time consuming, uninterpretable and
unstable because of overfitting. The latter method is based
on the well-established theory of compressed sensing, which
has good interpretability because many natural signals are
sparse. These sparse signals can be approximated or even
fully recovered. Sparse coding can handle small-sized training
datasets and save a great deal of time in the training stage.
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In this paper, we continue the fruitful investigation of the
sparse coding for classification applications. Wright et al.
[11] present a sparse representation-based classification (SRC)
algorithm, and apply it to face recognition. However, SRC
directly uses all training samples to form the dictionary, thus
the representative power of dictionary will degenerate if the
training samples are contaminated by noise. To deal with noisy
samples, methods for learning a more compact and robust
dictionary are proposed in [12], [13]. But these methods do
not use the label information in the training process and hence
are not suitable for classification tasks.

To enhance the discriminative capability of the learned
dictionary, researchers propose a series of supervised dictio-
nary learning (SDL) methods. A common technique is to add
some discriminative terms to the dictionary learning frame-
work. The discriminative terms include softmax discriminative
cost function [14], Fisher discrimination function [15], linear
classification errors [9], [16], [17] and hinge loss function
[18]. With the assumption that samples in the same class
tend to share some atoms, the structural sparsity information
is explored to learn discriminative dictionaries [19], [20].
The above dictionary learning methods are linear and thus
are inadequate for dealing with highly nonlinear datasets. To
address this issue, several kernel dictionary learning (KDL)
methods [21], [22], [23], [24], [25] are proposed for capturing
sparse representation of nonlinear features. They achieve a
better classification performance than the linear methods.

SDL methods generally need enough labeled samples to
guarantee a good generalization performance by the learned
dictionary. However, it is difficult to obtain sufficient labeled
samples in practice. Hence, semi-supervised dictionary learn-
ing (SSDL) methods are proposed to deal with an insufficient
number of labeled samples. Zhang et al. [26] develop an online
semi-supervised discriminative dictionary learning (OSSDL)
method, which incorporates reconstruction errors of labeled
and unlabeled samples, label consistency and linear classifica-
tion errors into a unified framework. Wang ez al. [27] introduce
an /> ,-norm regularization to sparse coefficients, and design a
semi-supervised robust dictionary learning (SSR-DL) model.
Wang et al. [28] propose a unified semi-supervised dictionary
learning (USSDL) method, which jointly learns dictionary and
classifier by adaptively estimating the confidence of unlabeled
training samples. By using the structural sparse regularization
on samples which potentially have the same class label, a
novel model termed semi-supervised dictionary learning via
structural sparse preserving (SSP-DL) [29] is presented. Since
SSDL methods use labeled and unlabeled samples in the
training process, they generally provide more competitive
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Fig. 1. The flowchart of our method. (a) The affinity matrix constructed from the sparse coefficients. (b) Labels estimated by linear combination of soft labels
of atoms. (c) The feedback of supervised information hidden in unlabeled samples and manifold structure information from atoms.

performance than SDL methods. However, the aforementioned
SSDL methods still have the following two limitations: 1) The
intrinsic manifold structure of the training samples is not fully
explored. 2) The supervised information hidden in unlabeled
samples is not utilized in the training process.

Several recent methods [30], [31], [32] introduce a con-
fidence matrix to estimate the relationship between the un-
labeled samples and the classes, and iteratively feed back
the estimated relationship to the training process to increase
the discriminative capability of the learned dictionary. They
achieve more impressive performance than the previous SSDL
approaches for classification tasks. However, they still do not
fully exploit the intrinsic manifold structure within the training
samples. Moreover, these approaches learn multiple category-
specific dictionaries and are not suitable for handling datasets
with many classes.

This paper develops a new unified framework termed self-
taught semi-supervised dictionary learning with non-negative
constraint (NNST-SSDL), which integrates predictive errors of
labeled samples and the graph Laplacian regularization into a
common dictionary learning formulation. The main features
of the proposed method are described as follows.

« We construct an atom graph Laplacian regularization to
exploit the intrinsic manifold structure of training data. As
atoms are more concise and representative than training
samples, the atom graph Laplacian regularization is more
robust to noise and outliers. Moreover, the atom graph
Laplacian regularization can be iteratively refined by
updating the sparse coefficients in the training process.

« The non-negative constraint is imposed on the sparse co-
efficients. This ensures that each sample is in the middle
of its related atoms and thus facilitates learning local
manifold structures. Based on this geometric relation, the
label of a sample predicted by the linear combination of
the atom’s soft labels is reliable.

o The self-taught mechanism guarantees that the dictio-

nary and the graph Laplacian are learned in parallel.
More specifically, the supervised information hidden in
unlabeled samples and the manifold information induced
by atom graph Laplacian regularization are efficiently
fed back to improve the discriminative capability of the
learned dictionary.

e An efficient algorithm combining a block coordinate
descent method with the alternating directions method
of multipliers is proposed to solve the unified frame-
work. Experimental results on several benchmark datasets
demonstrate that the proposed method is significantly
better than the state-of-the-art approaches.

The remainder of this paper is organized as follows. Section

IT gives the motivation of the proposed method. Section
IIT introduces the proposed NNST-SSDL framework, which
includes the optimization algorithm and the computational
complexity analysis. The experiments are reported in Section
IV. Section V concludes the paper.

