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Abstract
Wide field-of-view (FOV) cameras, which capture a larger scene area than narrow FOV cameras, are used inmany applications
including 3D reconstruction, autonomous driving, and video surveillance. However, wide-angle images contain distortions
that violate the assumptions underlying pinhole camera models, resulting in object distortion, difficulties in estimating scene
distance, area, and direction, and preventing the use of off-the-shelf deepmodels trained on undistorted images for downstream
computer vision tasks. Image rectification, which aims to correct these distortions, can solve these problems. In this paper,
we comprehensively survey progress in wide-angle image rectification from transformation models to rectification methods.
Specifically, we first present a detailed description and discussion of the camera models used in different approaches. Then,
we summarize several distortion models including radial distortion and projection distortion. Next, we review both tradi-
tional geometry-based image rectification methods and deep learning-based methods, where the former formulates distortion
parameter estimation as an optimization problem and the latter treats it as a regression problem by leveraging the power of
deep neural networks.We evaluate the performance of state-of-the-art methods on public datasets and show that although both
kinds of methods can achieve good results, these methods only work well for specific camera models and distortion types. We
also provide a strong baseline model and carry out an empirical study of different distortion models on synthetic datasets and
real-world wide-angle images. Finally, we discuss several potential research directions that are expected to further advance
this area in the future.

1 Introduction

Cameras efficiently capture dense intensity and color
information in a scene and are widely used in different
computer vision tasks including 3D reconstruction, object
detection and tracking (Ross et al. 2008; Everingham et al.
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2010; Chen et al. 2020), semantic segmentation, and visual
location and navigation (Royer et al. 2007). Not like some
animal eyes that have a wide field-of-view (FOV) (Land
and Nilsson 2012), as the digital eyes of computers, nor-
mal cameras often have limited FOV, e.g., the most widely
usedmonocular pinhole camera, which obeys the perspective
transformation and linear projection rules, has a narrow FOV
as illustrated in Fig. 1a. But the FOV of a camera system can
be increased in different ways to capture more contents and
facilitate visual analysis. For instance, a stereo vision system
can be devised by leveraging two (identical) cameras spaced
a certain distance apart to increase the FOV, as shown in
Fig. 1c. Moreover, more than two cameras can be easily inte-
grated into one visual system in some designed pattern for a
larger or even 360◦ FOV by overlapping the FOVs of neigh-
boring cameras, as shown in Fig. 1d. Conversely, instead of
using multiple cameras, a single camera with a narrow FOV
can be moved (e.g., through yaw or pitch axis rotation or
translation, as shown in Fig. 1e–f) to cover a wide field from
several frames.

Using multiple cameras or moving a single camera to
obtain a large FOV requires extra processing (e.g., through
camera calibration and point matching) to stitch spatially or
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Fig. 1 Illustration of different camera systems. a Conventional camera with a narrow FOV. b Wide FOV camera. c Stereo vision system. d
Multi-view camera system. e Monocular wide FOV camera system via translation. f Monocular wide FOV camera system via rotation

temporally adjacent frames (i.e., panorama stitching), which
is computationally inefficient and challenging, especially in
dynamic scenes or textureless areas. As an alternative, wide
FOV cameras can achieve a large FOV using special lenses
or structures, as shown in Fig. 1b. The most commonly used
wide FOVcamera is the omnidirectional camera,whose FOV
covers a hemisphere or 360◦ in the horizontal plane (Nayar
1997; Scaramuzza 2014); fisheye and catadioptric cameras
are two typical omnidirectional camera types. The fisheye
camera (or dioptric camera) is a conventional camera com-
bined with a shaped lens, while the catadioptric camera is
equipped with a shaped mirror and lens (Yagi and Kawato
1990; Geyer and Daniilidis 2001). The fisheye camera has
a FOV of approximately 180◦ or more in the vertical plane,
while the catadioptric camera has a 100◦ FOV or more in the
vertical plane. A catadioptric camera equipped with hyper-
bolic, parabolic, or elliptical mirrors is known as a central
catadioptric camera (Baker and Nayar 1999), which has only
one effective viewpoint. The central camera has two attrac-
tive properties. First, the capturing distorted image can be
geometrically corrected to a perspective image, since every
pixel in the image corresponds to one particular incoming ray
passing through the single viewpoint at a particular angle,
which is measurable and can be derived after the camera
calibration. Second, all central cameras follow the rigorous
epipolar geometry constraint, which is well studied in multi-
view vision. However, catadioptric cameras are complex and
fragile due to their mirrors, so fisheye cameras are more pop-
ular in practice. For clarity, the termwide FOV camera in this
paper includes central catadioptric cameras, fisheye cameras,
and wide-angle cameras with radial distortion (normally a
FOV < 120◦). The image captured by the wide FOV camera
is called a wide-angle image.

Wide FOV cameras can record more (or even all) visual
contents in the scene via a single shot, which is very use-
ful in many vision tasks, such as video surveillance, object
tracking, simultaneous localization and mapping (SLAM)
(Yagi et al. 1994; Rituerto et al. 2010; Caruso et al. 2015;
Payá et al. 2017; Matsuki et al. 2018), structure from motion

(SfM) (PengChangandHebert 2000; Scaramuzza et al. 2006;
Neumann et al. 2002), and augmented reality/virtual reality
(AR/VR) (Yagi 1999).Wide FOV cameras can seemore con-
text and capture larger objects, making object tracking more
stable (Posada et al. 2010; Markovic et al. 2014) and detec-
torsmore effective (Cinaroglu andBastanlar 2016;Yang et al.
2018).

Although wide FOV cameras are useful, they break the
perspective transformation relationship between real points
and those in the image, resulting in distortions in the wide-
angle image. These distortions make it hard to estimate
distance, area, and direction and prevent taking wide-angle
images directly as inputs to the off-the-shelf deep neural
models trained on distortion-free images due to the explicit
domain gap. To address this issue, wide-angle image rec-
tification as an important vision task has been studied for
decades and is still an active research area in the deep learn-
ing era. It aims to rectify the distortions in the wide-angle
image to obtain an undistorted image obeying perspective
transformation. Generally, distortion can be represented as
extra intrinsic parameters in camera models (Sect. 2) or as
separate and independent distortion parameters in distortion
models (Sect. 3).

