
1051-8215 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2021.3114601, IEEE
Transactions on Circuits and Systems for Video Technology

1

Single Image Haze Removal Based on a Simple
Additive Model with Haze Smoothness Prior

Xiaoqin Zhang Member, IEEE, Tao Wang, Guiying Tang, Li Zhao,
Yuewang Xu, Stephen Maybank Fellow, IEEE,

Abstract—Single image haze removal, which is to recover the
clear version of a hazy image, is a challenging task in computer
vision. In this paper, an additive haze model is proposed to
approximate the hazy image formation process. In contrast with
the traditional optical model, it regards the haze as an additive
layer to a clean image. The model thus avoids estimating the
medium transmission rate and the global atmospherical light.
In addition, based on a critical observation that haze changes
gradually and smoothly across the image, a haze smoothness
prior is proposed to constrain this model. This prior assumes that
the haze layer is much smoother than the clear image. Benefiting
from this prior, we can directly separate the clean image from
a single hazy image. Experimental results and comparisons with
synthetic images and real-world images demonstrate that the
proposed method outperforms state-of-the-art single image haze
removal algorithms.

I. INTRODUCTION

Images captured outdoors are affected by liquid droplets or
small dust particles in the air, collectively known as aerosols.
These aerosols absorb the light from the atmosphere and
scatter the light reflected from objects in the field of view.
These phenomena lead to hazy images, which often suffer
from low contrast, faint regions, and color shift. These effects
limit the visual quality of images and greatly hinder outdoor
computer vision and image processing algorithms. Therefore,
research on haze removal is essential.

Dehazing is an increasingly desirable technique in a variety
of computational photography and computer vision tasks.
A haze optical model was proposed in 1924 [1]. However,
haze removal based on this model is an under-constrained
problem for single image input. More information is required
to perform image dehazing.

Researchers first consider utilizing multiple images to de-
haze. Naturally, multiple images can provide more information
than a single image input. In [2, 3], images taken with
different degrees of polarization are used to dehaze. In [4–
6], Narasimhan and Nayar propose haze removal approaches
with multiple images of the same scene captured in different
weather conditions. But it is difficult to obtain multiple images
in practical applications, such as video surveillance and as-
sisted driving. Therefore, single image dehazing has attracted
more and more attention in recent years.
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Researchers have focused on single image dehazing over
the past decade. Existing single image dehazing methods can
be broadly classified into three categories: methods based on
adaptive contrast enhancement, methods based on transmission
estimation, and methods based on neural networks. Brief re-
views of these methods are given in the following paragraphs.

Methods based on adaptive contrast enhancement can re-
alize the dehazing of a single image. Fattal proposes a de-
hazing method using independent component analysis [7].
It requires sufficient color information and image variation,
but it performs poorly on images taken in dense fog. Tan
implements single image dehazing by maximizing the contrast
per patch [8]. However, the method suffers from artifacts,
over-saturation, and high computational complexity. In [9],
the authors present a dehazing algorithm based on a pre-
diction model. However, the results are subject to severe
over-saturation. The method in [10] extends a well-known
perception-inspired variational framework to achieve single
image dehazing. In [11], the image is segmented into regions
containing relatively small variations in depth. The contrast is
stretched within each region, but this may lead to artifacts at
the boundaries between regions.