II. MOTIVATION

The task of semi-supervised dictionary learning is to learn
an m atoms dictionary D = [dy,ds, - - ,d,] € RY*™ based
on a K-class training dataset containing [ labeled samples and
u unlabeled samples S = {(z1,y1), (®2,Y2), -, (T, Y1),
Ti41, X142, 5 Li4u ), Where ; (@ = 1,2,--- 1 + u) are
the samples and y; (: = 1,2,--- 1) is the label of sample ;.
Here, y; is a 1-hot vector paradigm, i.e., if sample x; belongs
to the kth class, then the kth element of y; is 1 and the remain-
ing elements are 0. We stack the training samples as a matrix
X =[xy, @, , @1 10] € R where d is the feature
dimension of samples. Accordingly, X; and X, are the data
matrices of the labeled and unlabeled training samples. We
also stack the labels as a matrix Y; = [yy,--- ,y;] € RE¥L
Denote Z = [21,22, - ,214u] € R™*U+% ag the sparse
coefficient matrix, where z; is the sparse coefficient vector of
the training sample x; on dictionary D.



Specially, the ith row of the sparse coefficient matrix Z:
2%, is called the profile of the atom d; [33]. Based on this
concept, the relationship between samples and atoms can be
re-written as

Xmdigh 4+ 4+ dig' -+ djg o+ dyp2™ . (D)

In this way, we can find that the influence of the atom d; for
reconstructing the training samples can be measured by the
corresponding profile 2°.

The motivation of this work is that we not only use the
label information but also the manifold structure for dictionary
learning. Accordingly, the first task is to use the label infor-
mation for dictionary learning. Different from the traditional
multiple category-specific dictionary learning methods which
use hard labels for atoms, we assign soft labels to atoms for
the following reasons 1) The soft labels are more suited to
the manifold assumption than hard labels; 2) atoms cannot
be assigned to specific classes because samples from different
classes may share atoms. The soft label matrix for the dictio-
nary is denoted by A = [ay,az, - ,a,,] € RE*™, in which
a; is the soft label of the atom d; and K is the class number.
Based on the assumption that the way the atoms reconstruct the
sample should resemble the way the labels of atoms represent
the label of the sample, the label y; of sample x; is estimated
as a linear combination of the atom’s soft labels as follows:
y; = Az;. Therefore, as shown in the bottom of Fig. 1, a label
constraint for labeled samples is formulated as ||AZ; — Y;||%.

Since similar profiles force the corresponding atoms to be
similar, and the similar atoms in turn tend to have similar
profiles, we define an affinity matrix as W = ZZ . Obviously,
the affinity matrix W can be iteratively refined by the updated
Z during the training process. Inspired by manifold learning,
an atom graph Laplacian regularization based on W is defined
as follows

1 m m
522 wijllai —a;ll} = u(ALAT) 2

i=1 j=1

where L. = A — W is the Laplacian matrix, and A is a
diagonal matrix whose ith diagonal element is the summation
of the ith row of W, ie., A;; = Z;ﬂﬂ w;;. The element L;;
corresponding to nearby atoms d;, d; should be negative,
which means these atoms tend to have similar labels; the
elements corresponding to dissimilar pairwise atoms should be
zero, which means their labels are independent. In our work,
the atom graph regularization is used instead of the sample
graph regularization because atoms are more concise and thus
more robust to noise and outliers than samples, and meanwhile
they can also inherit the manifold structure of the samples.
We constrain the sparse coefficients to be non-negative
to ensure that each sample is in the middle of its related
atoms. This better embodies the dependency between samples
and atoms and facilitates learning local manifold structures.
To more clearly illustrate the geometric relation between
samples and their corresponding atoms, we present a synthetic
example in R>. As shown in Fig. 2, suppose a sample x
is approximately and sparsely represented by the atoms dj,
ds, ds and dy with non-negative coefficients, i.e.,  is in

Fig. 2. [Illustration for the geometric relation between samples and its
corresponding atoms with the non-negative constraint.

the convex cone of set {dy,ds,ds,ds}, then the sample x
can be enclosed by the atoms d;, ds, d3 and d4. Based on
this geometric relation, the label of x, as predicted by the
linear combination of the atom’s soft labels, is reasonable and
reliable. Therefore, the sparse coefficient matrix Z is required
to be non-negative.

As illustrated in Fig. 1, it is remarkable that the manifold
structure and the estimated labels of unlabeled samples can
be viewed as useful information. If we feed back this useful
information to the dictionary learning process, it is possible to
improve the discriminative capability of the learned dictionary,
this feedback mechanism is called self-raught.

III. NNST-SSDL ALGORITHM

Motivated by the above idea, we propose a unified frame-
work which fully exploits the latent manifold structure among
samples in dictionary learning. The formulation is

.1 B
pin  SIX=DZ|F+NIZ1+ 5 IAZ =il +7tr(ALAT)
st. Z>0. 3)
Here, X = [x1,22,  , Ti4u], Y1 = [Y1,Y2,- -y, Z =

[Z1, Z,] where Z; and Z,, are respectively the sparse coeffi-
cient matrices of labeled and unlabeled samples, C = {D =
[dy,dy, - dp] € R st d]dy <1,Vj=1,2,--- ,m}.
A, B and +y are trade-off parameters.