Basically, there are two main groups of approaches for
wide-angle image rectification. One group is the calibration-
based methods, which try to estimate the intrinsic and
extrinsic parameters of the camera model representing how
a point in the 3D world is mapped to a corresponding point
on the image plane. This process is also known as camera
calibration, where distortion parameters can be estimated
as a part of the intrinsic parameters of a wide FOV camera
(Heikkila and Silven 1997).

Camera calibration has a long history (Duane 1971; Zhang
2000), and detailed reviews and comparisons of different
calibration methods can be found in (Caprile and Torre
1990; Clarke and Fryer 1998). The calibration of stereo
vision systems (Sid-Ahmed andBoraie 1990; Gennery 1979)
and moving camera systems (Maybank and Faugeras 1992)
have also been studied, as the calibration of fisheye cameras
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(Shah and Aggarwal 1994, 1996; Swaminathan and Nayar
2000; Kannala and Brandt 2004) and omnidirectional cam-
eras (Swaminathan et al. 2006; Mei and Rives 2007).

Generic methods for more than one type of camera have
also been proposed. For example, Kannala andBrandt (2006)
studied a generic camera model and calibration method for
both conventional and wide FOV cameras, while Urban et al.
(2015) reported a new calibration procedure for wide FOV
cameras based on a comprehensive performance evaluation
across several datasets. Once the camera parameters (includ-
ing the distortion parameters) are calibrated, they can be
used to rectify the wide-angle image according to the camera
model, as surveyed in (Hughes et al. 2008; Puig et al. 2012;
Zhang et al. 2013).

The other group of methods estimates the distortion
parameters in the camera model or distortion model from
the wide-angle image passively. Not like the active calibra-
tionmethods, pre-designed chess boards or other pre-defined
subjects are not necessary for estimationmethods. In this sur-
vey, we mainly focus on this group of methods. Readers who
care more about calibration-based methods could refer to
the surveys mentioned above. In this paper, we comprehen-
sively review the progress in this area from the fundamentals,
including camera models and distortion models, to image
rectification methods, including both traditional geometry-
based methods and the more recent deep learning-based
methods. Specifically, we first present a detailed description
and discussion of the camera models, especially the wide
FOV camera model. Then, we summarize several typical
distortionmodels, including radial distortionmodels and pro-
jection distortion models. Next, we comprehensively review
both traditional geometry-based image rectification methods
and deep learning-based methods that estimate the distortion
parameters (or equivalent warp field) in the camera model
or the distortion model. We categorize the geometry-based
methods into three groups: line-based methods, content-
awaremethods, andmulti-viewmethods. The learning-based
methods are categorized into two groups: model-basedmeth-
ods and model-free methods, based on whether a specific
parameterized cameramodel or distortionmodel is leveraged
in the framework. We further evaluate the performance of
state-of-the-art methods and discuss their strengths and lim-
itations. Moreover, we also establish a strong baseline and
carry out an empirical study of different distortion models
on both synthetic datasets and real-world wide-angle images.
Finally,we discuss several research directions thatmight pro-
vide a more general solution.

Before going deeper, let us clarify some terminologies
that may be confused first. As shown in Fig. 2, the word
with a subscript ’u’ means the concept is in the undistorted
image domain, while the word with a subscript ’d’ means the
distorted image domain. Warp field, flow field, and displace-
ment field are generally replaceable in this survey. All of

them mean the per-pixel field that represents the transforma-
tion between distorted images and undistorted ones. Camera
models and distortion models are mathematical models that
describe the distortion, while deep models mean the trained
deep neural networks. But we may use the name of the dis-
tortion model that the training data is based on to call that
deep model. For example, if a deep model is trained on a
dataset that is synthesized under the X distortion model, we
may also name the deep model as X model. But it is easy
to decide the model is a deep model or a distortion model in
context in Sect. 5.

To our best knowledge, this is the first survey of wide-
angle image rectification. The main contributions of this
paper are as follows:

– we comprehensively describe and discuss the typical
camera models and distortion models that are leveraged
in most wide-angle image rectification approaches;

– we comprehensively review of the state-of-art methods
for wide-angle image rectification, including traditional
geometry-based and deep learning-based image rectifi-
cation methods;

– we evaluate the performance of state-of-the-art methods
and discuss their strengths and limitations on both syn-
thetic datasets and real-world images and also propose a
strong baseline model;

– we provide some insights into current research trends
to highlight several promising research directions in the
field.

The rest of this paper is organized as follows. We first
introduce several typical camera models and distortion mod-
els in Sects. 2 and 3.Details of the traditional geometry-based
and learning-based methods are presented in Sect. 4, fol-
lowed by the performance evaluation in Sect. 5. Next, we
provide some insights on recent trends and point out several
promising research directions in this field in Sect. 6. Finally,
the concluding remarks are made in Sect. 7.

2 CameraModels

Before the introduction of camera models, we first define
the notations used in this paper. We use lowercase letters
to denote scalars, e.g., x , bold lowercase letters to denote
vectors, e.g. f , and bold uppercase letters to denote matrices,
e.g., F. We use w = [X ,Y , Z ]T ∈ � ⊂ R

3 to represent a
point in the 3Dworld coordinate� , c = [x, y, z]T ∈ � ⊂ R

3

to represent a point in the camera coordinate �, and m =
[u, v]T ∈ � ⊂ R

2 to represent a pixel on the image plane �.
Besides, we use a calligraphic uppercase letter to represent a
mapping function, e.g., M.

123



International Journal of Computer Vision

Camera model describes the imaging process between a
point in the 3D world coordinate to its projection on the
2D image plane using a mathematical formulation. Different
kinds of lens correspond to different kinds of camera models
(Sturm 2010). Let [X ,Y , Z ]T denote a point in the 3D world
coordinate and [u, v]T denote its corresponding point on the
image plane. Camera model defines a mapping M between
[X ,Y , Z ]T and [u, v]T:

[u, v]T = M(X ,Y , Z), (1)

or in the homogeneous form:

[u, v, 1]T = M(X ,Y , Z , 1). (2)

Generally, the projection can be divided into four steps:

1. In the first step, the 3D point [X ,Y , Z ]T is transformed
to the camera coordinate via a 3 × 3 rotation R and a
3-dimension translation t, i.e.,

[xc, yc, zc]T = [R|t][X ,Y , Z , 1]T, (3)

where [xc, yc, zc]T is the corresponding point in the cam-
era coordinate. The 3 × 4 matrix [R|t] is called extrinsic
camera matrix. This step is a rigid transformation and no
distortion is involved.