Methods based on transmission estimation are very popular.
They usually depend on the aforementioned optical model For
instance, He et al. [12] find that most outdoor objects in clear
weather have at least one color channel that is significantly
darker than the other channels. This phenomenon is named
dark channel prior (DCP). Nevertheless, it is computation-
ally intensive and unreliable when handling sky regions that
contain white parts. Many improved algorithms [13–18] have
emerged to overcome these shortcomings by replacing the
time-consuming soft matting in [12] with a fast median filter
[19] (a fast visibility restoration method, we call it FVR
for short), standard median filter [14], “median” of median
filter [20], and guided image filter [21]. Meng et al. [22]
further explore region boundary constraints and contextual
regularization (BCCR) based on the dark channel prior and
obtain better restoration. However, over-enhancement may
still occur. And a newly proposed channel-weighted analysis
[23] aims to eliminate the unnatural effect of DCP method.
Another two approaches based on hue disparity prior and
color attenuation prior are proposed by Ancuti et al. [24]
and Zhu et al. [25], respectively. The former approach is
not robust and often suffers from large errors because of
ambiguities in assessing color and depth. The latter approach
proposes a new effective color attenuation prior (CAP), and
creates a linear model for modeling the scene depth of the
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hazy image under this novel prior. Although it needs to be
trained in advance, it outperforms other methods except for
some methods based on neural networks, as described in a
recent review article [26]. A Bayesian defogging (BD) method
is introduced in [27] to estimate scene radiance and scene
depth. The random field is used in a preliminary step to
obtain the transmission. However, the restored images are
often over-saturated and distorted. The authors in [9] propose
a referenceless prediction (this approach is named DEFADE
by authors), which restores the details in hazy images very
well, but its results suffer from over-saturation. On account of
the observation that pixels in a haze-free image from color-
lines in RGB space, Fattal proposes to use color lines for
dehazing [28]. Inspired by color-lines, Berman et al. propose
a non-local dehazing (NLD) method in [29] and introduce
a new conception of haze lines in 2016 and modified their
work in the following year [30]. Based on reformulation of
the traditional optical model, a convex optimization (CO)
algorithm is introduced to achieve fast haze removal in [31].
Methods for suppressing artifacts are studied in [32] and [33].
The former paper focuses on block artifacts that are usually
caused by compression (we call this work JPEG for short)
and the latter paper utilizes the gradient residual minimization
(GRM) to suppresses edges in the dehazed images that do not
exist in the input images. Ju et al. [34] first propose a novel
image prior called gamma correction prior (GCP). Then based
on this prior and the atmospheric scattering model, a method
named IDGCP is developed for single image dehazing. In [35],
the authors introduce a new parameter (i.e. light absorption
coefficient) into the atmospheric scattering model and it results
an enhanced ASM (EASM). Based on the ESAM, they develop
an image dehazing method called IDE. Zhang et al. [36]
present a simple but effective image prior, called a maximum
reflection prior, to estimate the varying ambient illumination
and it can address a haze removal problem from a single
nighttime image. Zhang et al. [37] propose a method called
3R to simulate nighttime hazy images from corresponding
daytime ones. It first reconstructs the scene geometry, then
simulates the light rays and object reflectance, and renders the
haze effects in the end.

In recent years, learning-based algorithms [38–43] are also
proposed for image dehazing. For example, a fast and accurate
multi-scale end-to-end dehazing network called FAMED-Net
is proposed in [41]. It directly recovers the clear image
by encoders at three scales and a fusion module. Li et al.
[39] adopt an end-to-end AOD-Net (here AOD represents
All-in-One Dehazing), which integrates transmission and air-
light into a new variable. The desired output is obtained
directly from the input. Ren et al. [44] propose a multi-scale
convolutional neural network (MSCNN) which first generates
a coarse-scale transmission matrix and then gradually refines
it. In [45], the authors present a trainable model for estimating
the transmission matrix from a hazy image. A deep fully
convolutional regression network (DFCRN) and gated context
aggregation network (GCAN) for dehazing are presented in
[46] and [47], respectively. [48] presents an efficient multi-
scale correlated wavelet (MSCW) approach to solve the image
dehazing problem in the frequency domain. Combining model-
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Fig. 1. Optical Model

based and fusion-based dehazing methods, [49] utilizes multi-
band fusion (MBF) method to extract the base and detail layers
for intensity and Laplacian modules. Shao et al. [50] propose a
domain adaptation image dehazing framework, which contains
an image translation module and two image dehazing mod-
ules. These CNN-based methods produce promising dehazing
results. However, the neural network is difficult to interpret
and is strongly affected by the choice of training data. In this
paper, we lay emphasis on the traditional method and compare
several CNN methods meanwhile.