In model (3), the supervised term ||AZ; — Y;||% enforces
labeled samples in the same class to have similar sparse
coefficients. The graph Laplacian regularization tr(ALAT)
enforces the atoms with similar soft labels to have similar
profiles. This propagates the supervised information from
labeled sparse coefficients to unlabeled sparse coefficients.
In the training iterations, on one hand, the updated sparse
coefficients are fed back to refine the affinity matrix and thus
improve the estimation of the latent manifold structure, on
the other hand, the accurate estimation of the manifold further
increases the discriminative capability of the learned dictionary
and the sparse coefficients. In other words, the feedback of
sparse coefficients and manifold structure can be viewed as
a process of information gain by self-training, which is the
self-taught mechanism hidden in the proposed framework (3).

Compared with existed works, the proposed framework has
the following differences.



o The atom’s labels are soft labels, which are obtained by
optimization and thus are more suitable for the manifold
assumption than hard labels. The atoms are not allocated
to any single class because samples from different class-
es may share atoms. In some other multiple category-
specific dictionary learning methods (such as FDDL [15],
LCKSVD [17] and S2D2 [30]), each atom is allocated to
a specific class. The label of each atom is not changed
during training process.

o The graph Laplacian regularization tr(ALAT) construct-
ed by atom’s labels and sparse coefficients explicitly
exploits the underlying manifold structure of the samples.
It propagates the supervised information from labeled
samples to unlabeled samples. Furthermore, the affinity
matrix can be iteratively refined to give a more accurate
estimate of the manifold structure in the training process.
In contrast, earlier works scarcely consider the structural
relationships among samples and the supervised informa-
tion hidden in unlabeled samples.

o In the proposed framework, the labels of samples are
reconstructed by the linear combination of atom’s soft
labels via the corresponding sparse coefficients. The
supervised term || AZ; —Y}||% measures the reconstruction
error for labels. This is different from the classification
error for labeled samples in some earlier works (such as
DKSVD [16], LCKSVD [17], OSSDL [26] and USSDL
[32]) with linear classifiers.

A. Optimization of NNST-SSDL

The minimization (3) is non-convex and non-smooth. Op-
timizing over the variables Z, A, D simultaneously could be
expensive in practice. In the following, we iteratively optimize
the three variables using the block coordinate descent (BCD)
method.

1) Computation of Z: On fixing D and A, the subproblem
for the sparse coefficient matrix Z is formulated as

L1 B
min 5IIX—DZII%MHZHﬁgHAZz—%II%HII(ZZT)@@Hl
st. Z>0, (€]
since

w(ALAT) =3 wij(llai - a;ll3/2) =1(ZZ2T) 001 . ()
i.j

where ©;; = 1||a; — a;||3, and ® is the Hadamard product.

It is difficult to directly optimize (4) due to the interdepen-
dent terms with respect to the variable Z. To remove these
interdependencies and optimize these terms independently, we
introduce four auxiliary matrices P, @, Q,, and B, and rewrite
(4) as:

1 1
31X = DQUIE + 51Xu = DQulF

min
Z,P,Q1,Qu,B
B
AZ0h -+ 1A - vl + 1B o )
s.t. B=PQ', Z=P Z=Q,

The augmented Lagrangian function is
L.(Z,P,Qi,Qu, B, A1, A, A3)
= 1%~ DU} + 21X~ DQuIF + N2l
414G = Yillk +41B @ O]l + (B - PQT,A)
+(Z = P,Ao) +(Z - Q. As) + £IB - PQT
+512 - Pl + 512 - Ql% - ™

Here, the matrices A1, As, Az are Lagrange multipliers, and
> 0 is a penalty parameter which is adjusted by the adaptive
strategy in [34].

The alternating direction method of multipliers (ADMM)
[35], [36] is effective for solving optimization problems with
multiple terms. Based on the scheme of ADMM, problem (6)
can be iteratively solved by the following steps.

o Update Z:
Z" ! =argmin L,(Z, P*, QF, Q. BY, AT, A3, A%)

o1 2 A
:argrznéréiHZ—SkHF-FﬂHZ”l ) 3

where S* = (uP* + pQ* — A5 — A%)/(2u). For Egq.
(8) without constraint Z > 0, the optimal solution is
D (S*), in which D,)(-) is the shrinkage operator,

o
D, () = sgn(x) max(|e| - 1,0) . ©)
Then the solution of (8) can be formulated as
ZR+1 — max (07 D, (Sk)) . (10)
« Update P:
Pk“:argm;nLu(Zk“,P,Qf, K BF AT, AL AR)
:argmgl(/\]f, B — P(Q")") + (A5, Z¥! — P)

+511Z5 = PG+ S1IB* - PQY TR
= KB’%;A’f)Q’%Z’H%iA’g} (@Y™ 1.1
o Update Q:
I =arg min L,(ZF PR Q,QF, BF AT AL AY)

1 i
=argmin 5| X; = DQE + S 14Q0 = Yill7
1

2

e HBk _ PHLQT _ pErL(QR)T 4 A;f
2 l l u u
Bollp
AE 1P
PRz g4 20
2 F
=M"[(MCL")./(¢1] +1,0")]L. (12