2. In the second step, the point [xc, yc, zc]T is projected onto
a surface, which could be a plane or not. In the pinhole
camera model, this surface is a plane at z = 1, and the
normalized coordinate is [xn, yn]T = [ xczc ,

yc
zc

]T. But in
most wide FOV camera models, this surface is normally
a quadratic one. The points on this projection surface are
then normalized to z = 1. Here we can use a transforma-
tion function N to denote this normalization:

{
xn = xc

N (xc,yc,zc)
yn = yc

N (xc,yc,zc)
, (4)

3. In the third step, other types of distortions may be
introduced to represent the displacement caused by the
manufacturing defect or wide-angle lens. The distortions
can be mathematically described by a specific distortion
model. In a practical application, one specific type of dis-
tortion model is usually used in one camera model. More
details will be presented in Sect. 3. Given the mapping
function of the distortion model D, the distorted image
coordinate [xd , yd ]T is formulated as:

{
xd = D(xn)
yd = D(yn)

, (5)

Table 1 Typical camera models for wide FOV cameras

Camera model Wide FOV camera

PCM Perspective camera, wide-angle camera

UCM Central catadioptric camera, fisheye camera

EUCM Central catadioptric camera, fisheye camera

DSCM Fisheye camera

4. In the final step, the distorted point on the normalized
plane is projected onto the image plane via a 3×3 intrinsic
camera matrix K:

[u, v, 1]T = K[xd , yd , 1]T, (6)

K �

⎡
⎣ fxmu s u0

0 fymv v0
0 0 1

⎤
⎦ , (7)

where fx and fy are the focal length at x and y axis,
respectively. In most cases, they are the same and denoted
as f . s is the skew parameter. If x-axis and y-axis are
perpendicular to each other, s is zero. mu and mv are the
number of pixels per unit distance in u and v direction,
respectively. If mu is the same as mv , the camera has
square pixels. [u0, v0]T is the coordinate of the image
center. For most cameras, we can set s = 0,mu = mv and
focal length in pixel unit, then Eq. (6) can be re-written
as:

{
u = fx xd + u0
v = fy yd + v0

, (8)

which is a linear transformation that keeps shapes.

The first step and the last step are almost the same for dif-
ferent camera models, which are distortion-free. By contrast,
the second step and the third step are crucial for accurately
representing wide FOV cameras and distortions. So, when
we introduce camera models, we will focus on the imaging
process in these two steps. We are not going to collect all
the camera models in this survey. Instead, only the ones that
are most commonly used in the computer vision community,
especially for wide FOV cameras, will be introduced, i.e.,
the pinhole camera model (PCM), the unified camera model
(UCM), the extended unified camera model (EUCM), and
the double sphere camera model (DSCM), as summarized in
Table 1. Details of these models are presented as follows.

2.1 Pinhole CameraModel

The pinhole camera model (PCM) is the most common and
widely used camera model in computer vision. It can be
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seen as a first-order approximation of the conventional cam-
era without geometric distortions. For conventional cameras,
which have a small field of view (normally a FOV < 90◦)
and obey the perspective transformation, this approximation
is accurate enough. But for wide FOV cameras, the perfor-
mance of PCM will degrade significantly.

The pinhole aperture in a pinhole camera is assumed to
be an infinitely small point and all projection lines must pass
through this point, i.e., it is a central camera and has one
single effective viewpoint. As shown in Fig. 2, O is called the
optical center and the line passes through the optical center
perpendicular to the image plane Iu is the optical axis, i.e.,
the z axis of the camera coordinate. All points on the optical
axis will project to the principal point on the image plane.
In most cases, this principal point is the center of the image
[u0, v0]T. The distance from the optical center to the principal
point is the focal length f . A 3D point W = [xc, yc, zc]T in
the camera coordinates projects onto the image plane as:{
u = fx

xc
zc

+ u0
v = fy

y
zc

+ v0
. (9)

Assuming there is an incident raypassing through [xc, yc, zc]T
and optical center O with an incident angle θ to the optical
axis, the radial distance r from the image point to the princi-
pal point can be calculated as:

r = f tan θ. (10)

Here it is easy to find that θ should be smaller than 90◦ (since
FOV equals two times of θ , so the FOV is smaller than 180◦).
Otherwise, the incoming raywill not intersect with the image
plane, i.e., there is no projection point on the image plane,
whichmeans the pinhole camera can not see anything behind.
Most cameras can not see all the points in the 3Dworld at one
time because of the limited FOV. We define the points that
could be projected onto the image plane in the camera model
as the valid projection set and the projection of the point in
the valid projection set is a valid projection. Thereby, The
valid projection of PCM is defined on � = {w ∈ R

3|z > 0}.
For a wide FOV camera with a FOV smaller than 120◦, PCM
can be used to describe the moderate distortions together
with a proper distortion model (see Sect. 3). However, when
FOV becomes larger, e.g., FOV> 120◦, a wide FOV camera
model could be a better choice for higher accuracy.

2.2 Unified Camera Model

In PCM, the normalization function is N (x, y, z) = z.
When z → 0, the accuracy of the model will drop dramati-
cally, especially for large r . By contrast, the unified camera
model(UCM) can work correctly when z is zero or even neg-
ative, which means the FOV of the camera can be bigger

Fig. 2 The pinhole camera model and distortion

than 180◦. The normalization function in UCM is defined as
(Geyer and Daniilidis 2000):

N (x, y, z) = z + ξrs (11)

where rs = √
x2 + y2 + z2 and ξ is a projection parameter.

As shown in Fig. 3a, in UCM, a point is first projected onto a
unit sphere in red (the projection surface) and then onto the
the normalization plane in blue. Note that in the second step,
a virtual optical center is used by shifting from the original
one of the PCMby a distance ξ . According to Eq. 4, the point
on the normalization plane can be calculated as:

n = [xn, yn, 1]T = [ xc
zc + ξrs

,
yc

zc + ξrs
, 1]T. (12)

UCM is the same as PCM if ξ = 0. And the larger the ξ is, the
wider FOV the UCM can handle. For a conventional camera,
ξ is expected to be small, while for a wide FOV camera, e.g.
fisheye camera, ξ should be large. The valid projection of
UCM is defined on � = {w ∈ R

3|z > −ξrs}.
A slightlymodified version ofUCMwas proposed in (Mei

and Rives 2007), which can describe both radial distortion
and tangential distortion, thereby better suited for real-world
cameras. Besides, although UCM was initially proposed for
central catadioptric cameras (Geyer and Daniilidis 2000),
it had been extended to fisheye camera later in (Ying and
Hu 2004; Barreto 2006). Moreover, the discussion about the
equivalence of UCM to pinhole-based model and capturing
rays-based model can be found in (Courbon et al. 2007).
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(a) (b) (c)

Fig. 3 Illustration of the a unified camera model, b extended unifided
caemra model, and c double sphere camera model. Red curves denote
the projection surface. Blue lines denote the normalized image planes.