This paper mainly introduces the following four contribu-
tions. (I) A new simple additive haze model is proposed. In
this model, the hazy image is regarded as the sum of the
clear image and corresponding haze layer. Compared with
the common optical model, which involves both additive and
multiplicative parts, the new model only includes an additive
part and avoids estimating the medium transmission rate and
global atmospheric light. (II) An effective haze smoothness
prior is introduced and incorporated into the haze model to
ensure the identifiability of the haze layer and the haze-
free image layer. (III) We propose an effective single image
haze removal algorithm whose convergence is guaranteed both
theoretically and experimentally. (IV) The method in this
paper has remarkable dehazing results and outperforms most
state-of-the-art dehazing approaches.

The remainder of this paper is organized as follows. Section
II gives a quick review of the primary optical model. The
new method is presented in Section III. To illustrate the
effectiveness of the proposed method, extensive experiments
and comparisons are conducted in Section IV. Finally, Section
V concludes the paper.

II. OPTICAL MODEL

To make the paper self-contained, a quick review of the
traditional optical model is provided. It is formulated as

I(x) = t(x)J(x) +A(1− t(x)), (1)

where x is the pixel coordinate in the image plane, I is the
observed image which is degraded by haze, J denotes the
object radiance, as measured in fine weather. The matrix A
represents air light, and t is the medium transmission rate that
describes the proportion of the light that reaches the camera
without being scattered. The parameter t can be expressed as:

t(x) = e−βd(x), (2)
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Fig. 2. A check of the validity of haze smoothness prior. From left to right:
the observed hazy images, corresponding haze layers, and gradient histograms
of haze layers. The horizontal and vertical coordinates of (c) are absolute
values of gradient magnitude and corresponding numbers, respectively. To
make the picture clearer, only the region 0-40 is shown.

where β is the scattering coefficient of the atmosphere. It is a
constant if the atmosphere is homogeneous. d is scene depth,
i.e., the distance from the object to the camera.

The traditional optical model is illustrated in Fig. 1. The
goal of dehazing is to recover J from the observed image
I with A and t as by-products. This is a severely ill-posed
problem.

III. OUR METHOD

In this section, we first propose a novel additive model to
describe the formation of a hazy image and then introduce a
powerful haze smoothness prior to constrain it. The technical
details are as follows.

A. Haze Formation Modeling

Inspired by the general image denoising model, we regard
the haze in the observed image as additive noise and propose
an additive model to approximate the hazy image formation.
Formally, the hazy image is expressed as the addition of the
clear image layer and the haze image layer:

I(x) = J(x) +H(x), (3)

where J is the clear image to be recovered, and H is the
haze layer that is added to the clear image. Our method is to
separate the clear image J from the hazy image I .

Compared with the common optical model (1) which in-
volves both additive and multiplicative parts, the new one
includes an additive part only and avoids estimating the
medium transmission rate t and global atmospheric light A,
which affect a lot in the original model. However, this model
is still under-constrained. More constraints on the model are
required.

B. Haze Smoothness Prior

It is observed that the haze changes gradually and smoothly
in natural images. Therefore, we make a reasonable assump-
tion that the haze layer is smooth. As illustrated in Fig. 2, the
histogram of gradient magnitudes obtained from the haze layer
has a remarkably short tail. Most of the gradient magnitudes
are near zero. Small gradient magnitudes are likely to occur

in H , and larger gradient magnitudes are likely to occur in J .
The haze smoothness prior assumes that the haze layer H is
smoother than the clear image J . As shown in [51], we could
encode this attribute into probability density functions as:

PJ(∇xJ) =
1

w
max{e

−∇2
xJ

2σ21 , τ},

PH(∇xH) =
1√

2πσ2
e
−∇2

xH

2σ22 ,

(4)

where ∇xJ and ∇xH denote gradient magnitudes at pixel
x in J and H respectively, PJ and PH are two probability
density functions related to J and H respectively, and w
is a normalization parameter. The max operator with the
threshold value τ is used to prevent the probability density
from approaching zero as the magnitude of the gradient
becomes large. σ1 and σ2 are standard deviations of respective
Gaussian distributions. According to the gradient sparsity prior
[52], σ2 should be smaller than σ1 to ensure that the gradient
distribution of H falls faster than that of J .