In (12, ¢ = D'X; + BATY, + u(B* —
PEFHQE)T)TPMHY it + (A TRMY 4+ A%,
and A’g(l) is the sub-matrix of A% corresponding to
the labeled samples. Let F = pu(P/™)TPF 4 ur



and E = DD + BATA, then there are orthogonal
matrices M, L and diagonal matrices =, > such that
E = M"ZM and F = LTXL because of the positive
semi-definiteness of £ and F. £ and o are column
vectors whose elements are the diagonal elements of
the matrices = and X respectively. 1; € R*! and
1,, € R™*! are vectors whose elements are equal to
1. ./’ stands for the operator of the element-by-element
division. The optimization of @, is similar to that of
@i, and it is skipped due to space limits. The detailed
derivation is given in the ‘Supplementary Material’.
o Update B:

B — arg m}énLH(Zlﬁ+1’Pk+1’Q§c+l’ QFT B AY AL AD)

o1 2 0%
= argmin o |B - OkHF + ;HB ®© Ol
] 1 m m m m
= argmin 522(@]-—ofj)2+122|@¢jbij|
“ i=1j=1 K==
:a@%fl§:§:Lf@r*%V+7M”@4 , (13)

i=15=1

where OF = PM1(Q"*!)T — LAf. The last equation
follows from ©;; = 3lla; — a;]|3 > 0. It can be
seen that the elements b;; of B in optimization (13) are
independent, and then B can be obtained by individually
optimizing the following subproblem with respect to each

element b;;,

bfj"'l =arg Hb171]11 §(bij - ofj)er . J |bi;] :D@ (ofj) ,
(14)
where D, (-) is the shrinkage operator as shown in (9).

Accordingly, variable B can be updated by

B*' = D.e (O%). (15)
m
o Update the Lagrange multipliers matrices:
ARFL = AR 4y (BFHY — PRL(QM)T) |
A12€+1 — AIQc +N(Zk+1 _ Pk+1) , (16)

AST = Af + (28 - QMY

2) Computation of A: When D and Z are fixed, the
subproblem for A is

mgngHAZl — Y| +ytr(ALAT) . (17)

By setting the derivative of (17) to zero, the closed-form
solution for A can be obtained by

A=pYiZ] (822 +24L)"" . (18)

3) Computation of D: When A and Z are fixed, the
optimization problem for D can be formulated as

1
in—||X — DZ|% . 19
min o | % (19)
By introducing the auxiliary variable G and defining the
function I¢(G) as

IC(G):{O if GeCcC,

400 otherwise , (20)

Algorithm 1: BCD scheme for solving the problem (3).

Input: Samples matrix X =[X;, X, ], label matrix Y;, and
parameters A, 3, v > 0.
1: Initialize the dictionary DO the label matrix A© of atoms
and the sparse coefficient matrix Z O Lett=0.
2: while not converged do
3. Compute Z®Y) by using ADMM steps (8)-(16).
4 Compute A“*V) by using (18).
5. Compute DtV by using ADMM steps (23)-(25).
6: Lett=t+1.
7: end while
Output: D = DY, Z =21 A=A,

the problem (19) can be transferred to

1
in =||X-DZ|%+1
min 2|| %+ Ie(G)

st. D=G. 21

Next, we form the augmented Lagrangian function

W(D,G, )= 2| X-DZ|[} +1e(G)+ (A, D-G) + £ | D -G},

(22)
where the matrix A is a Lagrange multiplier and y is a penalty
parameter. We also use ADMM to iteratively solve the problem
(21) by the following steps.

—~

e For term D:
D*+D) — arg mDin fu(D, G AR
= (XZT =A%) 4 1« QWY ZZT +uI)t. (23)
« For term G:

GF+D) = arg H}}H fH(D(k'H), G,A™)

1
=TIl¢ <D(’““) + A(’“)> : (24)
1
where Il¢ is the projection operator on C.
o Update the Lagrange multiplier matrix:
AFFD — AR 4y (DRFD _ qUetD)y (25)

Since problem (21) only has two block variables D and G,
the global convergence can be guaranteed [35], [36].

B. Algorithm Description

Algorithm 1 summarizes the BCD scheme for solving the
unified optimization problem (3). The given labels Y; and
the estimated soft labels A of atoms are combined together
to update the sparse coefficient matrix Z which is used to
refine the affinity matrix in the next iteration. In general, if the
sparse coefficient matrix Z is distinguishable, it tends to yield
a discriminative dictionary D and a good affinity matrix which
makes the estimation of soft label matrix A more precise. The
dictionary D and the precisely estimated A can together yield
a more accurate sparse coefficient matrix Z. As a consequence,
the performances of the sparse coefficient matrix Z, the soft
label matrix A and the dictionary D can be boosted mutually
during the training process.



Algorithm 2: NNST-SSDL

Input: Samples matrix X = [X;, X, ], label matrix Y7, the
integers ¢, N, and parameters A\, 3, v > 0 .

1: Initialize the dictionary D soft label matrix A of atoms

and sparse coefficient matrix Z ©,
2: Initialize X\ = X;, X = X, ¥, = vj, and & = 1.
3: while K < N do

increases. However, the convergence properties of the ADMM
for minimizing an objective function that includes N (N > 3)
block variables have remained unclear [35], [36]. Since the
subproblem (6) has five block variables {Z, P, Q;, Q.,, B} and
its objective function is non-smooth, it might be difficult to
prove the convergence theoretically. Fortunately, the proposed

4 Calculate D™, A®) and Z(®) — [Zl(m), fo)] via Algorithm method performs well and converges quickly in practice, as is

1

5. Calculate the soft label matrix H of unlabeled samples via

H=A®z®,

shown in the experiments reported in Section IV.