The red lines with arrows denote the incident rays. ξ is the distance
from the original optical center O to the new virtual one O ′ (Color
figure online)

2.3 Extended Unified Camera Model

In (Khomutenko et al. 2016), it was pointed out that the dis-
tortion in UCM is actually equivalent with the even order
polynomial distortion model (see details in Sect. 3). Moti-
vated by this, an enhanced unified camera model (EUCM)
was proposed, where the normalization functionN is defined
as:

N (x, y, z) = αρ + (1 − α)z, (13)

ρ =
√

β(x2 + y2) + z2. (14)

Here, α and β are two projection parameters, subjected to
α ∈ [0, 1], β > 0, and αρ + (1−α)z > 0. α defines the type
of the projection surface andβ can be used to adjust the shape
of the projection surface. When β = 1, EUCM degrades to
UCM with ξ = α

1−α
. The normalised point is calculated as:

n = [xn, yn, 1]T = [ xc
αρ + (1 − α)z

,
yc

αρ + (1 − α)z
, 1]T.

(15)

The valid projection of EUCM is defined as follows:

� = {w ∈ R
3|z > −wρ}, (16)

w =
{

α
1−α

, i f α ≤ 0.5
1−α
α

, i f α > 0.5
(17)

As shown in Fig. 3b, the projection surface of EUCM is an
ellipsoid, rather than the sphere of UCM, which can describe
large distortions in a wide FOV lens better.

2.4 Double Sphere Camera Model

In Usenko et al. (2018), a novel camera model named dou-
ble sphere camera model (DSCM) was proposed, which is
well-suited for fisheye cameras and makes a good trade-off
between accuracy and computational efficiency. The normal-
ization function in DSCM is defined as:

N (x, y, z) = αd2 + (1 − α)(ξd1 + z), (18)

d1 =
√
x2 + y2 + z2, (19)

d2 =
√
x2 + y2 + (ξd1 + z)2, (20)

where ξ and α are two projection parameters. In DSCM,
a point is first projected onto two spheres sequentially, the
centers of which are shifted by ξ , as shown in Fig. 3c. Then,
the point is projected onto the normalization plane shifted by

α
1−α

. Accordingly, the normalized point is calculated as:

n = [xn, yn, 1]T

= [ xc
αd2 + (1 − α)(ξd1 + z)

,
yc

αd2 + (1 − α)(ξd1 + z)
, 1]T.
(21)

The valid projection of DSCM is defined as follows:

� = {w ∈ R
3|z > −w2d1}, (22)

w2 = w1 + ξ√
2w1ξ + ξ2 + 1

, (23)

w1 =
{

α
1−α

, i f α ≤ 0.5
1−α
α

, i f α > 0.5
. (24)
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3 DistortionModels

The real-world lens always has some kinds of distortions due
to the imprecise manufacture or the nature of the wide-angle
lens. When we talk about distortions in an image, a stan-
dard undistorted image is usually assumed, which is taken
by an ideal lens, i.e., the PCM. Then, analyzing and recov-
ering images from the distortions can be done according to
specific distortion models. The difference between the cam-
era model and the distortion model is that the camera model
describes how a point in the scene is projected onto the image
plane, while the distortion model focuses on the relationship
between the distorted point coordinate and the undistorted
point coordinate, i.e., the mapping from a distorted image
to an undistorted image. The camera model and distortion
model could work independently or together when it is nec-
essary.

Theparameterizeddistortionmodel (Sturm2010) describes
the mapping from a point [xd , yd ]T in the distorted image to
that in the undistorted image [xu, yu]T, which is the target
after rectification, i.e.,

[xu, yu]T = F(xd , yd ; cx , cy,�). (25)

Here,F(·) represents the distortion model, [cx , cy]T denotes
the distortion center, and � is a set of distortion parameters.
Rectification refers to estimating the parameters � of the
distortion model. [cx , cy]T can be set to the center of the
image, which is a reasonable approximation in most cases
(Weng et al. 1992).

Two principal types of distortions are radial distortion and
decentering distortion (one type of the tangential distortion)
(Hugemann 2010). Accordingly, the distortion model F(·)
can be parameterized as follows (Duane 1971; Prescott and
McLean 1997):

⎧⎪⎪⎨
⎪⎪⎩
xu = xd + x̄(k1r2d + k2r4d + k3r6d + · · · )

+(p1(r2d + 2x̄2) + 2p2 x̄ ȳ)(1 + p3r2d + · · · )
yu = yd + ȳ(k1r2d + k2r4d + k3r6d + · · · )

+(p2(r2d + 2 ȳ2) + 2p1 x̄ ȳ)(1 + p3r2d + · · · )
, (26)

x̄ = xd − cx , (27)

ȳ = yd − cy, (28)

rd =
√

(xd − cx )2 + (yd − cy)2. (29)

Here, rd is the radial distance from an image point to the
distortion center. (k1, k2, k3, . . . ) are the coefficients of the
radial distortion, while (p1, p2, p3, . . . ) are the coefficients
of the decentering distortion. Note that the high-order terms
of the distortion are insignificant compared to the low-order
terms (Weng et al. 1992) and the tangential distortions in
practical lens are small and negligible (Cucchiara et al. 2003;

Sturm 2010). Therefore, only radial distortions are consid-
ered in most literature.

3.1 Radial Distortions

Radial distortions are the main distortions in central single-
view camera systems, which cause points on the image plane
to be displaced from the ideal position projected under the
perspective camera model along the radial axis from the cen-
ter of the distortion (Hughes et al. 2008). A typical feature of
this type of distortion is circular symmetry to the distortion
center. Distortionmodels that represent radial distortions can
be seen as nonlinear functions of the radial distance. Many
models are proposed in the literature to describe radial distor-
tions, which can be divided into two groups (Courbon et al.
2007; Ying et al. 2015), i.e., pinhole-based models and cap-
turing rays-based models.