To recover J , we maximize the joint probability den-
sity functions PJ(∇xJ) and PH(∇xH) on condition that
J+H = I . For convenience, we minimize the negative natural
logarithm of it directly. That is,

−min log(PJ(∇xJ)PH(∇xH))

∝ min{ ∇2
xJ

−2σ2
1 log τ

, 1}+
∇2
xH

2σ2
2

.
(5)

Minimization function (5) can be further simplified by re-
placing the inner min operator with ρ(∇xJ) = min{∇

2
xJ
k , 1}

where the term k is a small positive value:

min
J,H

ρ(∇xJ) + λ∇2
xH,

s.t. J +H = I,
(6)

where parameter λ contains the constants in function (5) and
controls the smoothness of the haze layer. Since the degree of
smoothness is very high, λ should be given a large value.

C. Dehazing Model
In our single image dehazing task, selecting proper gradient

operators leads to the following dehazing model:

min
H,J

λ‖fLa ∗H‖2F +
2∑
i=1

ρ(fi ∗ J),

s.t. J +H = I,

(7)

where symbol ∗ denotes convolution operation, ‖ · ‖F repre-
sents the Frobenius norm, f1 = [−1, 1] is first order horizontal
derivative filter, f2 = [−1, 1]T is first order vertical derivative

filter, and fLa =

[
0 1 0
1 −4 1
0 1 0

]
is second order Laplacian filter.

The formula of ρ is as defined before. It is worth noting that
the first order gradient operators f1 and f2 help to preserve
significant edges while the second order Laplacian filter fLa
is isotropic and able to suppress smooth regions [53]. Then
the dehazing model is obtained:

min
J
λ‖fLa ∗ (I − J)‖2F +

2∑
i=1

ρ(fi ∗ J). (8)
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D. Optimization

To simplify problem (8), the auxiliary variables Gi (i =
1, 2) are introduced. The minimization (8) is converted to the
following form:

min
J,G

λ‖fLa ∗ (I−J)‖2F +
2∑
i=1

(ρ(Gi)+α‖Gi−fi ∗J‖2F ), (9)

where α is weight parameter. As α gets larger, the solution
of function (9) gets closer to that of function (8). Since ρ is
an approximation of the `0 norm [54] when the parameter k
in ρ is sufficiently small. Therefore, `0 norm replaces ρ for
solving easily.

min
J,G

λ‖fLa∗(I−J)‖2F +
2∑
i=1

(‖Gi‖0+α‖Gi−fi∗J‖2F ), (10)

where ‖Gi‖0 stands for `0 norm of matrix Gi. Since opti-
mizing J , G1, and G2 simultaneously in problem (8) could
be expensive in practice, the half-quadratic separation (HQS)
scheme is used to minimize it. Thus, problem (10) can be
solved by an alternating optimization with respect to Gi and
J . And the corresponding sub-problems in this process have
closed-form solutions that can be obtained efficiently. The
whole optimization process is summarized in the following:

Step1 Given J (k), update G(k+1)
i for i = 1, 2 by

arg min
Gi
‖Gi‖0 + α‖Gi − fi ∗ J (k)‖2F

=H√ 1
α

(fi ∗ J (k)), (11)

where [Hµ(A)]i1i2 =

{
[A]i1i2 , if |[A]i1i2 | > µ,
0, otherwise. , | · | is

absolute value, and [A]i1i2 stands for the entry which local in
i1-th column and i2-th row of A. This solution holds while
α < 1

k .
Step2 Given G(k+1)

i for i = 1, 2, update J (k+1) by

arg min
J
λ‖fLa ∗ (I − J)‖2F + α

2∑
i=1

‖fi ∗ J −G(k+1)
i ‖2F .