Remark 1. Traditional dictionary learning methods could

6:  Use H to calculate the entropy of the estimated labels and also use the predicted labels to boost the classification perfor-

predict the classes of the unlabeled samples in x{.

7:  From each predicted class, select ¢ unlabeled samples with

mance. In fact, several SSDL methods have utilized techniques
similar to the self-taught mechanism. For example, OSSDL

minimal entropy values. Denote the selected sample matrix [26] first introduces a probabilistic model over the sparse

and its corresponding predicted label matrix by X ) and
y) respectively.
3 Let XZ(K+1) — [XZ(K),Xéﬁ)}, }/l('ﬁ'l) — D/l("i)’)/s('@)]’
x et — X£H>\X§H>, and Kk = k + 1.
9: end while
Output: D = D), 7 = Z(V) | 4 = AN,

The scheme of the self-taught semi-supervised dictionary
learning is described in Algorithm 2. The core idea is to select
the most confident unlabeled samples with their predicted
labels to augment the labeled set in the current iteration,
and thus further improve the discriminative capability of the
learned dictionary in the next iteration. In Algorithm 2, Step
2 initializes current labeled and unlabeled sets to the given
labeled set X; and unlabeled set X, respectively. The iteration
for incorporating the given labels and the estimated labels is
presented from Step 3 to Step 9. Specifically, Step 4 utilizes the
current labeled and unlabeled sets to train sparse coefficients
Z") | dictionary D) and soft labels A" via Algorithm 1.
The soft labels Hq(f) of the current unlabeled samples are
then estimated by the linear combination of the soft labels
A via the corresponding sparse coefficients Zi(f) in Step 5.
Step 6 utilizes the estimated soft labels HVS”) to calculate the
entropy and predict the classes of unlabeled samples. From
Step 7 to Step 8, we select ¢ unlabeled samples with minimal
entropy values (i.e., the ¢ most confident unlabeled samples)
to augment the current labeled set. These selected samples
are removed from the current unlabeled set. It is remarkable
that from the second iteration, the number of labeled samples
keeps increasing. On average, an increase of the number of
labeled samples is associated with an increase in the ability
of the dictionary to discriminate between the different classes.
Moreover, the sparse coefficients and soft labels of atoms in
the current iteration are fed back to revise the graph Laplacian
regularization in the next iteration, and hence can further
enhance the discriminative capability of the learned dictionary.

From the inner loop (Algorithm 1) and the outer loop
(Algorithm 2), the manifold information and the estimated
labels of unlabeled samples can be iteratively fed back to boost
the performance of the learned dictionary in training process.
This is why the proposed method is said to be self-taught.

The BCD scheme used in Algorithm 1 guarantees that the
objective value of (3) is decreasing as the number of iterations

coefficients, and then computes the entropy based on the
probabilistic model to quantify the confidence level of the
discriminability for unlabeled samples. The samples whose
entropy values are smaller than a predefined lower bound are
automatically added to the labeled set for dictionary learning.
The methods such as S2D2 [30], DSSDL [31] and SSD-LP
[32] adopt a confidence matrix to estimate the probabilities
of unlabeled samples over all classes, and iteratively feed
back the estimated probabilities to the learning process and
thus boost the classification accuracy. Of course, SDL methods
could also benefit from the predicted labels of unlabeled sam-
ples. This will be verified by applying the feedback mechanism
of predicted labels to the LC-KSVD method, as described in
Section IV-E.

C. Classification Strategy

Once D and A are obtained, the class of a test sample x
can be predicted by the following two steps:
Step 1: Calculate the sparse coefficients of & over the learned
dictionary D, i.e.,

5 1
z:argmzln§||w—DzH%+)\||z||1 . (26)

Step 2: Calculate y = A2, and predict the class of the test
sample x via
(27

19 = ar max P .
giel,Q,...,Kyl

D. Computational Complexity

We first review the symbols used below: d, m, [, u and
K are the dimension of samples, the number of atoms, the
numbers of labeled and unlabeled training samples, and the
number of classes respectively. n = [+ u is the number of all
training samples. The maximal iteration numbers in ADMM
and BCD are respectively denoted by s and ¢. In general,
n>m>K,n>1[and n > u.

In Algorithm 1, the computational complexity of Step 3 is
O(s(n® + dmn) + m?d). Step 4 and Step 5 take O(m?n)
and O(s(dnm+m?2n)) operations to update the atom’s labels
A and the dictionary D respectively. In summary, the overall
computational complexity of Algorithm 1 is O(ts(n3+dmn)).

For the testing phase in Section III-C, calculating the sparse
coefficients and the soft label take O(sm?® + sm?d) and
O(K'm) operations respectively. Thus, the total computational
complexity for classification is O(s(m?® + m?d)) due to the
fact that K < m.



TABLE I
OVERALL DESCRIPTION OF THE DATASETS AND THE OPTIMAL PARAMETERS USED IN THE PROPOSED METHODS.