Pinhole-based models The first group of models is based
on the pinhole camera model (PCM in Sect. 2.1). The coor-
dinate of a distorted point on the image plane is directly
transformed from the coordinate of the point projected via
the perspective model. The radial distance r from a point to
the distortion center is used to link the transformation T1:

ru
T1←→ rd , (30)

where ru =
√

(xu − cx )2 + (yu − cy)2 is the radial distance
on the undistorted image plane and rd is the distance on
the distorted image plane. Typically, two types of distortion
models, i.e., the polynomial model and the division model,
are mostly used in practice (Santana-Cedrés et al. 2015). In
(Tsai 1987; Mallon and Whelan 2004; Ahmed and Farag
2005), an odd polynomial model was proposed, i.e.,

ru = rd +
∞∑
n=1

knr
2n+1
d

= rd + k1r
3
d + k2r

5
d + · · ·

= rd(1 + k1r
2
d + k2r

4
d + · · · ). (31)

This distortion model can describe small distortions but are
insufficient to describe large ones introduced by fisheye lens
(Hughes et al. 2008). Therefore, a more general polynomial
model was proposed in (Shah and Aggarwal 1994) by using
both odd terms and even terms. Polynomial Fish-Eye Trans-
form (Basu and Licardie 1995) also included a 0th order
term for better capacity . The polynomial model can work
well when the distortions are small but when the distortions
become large, the number of parameters and the order of the
model would increase rapidly, leading to extensive compu-
tational load, which makes it unsuitable in real applications.
By contrast, the division model (Fitzgibbon 2001) can han-
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Table 2 Typical pinhole-based
distortion models.More details
can be found in (Sturm 2010)

Model name Equation

Polynomial radial ru = rd (1 + k1r2d + ...)

Fish-Eye transform (Basu and Licardie 1995) rd = s ln(1 + λru)

Poly. Fish-Eye transform (Basu and Licardie 1995) rd = ru
∑∞

n=0 knr
n
u

Field-of-view (Devernay and Faugeras 2001) rd = 1
ω
arctan(2ru tan( ω

2 ))

Typical division ru = rd
1+kr2d

Rational model (Li and Hartley 2005) rd = ru
∑N1

i=1 ki r
2i
u∑N2

j=1 k j r
2 j
u

dle large distortions using fewer parameters, which is often
used in image rectification:

ru = rd
1 + k1r2d + k2r4d + · · · . (32)

In addition to these two commonly used distortion models,
many other forms of distortion models are also introduced in
the literature. The most important difference between these
models is the form of the function that is used to describe the
relationship between ru and rd . For example, Fish-EyeTrans-
form in (Basu and Licardie 1995) used logarithmic function,
field-of-viewmodel in (Devernay and Faugeras 2001) linked
ru and rd using trigonometric function, and rational func-
tion was used in (Li and Hartley 2005). Some of the typical
pinhole-based distortion models are summarized in Table 2.

Capturing rays-based models This kind of distortion
model is based on the capturing rays, where the relation-
ship T2 between the radial distance on the distorted image rd
and the incident angle θ is used:

rd
T2←→ θ. (33)

For a pinhole camera, the incident angle θ is mapped
to distorted radial distance rd according to Eq. (10), which
is called the rectilinear model or perspective model and is
not valid anymore for wide FOV cameras. To address this
issue, different capturing rays-based distortion models are
proposed forwideFOVcameras, e.g., 1) the equidistant (a.k.a
equiangular) model proposed in (Kingslake 1989), which is
suitable for cameras with limited distortions; 2) the stere-
ographic model proposed in (Stevenson and Fleck 1996),
which preserves circularity and projects 3D local symmetries
onto 2D local symmetries; 3) the orthogonal (a.k.a sine law)
model in (Ray 2002) 4) the equi-solid angle model proposed
in (Miyamoto 1964); 5) the polynomial model proposed in
(Kannala and Brandt 2004). These models and their map-
ping functions are summarized in Table 3. It can be found
that the equidistant model is a specific case of the polyno-
mial model with k1 = 1 and k2,...,n = 0. The perspective
model and stereographic model both use the tangent func-

Table 3 Typical capturing rays-based distortion models

Model Name Equation

Rectilinear/Perspective rd = f tan θ

Equi-solid angle rd = 2 f sin(θ /2)

Equidistant/-angular rd = f θ

Stereographic rd = 2 f tan(θ/2)

Orthographic/Sine law rd = f sin θ

Polynomial rd = f (k1θ + k2θ3 + k3θ5 + . . . )

tion, while the equi-solid angle (Miyamoto 1964) model and
the orthographic model use sine function. Furthermore, both
the tangent function and sine function can be represented
by a series of odd-order terms of θ using Taylor expansion,
which has the same form as the polynomial model. There-
fore, the polynomial model can be seen as a generalization of
other models. The polynomial model can achieve high accu-
racy with adequate parameters, but the computation would
be expensive. In real-life applications, it is often used with a
fixed number of parameters, e.g., typically with five or even
fewer parameters, as a trade-off between accuracy and com-
plexity. A detailed discussion about the accuracy of different
models can be found in (Hughes et al. 2010).

3.2 Projection Distortions

To get a full 360◦ FOV, single-view wide FOV images are
often projected onto the surface of a sphere (Sturm and Bar-
reto 2008). But in practical applications, the image has to be
“flattened” (rectified) before being displayed on the screen.
The projection of a sphere onto a plane inevitably deforms
the surface. Here we call such distortions generated in this
projection process the projection distortions. Note that the
sphere flattening process is similar to the map projection in
cartography (Snyder 1997). Indeed, the target surface does
not have to be a plane, as long as it is developable. A devel-
opable surface means it can be unfolded or unrolled into a
plane without distortion, such as a cylinder, cone, or plane. In
computer vision tasks, specific attributes of structures or con-
tents in the image may need to be preserved, e.g., shapes or
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Table 4 Properties of typical sphere projections (Snyder 1997; Fenna
2006)

Name Type Property

Cylindrical Mercator Conformal

Equirectangular Equidistant

Conic Equidistant conic Equidistant

Azimuthal Gnomonic Great circles to lines

Orthographic Parallel projection

Stereographic Conformal

distance, leading to many different kinds of projection meth-
ods. Based on the target developable surface, we can divide
them into three categories, i.e., cylindrical projection, conic
projection, and azimuthal projection. The main properties of
these typical projections are summarized in Table 4.