(12)

Note that the function being minimized in (12) is quadratic in
J . The minimization is solved by:

λfTLa∗(fLa∗(J−I))+α
2∑
i=1

fTi ∗(fi∗J−G
(k+1)
i ) = 0. (13)

The equation (13) can be solved in the fast Fourier transform
domain by applying a 2D Fast Fourier Transform (FFT) under
the circular boundary condition. Then, we can compute J
directly:

J (k+1)

= F−1
(
α
∑2
i=1(F(fi)F(G

(k+1)
i )) + λF(fLa)F(fLa)F(I)

α
∑2
i=1(F(fi)F(fi)) + λF(fLa)F(fLa) + ε

)
,

(14)

where F denotes FFT, (̄·) represents the complex conjugate,
and ε is a small constant for preventing division by 0. Unless

indicated otherwise, all the foregoing calculations are per-
formed in an element-wise manner. The detailed optimization
process (HSP) is given in algorithm 1. And the corresponding
convergence analysis is given in Conclusion 1.

Algorithm 1: HSP via HQS scheme
Input: Observed image I , λ, α, iteration number κ,

tolerance τ , fi for i = 1, 2 and fLa.
1 Initialization: k = 1,J (1) = I and err = 0.
2 while err > τ & k < κ do
3 // update G(k+1)

i using (10) for i = 1, 2;
4 // update J (k+1) using (13);
5 k = k + 1;

6 err =
‖J(k+1)−J(k)‖2F
‖J(k)‖2F

+
∑2
i=1

‖G(k+1)
i −G(k)

i ‖
2
F

‖G(k)
i ‖2F

;

7 end
Output: Dehazed image J .

Conclusion 1. Set

c(J,G1, G2) := λ‖fLa∗(I−J)‖2F+
2∑
i=1

(‖Gi‖0+α‖Gi−fi∗J‖2F )

It follows that

c(J (k+1), G
(k+1)
1 , G

(k+1)
2 ) ≤ c(J (k), G

(k)
1 , G

(k)
2 ).

By the definition of G(k+1)
i for i = 1, 2,

‖G(k+1)
i ‖0 + α‖G(k+1)

i − fi ∗ J (k)‖2F ≤ (15)

‖G(k)
i ‖0 + α‖G(k)

i − fi ∗ J
(k)‖2F ,

thus,

c(J (k), G
(k+1)
1 , G

(k+1)
2 )

=λ‖fLa ∗ (I − J (k))‖2F +
2∑
i=1

(‖G(k+1)
i ‖0 + α‖G(k+1)

i − fi ∗ J (k)‖2F )

≤c(J (k), G
(k)
1 , G

(k)
2 ).

By the definition of J (k+1),

λ‖fLa ∗ (I − J (k+1))‖2F +

2∑
i=1

α‖G(k+1)
i − fi ∗ J (k+1)‖2F

≤ λ‖fLa ∗ (I − J (k))‖2F +
2∑
i=1

α‖G(k+1)
i − fi ∗ J (k)‖2F .

Thus, c(J (k), G
(k+1)
1 , G

(k+1)
2 ) ≤ c(J (k), G

(k+1)
1 , G

(k+1)
2 ) ≤

c(J (k+1), G
(k+1)
1 , G

(k+1)
2 ). Hence, the conclusion holds. Since

c(J,G1, G2) ≥ 0 is a lower bounded function, HQS will
converge by iteration.