ST-SSDL NNST-SSDL
Datasets DIM Data#  Class# T v m b\ 3 5 p\ 3 5
ORL 1024 400 40 2 5 80 0.05 0.1 0.001 0.05 0.1 0.001
PIE 1024 2040 12 20 60 200 0.01  0.01 0.0001 0.005 0.01 0.0001
TDT2 500 1560 30 3/5/7 28/26/24 210  0.005 0.005 0.001 0.001 0.01 0.00005
UMIST 750 575 20 5 10 200  0.001 0.001 0.00005 0.001 0.001 0.0001
COIL-20 1521 1440 20 2710 38730 200 0.01 0.01  0.0001 0.01 0.01 0.0001
SBData 638 2000 40 5 15 200 0.05 0.005 0.0001 0.05 0.005 0.0001
E-YaleB 1024 2414 38 2/5/10 18/15/10 380  0.001 0.1 0.0001 0.001 0.01 0.001
UCF50 1500 6679 50 10/15/20  30/25/20 1000  0.001 0.001 0.0001 0.005 0.005 0.0001

—~
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Fig. 3. Parameter sensitivity analysis of our method on TDT2 database, where (a) tune 3 and ~y utilizing grid searching with fixed A; (b) tune A and ~y
utilizing grid searching with fixed §; (c) tune A\ and S utilizing grid searching with fixed ~.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The experiments are conducted on seven image datasets
ORL, PIE, UMIST, COIL-20, SBData, TDT2, Extended YaleB
[29], [37], [38] and one action recognition dataset UCF50
[39]. Table I gives an overall description for these datasets.
The competing methods include DKSVD [16], FDDL [15],
LCKSVD [17], OSSDL [26], S2D2 [30], SSR-D [27], as
well as three recently proposed SSDL methods SSP-DL [29],
DSSDL [31] and SSD-LP [32]. To demonstrate the advantage
of the non-negative constraint on sparse coefficients, we also
perform experiments for the model of framework (3) without
non-negative constraint, which is denoted by ST-SSDL. For
the proposed methods (ST-SSDL and NNST-SSDL), K-means
algorithm is utilized to initialize the dictionary. The parameters
of all methods are selected by cross-validation. The optimal
parameters of the proposed methods and the numbers of atoms
are listed in Table I. For each class of a dataset, 7 and v
samples are randomly selected as the labeled and unlabeled
samples for training, while the rest samples are used for
testing. The experiments are repeated 10 times with different
random splits for each dataset, and the average accuracy
together with the standard deviation are recorded. The best
classification accuracies are shown in boldface (For more
experiments, please refer to ‘Supplementary Material’).

A. Parameter Sensitivity

The sensitivity of the NNST-SSDL model to variations in
the parameter values is investigated. There are three parameter-
s in our model, so we fix one of them and explore the effects of
the other two on the classification accuracy by grid search from
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Fig. 4. Classification accuracy versus iteration number on the datasets TDT2
and Extended YaleB.

the candidate set {le—5,5¢—5,...,1le—1} (le—5 and 5e—5
represent 107° and 5 x 1077 respectively. The same notation is
used below). We perform the experiment on the TDT?2 dataset
as an example. For each class of TDT2, we randomly select 7
samples as labeled samples, 24 samples as unlabeled samples,
and the rest are left for testing. According to the optimal
parameters for TDT2, we first fix A = le—3, and tune  and
v by grid search from the candidate set. The classification
accuracies are shown in Fig. 3 (a), where NNST-SSDL with
B < be—2 and all v can achieve desirable and stable results.
Then, we fix § = le—2 to investigate the effects of A and
~ in Fig. 3 (b), from which we know that NNST-SSDL with
A < le—2 and all ~ has satisfactory performance. Finally, we
illustrate the effects of A and /5 with fixed v = 5e—5 in Fig. 3
(¢). It can be seen that NNST-SSDL with § < le—2 and all A
yields satisfactory results. From the above analysis, it can be
concluded that the classification performance of NNST-SSDL
is robust to the three parameters over a wide range of values.



TABLE I
CLASSIFICATION ACCURACIES OF DIFFERENT DATASETS.

Datasets DKSVD FDDL

LCKSVD1 LCKSVD2 OSSDL

S2D2 SSR-D SSP-DL  ST-SSDL  NNST-SSDL

ORL
PIE

80.17+4.59 84.924+1.69 78.92+3.09 80.50+2.81 67.50+£7.69 82.58+3.10 77.50+3.14 82.33+3.09 85.92+3.04
74.58£2.73 96.941+0.94 90.53£5.14 92.67+2.79 94.68+4.77 79.43+1.80 94.70£1.37 94.85+1.03 97.56+1.27
UMIST 80.78+3.70 85.00£2.30 86.44+2.70 86.76£2.60 85.024+2.90 85.18+3.20 87.2542.70 88.73+2.50 89.274+2.01
SBData 49.714£5.71 58.38+4.94 56.82+£5.21 56.82+5.21 53.86£2.20 56.974+1.90 63.21+£6.69 64.56+5.80 65.21+4.74

86.83+5.06
98.10+£0.73
89.38+6.52
65.33+4.48
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Fig. 5. The visualization of the affinity matrix on the dataset TDT2.