In cylindrical projection, meridians are mapped to equally
spaced vertical lines and circles of latitude aremapped to hor-
izontal lines. There are two typical cylindrical projections,
i.e., Mercator projection and Equirectangular projection.
Specifically, the Mercator projection is a conformal projec-
tion, which preserves the angle and shape of objects. But the
object size is inflated, which becomes infinite at the poles.
The equirectangular projection maps meridians and circles
of latitude with constant spacing (parallel lines of constant
distance) while the shape of objects is not preserved. As
one of the typical examples of conic projection, the equidis-
tant conic projection can preserve the distances along the
meridians proportionately. It is useful when the target region
is along a latitude. Azimuthal projection maps the sphere
surface directly to a plane,which includes three typical exam-
ples, i.e., gnomonic projection, orthographic projection, and
stereographic projection, which are the specific cases in the
unified camera model described in Sect. 2.2 with ξ = 0,
ξ = ∞ and ξ = 1, (Stevenson and Fleck 1996; Jabar et al.
2017), respectively. The stereographic projection here has
the same geometric meaning as the stereographic distortion
model in capturing rays-based methods.

4 Image Rectification

Asmentioned before, althoughwide-angle images have been
widely used in many vision applications due to their large
FOV, the perspective transformation assumed in a conven-
tional pinhole camera is broken, resulting in object distortion
in the wide-angle image. These geometrical distortions make
it hard to estimate scene distance, area, and direction, and
more importantly, they prevent all these images from feed-
ing the off-the-shelf deep networks that are trained on normal
images in this deep learning era. To address this issue, the
first step in using wide-angle images is usually to correct

them.Many such rectification methods have been introduced
and improved since the wide FOV cameras emerged decades
ago. We divide these methods into two groups, i.e., the tra-
ditional geometry-based methods and deep learning-based
methods. In the former group, special points (especially van-
ishing points), straight lines, geometric shapes, or contents
are taken as the regularization or guidance to rectify the dis-
tortion so that the rectified images can obey the perspective
transformation again. In the latter group, parameters of the
distortion model or the equivalent warp field that represents
the transformation from the distorted image to the undistorted
one are learned from large-scale training data, which is usu-
ally synthesized from normal images based on various wide
FOV camera models or distortion models. In the following
parts, representative methods of each group will be reviewed
and discussed in detail.

4.1 Geometry-BasedMethods

Traditionally, image rectification is treated as an optimization
problem where the objective function to be minimized can
be some energy and/or loss terms that are used to measure
the distortions in the image. For example, the straightness
of lines is one of the most commonly used loss terms in
most of the traditionalmethods. However, usersmay not only
care about geometric lines but also some semantic content,
such as faces in portraits or buildings in the scene. Accord-
ingly, weight maps based on visual attention can be used in
the objective function for a better perceptual result. Besides,
when multi-view images are available, multi-view geometry
constraints can also be leveraged to estimate accurate and
robust distortion parameters. We present these methods as
follows.

4.1.1 Line-Based Methods

Among all structure information, straight lines are mostly
leveraged as the regularization owing to the following rea-
sons. First, they are intuitive and easy to understand. Second,
they are sensitive to distortions caused by the wide FOV lens.
Third, they can measure the distortion levels effectively and
directly, e.g., based on the straightness of lines. As pointed
out in (Zorin and Barr 1995; Devernay and Faugeras 1995,
2001), camera models follow perspective projection if and
only if straight lines in the 3D world are still straight in the
image.This is the golden rule in line-based rectificationmeth-
ods where the straightness of lines should be maximized or
the curvature of line segments should be minimized in the
rectification. The main framework of line-based methods is
illustrated in Fig. 4.

The first step of line-basedmethods is to detect lines in the
distorted image, which itself is a non-trivial vision task. Usu-
ally, line detection is composed of two steps: edge detection,
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Fig. 4 The workflow of line-based methods

e.g., using the canny algorithm (Canny 1986), and grouping
of points on edges as line segments. When the distortion is
small, line segments may be long enough to estimate param-
eters (Devernay and Faugeras 1995, 2001). However, when
the distortion is large, a single line may break into too many
small pieces, making parameters fitting unstable. Under this
situation, these small pieces of segments should be merged
into longer lines before fitting (Bräuer-Burchardt and Voss
2000; Thormählen 2003).

Once straight lines are collected in distorted image, param-
eters of distorted model can be estimated via non-linear
optimization. It is known that every point (xu, yu) on a 2D
straight line satisfies:

axu + byu + c = 0, (34)

where a, b, c are scalar parameters that should be fitted
for each line separately using all the points belonging to it.
Undistorted coordinates xu and yu aremapped from the coor-
dinates in distorted image via a mapping function F(·), i.e.,
xu = Fx (xd;k), yu = Fy(xd;k), where k is the distortion
parameter set and xd = (xd , yd). Therefore, the sum square
distance of all points to the lines is calculated as:

L(Xd) =
K∑
i=1

⎛
⎜⎝ ∑

j∈�i

⎛
⎝ |aiFx (x

ij
d ; k) + biFy(x

ij
d ; k) + ci |√

a2i + b2i

⎞
⎠

2
⎞
⎟⎠ .

(35)

Here, L(·) denotes the loss function, K is the number of
lines in the image, (ai , bi , ci ) is the fitted parameters for a
specific line li ,�i is the index set of all points belonging to li ,

Xd =
{(

xi jd , yi jd

)
| i = 1, . . . , K , j ∈ �i

}
. Intuitively, the

distortion parameters can be estimated by minimizing this
loss function. But in practice, it is hard to obtain accurate and
robust estimation due to noise as well as the heavy compu-
tational cost arisen from nonlinear optimization. To address
these issues, several other forms of loss function have been
proposed, e.g., the slope of lines in Ahmed and Farag (2001,
2005), sum of residual error in Thormählen (2003), and the
sum of the angles between line segments belonging to the
same line in Kakani et al. (2020).

If lines are detected via Hough transform-based methods,
the most convenient way to represent a line is using the fol-
lowing equation (Prescott and McLean 1997):

xu cos θ + yu sin θ = ρ, (36)

where ρ is the perpendicular distance from the origin to the
line and θ is the angle between the line and the horizontal
axis. For each line li in lines set with enough supporting
points in the Hough space, we use (θi , ρi ) to represent the
line parameters. In the distorted image, the supporting points
of a long straight line are broken into small groups because
the line is detected as short pieces. After the image rectifi-
cation, these short lines are connected as a long line that has
the maximum number of support points. Thus, the loss func-
tion in Hough transform-based methods can be formulated
as (Cucchiara et al. 2003):

L(Xd) =
K∑
i=1

⎛
⎝ ∑

j∈�i

(
Fx (x

ij
d ; k) cos θi + Fy(x

ij
d ;k) sin θi − ρi

)2⎞⎠ .