IV. EXPERIMENTAL RESULTS

To verify the effectiveness of the proposed dehazing
method, we test it on various hazy images and compare its per-
formance with state-of-the-art methods. When experimenting
with other methods, we used the original codes provided by the
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Fig. 3. (a) and (b) present the PSNR and SSIM of our method on dataset
HSTS when λ varies from 102 to 1012 and α varies from 5 to 30.

authors on their websites. We show the quantitative compar-
isons using synthetic images and the qualitative comparisons
using both synthetic and real-world images. Moreover, we
perform experiments to assess the sensitivity of the algorithm
HSP to parameter changes. The hardware used for Matlab code
is an Intel Xeon CPU E5-2630 v4 @ 2.20 GHz with 128G
RAM, and the testing software is MATLAB R2017a. Python
code is executed on a PC with Intel Xeon Silver 4114 CPU,
32GB RAM, and an NVIDIA Tesla P100 GPU.

A. Analysis of Parameter Sensitivity

To explore how the parameter values affect the experimental
results, we conduct several experiments with different pa-
rameters on Hybrid Subjective Testing Set (HSTS) [26]. As
illustrated in Fig. 3 (a) and (b), with α fixed, the values of
PSNR and SSIM are excellent when λ ∈ (102, 1012). This
result also coincides with the foregoing discussion that λ
should be a large value. On the other hand, if λ is fixed to a
larger value, the results are still satisfactory. All values of α
in the range (5, 30) yield good results. It is apparent that good
results are obtained for a wide range of parameter values.

0 1 2 3 6 7 8 9 4 5 
Iteration numbers

10-5

100

105

1010

1015

1020

Image 1
Image 2
Image 3

Fig. 4. The err varies with the increase of iterations number. Note the err refer
to the distance between the recovered image and corresponding ground-truth.

B. Analysis of Convergence

To demonstrate the convergence of HSP intuitively, we test
the proposed algorithm 1 on the first three images in Synthetic
Objective Testing Set (SOTS) [26] to observe the relationship
between err and the iteration number of the algorithm 1. In our
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Fig. 5. Quantitative results on dataset HSTS. The histogram gives the
PSNR and SSIM results of all compared methods. The red bins and blue
bins represent PSNR and SSIM, respectively.

experiments, τ and κ are set as 0.1 and 500, respectively. α and
λ are tuned to the best. From Fig. 4, the stopping criterion in
the algorithm is met within 10 times iteration. The comparison
results are shown in Fig. 4, it is demonstrated experimentally
that this algorithm is convergent and converges quite fast in
the context of this paper.

C. Explanation of Run Time

We also test the run time of our method and compare it
with that of other methods. The comparisons are made using
the average time for processing ten images from HSTS. The
run times are measured in seconds. The experimental results
are given in Table I. To show the table neatly, we omit the
large run time of BD, namely 392.952s. Table I shows that
our method has a longer run time than CNN-based methods
(e.g., MSCNN [44], AOD-Net [39], GCA-Net [47]). However,
our method has a simple model, a convergent algorithm, and
better dehazing results. Some other methods require a training
process in advance, e.g., CAP [25], AOD-Net [39] and GCA-
Net [47]. Once the parameters are obtained by training, the
clear image can be calculated in terms of the traditional optical
model. However, their results depend strongly on the training
set. For this reason, their results tend to be less effective than
ours in dehazing dense haze.

D. Experiments on Synthetic Images

To measure the performance of HSP, we compare its de-
hazing effect with state-of-the-art dehazing methods qualita-
tively and quantitatively. We use HSTS [26] and NTIRE2018-
Dehazing challenge datasets [55] in this section. HSTS in-
cludes 10 haze-free images and their corresponding simulated
hazy images. The NTIRE2018-Dehazing challenge dataset
contains an indoor dataset ( i.e., I-HAZE [56]) and an outdoor
one ( i.e., O-HAZE [56]). I-HAZE contains 35 image pairs of
hazy and ground-truth indoor images, and images in O-HAZE

1 The method noted with star (*) indicates that the method is tested on the PC
with GPU.
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TABLE I
THE TABULATION GIVES THE AVERAGE RUN TIME OF ALL COMPARED METHODS ON HSTS.