100 300

B. Image Classification

The classification accuracies on datasets ORL, PIE, UMIST
and SBData are reported in Table II, from which we conclude
the following assertions: 1) SSDL methods usually achieve
significantly better performance than SDL methods because of
the utilization of the unlabeled samples. 2) The proposed ST-
SSDL and NNST-SSDL outperform all other methods. This
verifies that the performance of the learned dictionary can
be improved by the feedback of the supervised information
hidden in unlabeled samples and the manifold structure from
the atom graph Laplacian regularization. 3) Although the
classification performance of ST-SSDL is excellent, it can still
be improved by NNST-SSDL, which confirms the advantage
of imposing the non-negative constraint on the sparse coeffi-
cients.

Subsequently, classification accuracy versus iteration num-
ber on the datasets TDT2 and Extended YaleB with different
numbers of labeled samples are shown in Fig. 4. It can be
seen that the effectiveness of the feedback of the predicted
labels is convincing, especially for small size of labeled set.
We visualize the affinity matrix constructed by Z ' Z on the
dataset TDT2. From left column to right column in Fig. 5, the
visualizations respectively represent the affinity matrix in the
first iteration, the 9-th iteration and the last iteration. It can be
seen that the block diagonal structure becomes more apparent
as iterations proceed. This also validates that the discriminative
capability of the learned dictionary can be boosted by the
feedback of the predicted labels and the refined manifold
structure.

To investigate the effect of the number of labeled samples
on the classification accuracy, we conduct the experiments on

COIL-20, TDT2 and Extended YaleB datasets with varying
number of labeled samples. The classification results are
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Fig. 6. Classification accuracies on the dataset COIL-20 for different numbers
of labeled samples.

reported in Fig. 6, Table III and Table IV . We see that the
classification accuracies increase with the number of labeled
samples increasing for all methods. The proposed methods sig-
nificantly outperform all other competitors, particularly when
there are only a few labeled samples. This is another evidence
that the learned dictionary can become more powerful through
the self-taught mechanism.

Moreover, we study the classification performance on the
datasets COIL-20 and Extended YaleB as the number of
atoms varies. We randomly select 10 labeled samples from
40 training samples in each class of the COIL-20 dataset
and vary the number of atoms in set {100, 120, ...,280}. For
the Extended Yale-B dataset, we randomly select 10 labeled
samples from 20 training samples in each class and vary the
number of atoms in set {190,228, ...,494}. The experimental

The results of DSSDL and SSD-LP are respectively referenced in [31]
and [32].



TABLE III
CLASSIFICATION ACCURACIES ON THE TDT2 DATASET.

labeled # 3 5 7
DKSVD 89.79+1.66  91.65+1.24  92.654+0.94
FDDL 88.84+0.87  91.54+0.77 91.81+£1.04
LCKSVDI1 89.73£1.75 91.81+1.06  92.794+0.80
LCKSVD2 89.81+1.65 91.95+0.93 92.86+0.75
OSSDL 89.84+1.07 90.17£1.92  90.78+1.14
S2D2 88.35+1.69  90.24+1.20  90.86+1.28
SSR-D 83.97+1.95 87.37+£1.84  87.98+1.36
SSP-DL 85.114£2.09 87.54+1.68  88.52+1.27
ST-SSDL 94.75£1.10  95.00+0.47  95.114+0.71
NNST-SSDL.  94.86+0.75  95.13+0.74  95.22+0.72

TABLE IV
CLASSIFICATION ACCURACIES ON THE EXTENDED YALEB
DATASET.

labeled # 2 5 10
DKSVD 52.57+8.64  67.98+6.58  88.33+4.68
FDDL 54.404+7.50  79.93+5.41  88.93+4.88
LCKSVDI 55.5449.22  75.71+6.51  89.17+4.99
LCKSVD2 55.5549.22  75.71+£6.51 89.174+4.99
OSSDL 25.4349.13  53.384+7.05  80.89+5.29
S2D2 58.244+1.68 84.924+2.77  92.26+2.68
SSR-D 45.961+9.89  75.26+5.75  88.04+4.54
SSP-DL 60.76+5.50  78.97+5.37  87.844+4.30
DSSDL 62.10+£3.00  87.504+0.30  94.5040.30
SSD-LP 67.204+2.90  89.8304+0.90  95.2040.20
ST-SSDL 85.21+£5.99  90.454+1.53  95.52+0.91
NNST-SSDL  87.194+4.83  90.524+4.67 95.9411.88

results are shown in Fig. 7. The number of atoms for DKSVD,
LCKSVD, OSSDL and S2D2 is no more than the number
of the labeled samples because their dictionaries are multiple
category-specific. We can see that our methods achieve the best
classification accuracies for all numbers of atoms. Besides, an
interesting phenomenon is that the accuracies of our methods
on the Extended YaleB dataset fall slightly when the number of
atoms is larger than 380. The reason is that when the number
of atoms becomes close to the number of training samples,
the atoms inherit more information from the original images
which contain noise (such as shadows and strips occlusion)
in the Extended YaleB dataset. This experiment well validates
the claim “the atom graph Laplacian regularization is more
robust to noisy samples and outliers”.