(37)

Here, K , �i , k, Fx (·), and Fy(·) have the same meaning as
in Eq. (35).

In practice, due to noise and edge detection errors in the
distorted image, θi and ρi would not cluster into a point in the
Hough space for a curved line. Tomake the Hough transform
adapt the distorted line, distortion parameters are introduced
into the hough space (Cucchiara et al. 2003; Alemán-Flores
et al. 2013, 2014a, b; Santana-Cedrés et al. 2015). TheHough
transform that incorporates distortion parameters is called the
extended Hough transform. Considering the computational
efficiency and stabilization of the optimization, the dimen-
sion of the expended Hough space should not be too high.
Therefore, only one parameter is introduced by choosing the
one-parameter division model or one-parameter polynomial
model as the distortion model (Cucchiara et al. 2003) in most
cases. Furthermore, to make the estimation independent of
the image resolution and avoid trivial small values, a proxy
variable p is estimated instead of k in Alemán-Flores et al.
(2013, 2014b, a). In later work, two distortion parameters are
added in the extended Hough space via two-step optimiza-
tion methods (Santana-Cedrés et al. 2015, 2016). Although
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three or more parameters can be added similarly, it is not
necessary to do so. Because the impact of high order coeffi-
cients decreases fast and the improvement becomes relatively
small, while the computational cost and complexity increase
quickly.

The above methods estimate the line parameters and dis-
tortion parameters based on linked small line segments,
which are prone to noise and erroneous line detection. If the
curved line in the distorted image could be detected directly
instead of linking small pieces gradually, the estimation will
be more accurate. As pointed out in (Brauer-Burchardt and
Voss 2001; Strand and Hayman 2005; Wang et al. 2009;
Bukhari and Dailey 2010; Bermudez-Cameo et al. 2015),
when one-parameter division model is taken to describe the
distortion, the straight line in an undistorted image becomes
a circular arc in the distorted image. If the distortion center
is at the origin, points on lines in the undistorted image can
be written as:

{
xu = xd/(1 + kr2d )

yu = yd/(1 + kr2d )
, (38)

which are subjected to Eq. (34):

a
xd

1 + kr2d
+ b

yd
1 + kr2d

+ c = 0, (39)

i.e.,

ck(x2d + y2d ) + axd + byd + c = 0. (40)

Here k 
= 0 is the distortion parameter. If the line does not
pass through the origin, i.e., c 
= 0, then we have:

x2d + y2d + a

ck
xd + b

ck
yd + 1

k
= 0. (41)

This is a circle equation, implying that the straight line
becomes a circle in the distorted image. More generally, if
the distortion center is (x0, y0), we have:

(xd−x0)
2+(yd−y0)

2+ a

ck
(xd−x0)+ b

ck
(yd−y0)+ 1

k
= 0,

(42)

which can be denoted as:

x2d + y2d + Axd + Byd + C = 0, (43)

A = a

ck
− 2x0, (44)

B = b

ck
− 2y0, (45)

C = x20 + y20 − a

ck
x0 − b

ck
y0 + 1

k
, (46)

0 = x20 + y20 + Ax0 + By0 + C − 1

k
. (47)

Given a group of points (xd , yd) on a curved line in the dis-
torted image, the circle fitting algorithm (Bukhari and Dailey
2013; Antunes et al. 2017) can be used to estimate A, B,C
in Eq. (43). Moreover, given three arcs parameterized by
{Ai , Bi ,Ci , i = 0, 1, 2}, (x0, y0) can be calculated based on
Eq. (47), i.e.,

{
(A1 − A0)x0 + (B1 − B0)y0 + (C1 − C0) = 0
(A2 − A1)x0 + (B2 − B1)y0 + (C2 − C1) = 0

.

The distortion parameter k can be estimated using any of the
three arcs’ parameter and (x0, y0) from Eq. (47):

1

k
= x20 + y20 + Ax0 + By0 + C (48)

For images having large distortions, line detection or circle
fitting is often prone to noise, e.g., unstable short line seg-
ments, curved lines in the 3Dworld, or wrong points near the
lines. Usually, there are two ways to mitigate the issue. One
is in an interactive way where straight lines are selected by
humans (Carroll et al. 2009, 2010;Wei et al. 2012; Kanamori
et al. 2013). The other way is to remove outliers and select the
most informative lines iteratively. For example, lines with the
most inner points are kept (Thormählen 2003) and the ones
with inner points less than a threshold are removed (Kim et al.
2010).Moreover, lower weights are assigned to lines near the
distortion center because they are less informative than the
ones far away. Similarly, lines that pass through the origin are
deleted in (Benligiray and Topal 2016). Zhang et al. (2015b)
selects good circular arcs regarding the histogram of the dis-
tortion parameters. Only the best three lines are selected for
the estimation in (Zhang et al. 2015a)1. Antunes et al. (2017)
leveraged Lines of Circle Centres (LCCs) for robust fitting.

In other work (Wildenauer and Micusik 2013; Jiang et al.
2015), the position of vanishing points is used as an extra
constraint since all the parallel lines should pass through their
vanishing points. Once we detect parallel lines, we can detect
the vanishing points by calculating their intersections. Then,
line parameters can be refined by leveraging the vanishing

1 http://cvrs.whu.edu.cn/projects/FIRC/.
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point constraint (Jiang et al. 2015). Besides, the sum of the
distance from estimated vanishing points to the parallel lines
can be used tomeasure the distortion (Yang et al. 2016), since
vanishing points will scatter around the ground truth ones if
there is distortion.