Method DCP FVR VEHH BCCR JPEG CAP GRM NLD
Run time (sec.) 0.4956 7.6768 7.8614 2.1601 0.6243 0.8423 78.9422 5.3667

Method DEFADE CO MSCNN AOD-Net∗ 1 MSCW MBF GCA-Net∗ 1 Ours
Run time (sec.) 15.4484 1.4702 1.9802 0.4026 0.3603 0.9266 0.8473 4.0521

Input DEFADE CO

AOD-Net GCA-Net OurGround truth

CAP

Fig. 6. The qualitative comparison on HSTS.
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(c) DEFADE (d) CO (e) AOD-Net (f) GCA-Net (g) Our(b) CAP(a) Input

Fig. 7. The qualitative comparison on real-world images.

(c) DEFADE (d) CO (e) AOD-Net (f) GCA-Net (g) Our(b) CAP(a) Input

Fig. 8. The qualitative comparison on dense fog images. From left to right: Input image, results of CAP, results of DEFADE, results of CO, results of
AOD-Net, results of GCA-Net and our dehazing results.
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TABLE II
QUANTITATIVE EVALUATIONS ON I-HAZE AND O-HAZE DATASETS. THE BEST AND THE SECOND-BEST RESULTS ARE MARKED IN RED AND BLUE

TEXT, RESPECTIVELY. ↑ (↓) INDICATES THAT HIGH (LOW) SCORES ARE ASSOCIATED WITH BETTER PERFORMANCE.

Method I-HAZE O-HAZE
PSNR↑ SSIM↑ CIEDE2000↓ PSNR↑ SSIM↑ CIEDE2000↓

DCP 14.7953 0.7453 15.5283 16.6127 0.6480 16.1012
FVR 13.5185 0.6293 18.8705 13.7966 0.6003 20.0573

VEHH 10.5111 0.6382 23.3095 11.0676 0.5540 24.1579
BD 14.5317 0.6462 16.0886 16.5898 0.6395 16.5062

BCCR 12.7036 0.6626 18.9769 14.4333 0.5838 19.5974
JEPG 10.5687 0.5370 23.7474 12.7581 0.4180 22.9194
GRM 13.9848 0.7347 16.3440 17.9980 0.6513 14.3981
NLD 12.2870 0.6197 19.2540 15.3416 0.5907 16.5731

DEFADE 14.4913 0.6760 17.4810 15.6984 0.5958 19.5723
CO 15.7341 0.7473 13.0615 18.1326 0.6562 13.0159

MSCNN 15.2381 0.7216 15.1170 17.4513 0.6582 14.9580
AOD-Net 15.4063 0.7393 15.1502 15.0286 0.5719 19.3900
MSCW 12.9619 0.6198 18.1597 15.0905 0.6061 17.6598
MBF 14.8742 0.5280 15.6300 16.4526 0.5305 14.9396

GCA-Net 13.3634 0.6880 18.3284 17.8329 0.6530 13.7001
CAP 15.7526 0.7473 14.5848 17.3529 0.6428 14.2710

BPPNet 22.5600 0.8994 − 24.2700 0.8919 −
Ours 16.2414 0.7545 12.9326 19.0681 0.6668 11.1774

are from 45 different outdoor scenes. These two datasets are
more challenging than HSTS. The experimental results are
described below.