C. Action Recognition

Action recognition is important for a wide range of ap-
plications, such as video surveillance, intelligent interface,
sport video annotation, etc. [2]. In this subsection, we conduct
experiments on one large action recognition dataset UCF50,
which contains 50 action categories with a total of 6679
realistic videos taken from YouTube. Because of the high
dimension of action features [39], we use PCA to reduce
the feature dimension to 1500. The classification results are
reported in Table V. We can see that NNST-SSDL also

TABLE V
CLASSIFICATION ACCURACIES ON THE UCF50 DATASET.

labeled # 10 15 20
DKSVD 35.40£2.57 39.00+1.35 43.45£1.78
LCKSVD1 36.03£6.35  41.10+5.39  45.48+1.45
LCKSVD2 36.14£1.30  42.65+1.28  45.92+1.23
FDDL 40.19£2.35  47.23£1.52  50.33+1.17
OSSDL 30.24£1.47  37.86+£1.26  44.15+0.89
S2D2 28.34+£0.87  28.86+1.09  30.68+0.66
SSR-D 38.93£1.09  46.14+1.21 49.11£1.28
SSP-DL 37.52+£0.51  43.51+£1.22  46.33£1.15
ST-SSDL 43.54+090  49.63+0.78  53.47+0.72
NNST-SSDL  43.63+1.25  49.83+1.11 54.42+1.05
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Fig. 7. Classification accuracies with different numbers of atoms on the
COIL-20 dataset (left figure) and the Extended YaleB dataset (right figure).

achieves significant improvement compared with the other
methods, which further demonstrates the effectiveness of the
proposed method.

D. Analysis of Optimization Algorithm

In this part, we investigate the convergence properties of
the BCD and ADMM methods used in Algorithm 1. Here
we take the COIL-20 dataset as an example. Fig. 8 (a)
shows that the value of the objective function for problem (3)
drops as iterations proceed via the BCD method. A satisfying
convergence trend is achieved within 30 iterations. We also
define the following error terms which are related to the
convergence conditions of the ADMM method for solving the
sub-problem (6):

1B=PQE p _1Z=PlE p _ 120l

1115 IX11% IX11%

From Fig. 8(b), it can be seen that all error curves drop quickly
as the number of iterations increases. At most 30 iterations
are required in all cases. This is a strong validation for the
convergence of the proposed optimization algorithm. More
convergence results for other datasets can be found in the
‘supplementary material’.

Ey = , Eo = , B3 =

E. Benefit from the Predicted Labels

To more clearly demonstrate the benefit from the predicted
labels of unlabeled samples for SDL methods, we also feed
back the most confident unlabeled samples with their predicted
labels to augment the labeled set for the training of LCKSVD2.
This method is denoted by ST-LCKSVD2. The experimental
results are recorded in Table VI. It is apparent that feedback
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Fig. 8. The convergence of the (a) BCD and (b) ADMM methods.

TABLE VI
BENEFIT FROM THE PREDICTED LABELS.

Dataset 7 LCKSVD2  ST-LCKSVD2 NNST-SSDL
ORL 2 80.50£2.81 82.50+4.32 86.83+5.06
PIE 20 92.67+£2.79 96.94£1.00 98.10+0.73
UMIST 5 86.76£2.60 87.52+4.47 89.38+6.52
SBData 5  56.82£5.21 57.48+£4.92 65.331+4.48
2 65.64+6.80 72.36£6.45 85.25+3.32

COIL-20 5 76.31+2.97 85.42+4.47 92.45+3.74
10 91.17+£3.89 91.92+3.49 96.03+3.83

3 89.81£1.65 93.62£0.67 94.86+0.75

TDT2 5  91.95+£0.93 93.75+0.52 95.13+0.74
7 92.86%0.75 93.83£0.66 95.2240.72

2 55.5549.22 57.92£5.59 87.19+4.83

E-YaleB 5 75.71£6.51 77.42£5.17 90.52+4.67
10 89.17+4.99 89.43+4.93 95.94+1.88

10 36.14£1.30 37.07£1.19 43.63£1.25

UCF50 15 42.65+1.28 44.34%1.15 49.83+1.11
20 45.92+1.23 48.45+1.29 54.42+1.05

of predicted labels improves the classification performance
of LC-KSVD2. However, NNST-SSDL still achieves the best
classification accuracies. This is because NNST-SSDL fully
exploits the intrinsic manifold structure of samples by con-
structing an atom graph Laplacian regularization which can
be iteratively refined in the training process. In other words,
the success of the proposed method is from two aspect. One
is the “self-taught” mechanism, the other is the exploration of
the manifold structure.

V. CONCLUSION

We propose a unified framework termed self-taught semi-
supervised dictionary learning with non-negative constraint.
In the framework, an atom graph Laplacian regularization is
constructed to characterize the manifold structure of samples.
The non-negative constraint imposed on the sparse coefficients
ensures that each sample is in the middle of its related atoms,
which is more consistent with the modeling of visual data and
can facilitate learning local manifold structures. We propose
the self-taught mechanism, which guarantees that the manifold
structure induced by the atom Laplacian regularization and
the supervised information hidden in unlabeled samples can
be efficiently fed back to boost the discriminative capability
of the learned dictionary. To solve the unified framework, we
also derive an efficient algorithm by combining the block co-
ordinate descent method with the alternating direction method
of multipliers. Experiments on image classification and action

recognition show that the proposed model is a clear advance
over the existing DL approaches.
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