First, we compare the dehazed results on HSTS using two
assessment indices PSNR and SSIM. Fig. 5 shows the PSNR
and SSIM comparisons of our method with 16 state-of-the-
art methods. Fig. 5 illustrates that our method achieves the
highest PSNR and competitive SSIM. Second, focusing on
the PSNR, we select the top six methods for a qualitative
comparison. These six methods are CAP [25], DEFADE [9],
CO [31], AOD-Net[39], GCA-Net [47] and our method. We
choose three images, as shown in Fig. 6, for the comparison.
The results of DEFADE and GCA-Net are over-saturated. As
can be seen from the sky in the third image, the dehazing
result of GCA-Net also suffers from a severe color shift. CAP
produces excellent results in general, but there is a color shift
in the restored images. For AOD-Net and CO methods, it is
seen that there still exists some fog in the second picture to
some extend. In comparison, our approach is able to produce
better dehazing results.

To further verify the effectiveness of the proposed method,
we evaluate our algorithm against all comparative approaches
on more challenging datasets. We adopt the metrics PSNR,
SSIM, and CIEDE2000 [57] to evaluate the quality of recov-
ered images. Quantitative results are shown in Table II. The
digital values are the averages of the results on I-HAZE and
O-HAZE datasets in terms of PSNR, SSIM, and CIEDE2000.
It can be seen that our proposed algorithm outperforms most
previous dehazing methods by a large margin in terms of
PSNR, SSIM, and CIEDE2000 on both I-HAZE and O-
HAZE datasets. Although the performance of the proposed
method is worse than the recent start-of-the-art CNN-based
method BPPNet [58], the proposed method outperforms most
state-of-the-art dehazing approaches. Compared with learning-
based methods, the proposed model does not rely on large
amounts of data and does not require training. Our model thus
does not depend on data and computing resources. It can be
easily plugged into the state-of-the-art dehazing algorithms in
engineering applications. For example, it can be used as a
baseline for initializing more complex dehazing methods or a

guideline for beginners and engineers in this field.

E. Experiments on Real-world Images

Experiments are conducted to show the effectiveness of our
method on real-world hazy images and images obtained in
dense fog. Some test images are from datasets provided by
[28] and [26], and others are downloaded from the Internet.
The methods CAP, DEFADE, CO, AOD-Net, GCA-Net are
still chosen for this comparison.

Fig. 7 shows various dehazed results on real-world images.
The results of CAP, DEFADE, CO, and AOD-Net for the top
image in Fig. 7 suffer from over-saturation, which produces
a dimming effect. When there is lamplight in the input, as
shown in the second row, apart from GCA-Net and Ours, all
other approaches tend to strengthen the lamplight. The third
row in Fig. 7 shows that there are varying degrees of fog in the
results of CAP, DEFADE, CO, and AOD-Net. GCA-Net and
Ours achieve excellent dehazing results. However, we observe
that the sky regions in the third and fourth images of GCA-Net
suffer from severe color shifts. In particular, the sky appears
to be pink in the bottom row of GCA-Net in Fig. 7.

Fig. 8 compares images taken in dense fog. For the top
row in Fig. 8, CAP, GCA-Net, and our method obtain better
results than the others. However, GCA-Net suffers from the
color shift. In the second row, CAP, DEFADE, AOD-Net, and
GCA-Net produce unnatural colors in the sky region. All their
results tend to be dark. For the third row with lamplight, the
compared methods tend to strengthen the light, whereas our
method can alleviate the effect of the light. In addition, we see
in the third row’s red box that the details for our method in the
dark regions are clearer than all other compared methods. For
the bottom row in Fig. 8, it is apparent that only GCA-Net and
our method are effective in eliminating fog. As a consequence,
it is demonstrated that our method is effective for dense fog
images and achieves the best results as compared with the
state-of-the-art methods.
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V. CONCLUSION

In this paper, we have presented a novel additive model for
dehazing. It can effectively characterize the relation between
the clear image and the corresponding haze image layer. In
addition, a powerful haze smoothness prior is introduced to
constrain this model. The proposed single image dehazing
method has been tested on both synthetic images and real-
world images. Extensive experimental results and comparisons
show that the proposed method produces satisfactory results,
especially for dense fog removal. In future research, we will
explore other problems that may benefit from our method and
explore an even better dehazing approach by combining the
prior in this work with the neural network method.
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