4.1.2 Content-Aware Methods

Whenwide-angle images have large distortions (Carroll et al.
2009), rectification using a single projection model may not
preserve the straightness of lines and shapes of objects at
the same time (Zorin and Barr 1995). Minimizing the over-
all distortions in a wide-angle image is to make some kind
of trade-off between these two types of distortions. Since
some contents in the image, e.g. the main building or human
faces, are more important for a good perceptual result, they
should be paid more attention during the rectification. These
contents can be detected automatically or specified by users
interactively, which usually contain salient semantic objects
(Carroll et al. 2009;Kopf et al. 2009;Carroll et al. 2010; Sacht
2010; Wei et al. 2012; Kanamori et al. 2013). In practice,
many different kinds of constraints are often used together to
construct the loss function for a better result. Some of them
are listed in Table 5. These content-aware methods are try-
ing to find a spatially varying warp field that transforms the
distorted image to the corrected one while minimizing the
distortion and keeping the pre-defined salient contents.

In interactive content-aware methods, users often specify
points, lines, or regions that they care about. Therefore, the
straightness and orientation of lines, e.g. the vertical lines of
the building, are often used as constraints in the loss terms
(Carroll et al. 2010; Wei et al. 2012; Jabar et al. 2019). In
(Kopf et al. 2009), near-planar regions of interest canbe anno-
tated by users, whose planar attribute is kept in the rectified
image via the deformation of the projection surface, e.g., a
cylinder. In (Carroll et al. 2009), the surface of a sphere is
deformed to keep the user-specified constraints, e.g. horizon-
tal lines to be horizontal and vertical lines to be vertical, after
the image is corrected. In (Sacht 2010), the loss function is
constructed based on the constraints of the conformality of
the mapping, the straightness of user-selected lines, and the
smoothness of the warp field. They also leverage a saliency
map to take the areas near line endpoints into account. Some
other types of user-specified content are also used in (Carroll
et al. 2010), e.g., vanishing point position and fixed points.

Recently, deep neural network-based methods have made
significant progress inmany computer vision tasks, including
line detection and saliency map detection. Therefore, these
two pre-processing steps in the above rectification methods
can be accomplished by deep learning models. For exam-
ple, Kim et al. (2017) extracts line segments using a deep
model named Line Segment Detector (LSD) (Grompone von
Gioi et al. 2012) while Jabar et al. (2019) detects lines using

EDLines proposed in (Akinlar and Topal 2011). Since these
line detectors are trained on undistorted images, theymay fail
in spherical images where lines are curved. Therefore, the
distorted image is usually rectified first by rectilinear pro-
jection such that lines are preserved and then the lines are
detected by the line detectors. After that, points on the lines
are projected back to the spherical coordinate and grouped,
which are used to estimate the distortion parameters. In (Jabar
et al. 2019), saliency map defined as the probability of object
existence in the image (Kim et al. 2017) is generated using
ML-Net (Cornia et al. 2016). In (Shih et al. 2019) 2, the atten-
tion map is generated based on the union of the segmented
human body and detected face.

4.1.3 Multi-ViewMethods

Image rectification heavily depends on the structure infor-
mation in the image, e.g. straight lines. Compared to lines,
points are more primitive features. Image with few lines may
contain many distinctive keypoints. In this case, if multi-
ple images of the same scene taken from different views
are available, the image can be rectified based on point cor-
respondence, as in the self-calibration methods (Faugeras
et al. 1992; Maybank and Faugeras 1992; Fraser 1997; Kang
2000). And the other advantage that using points instead of
lines is that the detection of points is faster, more stable and
accurate than that of lines in distorted images. Specifically,
when the camera is assumed to be a standard pinhole camera,
point correspondence in multi-view images can be described
by epipolar geometry (Hartley and Zisserman 2003). When
images are distorted, the epipolar constraint will be bro-
ken (Zhang 1996; Stein 1997; Barreto and Daniilidis 2005).
Therefore, the deviation of corresponding points from the
epipolar line can be used tomeasure the distortions.Minimiz-
ing the sum of the deviation distance leads to the best-fitted
distortion parameters. Denoting that [xu, yu]T and [x ′

u, y
′
u]T

are two correspondence points in two views without distor-
tions, the epipolar line constraint is formulated as:

[xu, yu, 1]TF[x ′
u, y

′
u, 1] = 0, (49)

where F is the 3 × 3 fundamental matrix (Hartley and Zis-
serman 2003). Assuming the images are taken by identical
cameras and the distortion model in all views are the same,
we have:{
xu = Fx (xd;k)

yu = Fy(xd;k)
, (50)

where Fx , Fy , xd, and k have the same meaning in Eq. (35).
Substituting Eq. (50) into Eq. (49), we can get the constraint

2 https://github.com/Jason-xys/Wide-Angle-Portraits-Distortion-
Correction.
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for distorted points. If the points correspondence are known,
the fundamental matrix and distortion parameters can be esti-
mated by minimizing the loss function accordingly, i.e.,

min
F,k

[Fxy(xd;k), 1]TF[Fxy(xd′;k), 1], (51)

In the standard pinhole camera model, the degree of free-
dom of F is eight. Therefore, if eight pairs of points are
known,F canbe estimatedby solving a linear equation.Given
more than eight pairs of points, it comes to the least-squares
solution (Stein 1997; Pritts et al. 2020). When using wide
FOV cameras, the optimization becomes complex since it
also involves the distortion parameters. Although the dis-
tortion function with high order terms is also applicable in
Eq. (51), more parameters may not guarantee better results
due to noise and unstable optimization (Hartley and Sing
Bing Kang 2005) while increasing computations.

If we reformulate F into the vectorization form, i.e., a
nine-dimension vector f , Eq. (49) can be rewritten as:

[xux ′
u, xu y

′
u, xu, yux

′
u, yu y

′
u, yu, x

′
u, y

′
u, 1]Tf = 0. (52)

When one-parameter distortion model is used, Eq. (52) can
be formulated as a quadratic eigenvalue problem (QEP)
(Fitzgibbon 2001; Liu and Fang 2014), i.e.,

(k2d1 + kd2 + d3)Tf = 0, (53)

where d1,d2,d3 are vectors having the same size of f , whose
element is a function of (xu, yu, x ′

u, y
′
u, k) (Liu and Fang

2014). The QEP can be solved using a quadratic eigenvalue
solver given nine pairs of points to obtain the distortion
parameter k and fundamental matrix F.

Note that F is a rank-2 matrix and det(F) = 0, which
can be used as extra constraint to narrow the search space
of the solution of Eq. (51) or Eq. (53) (Li and Hartley 2005;
Kukelova and Pajdla 2011; Liu and Fang 2014). Besides, if
more views are available, the number of required point pairs
can be reduced (Stein 1997; Steele and Jaynes 2006).

4.2 Learning-BasedMethods

Toaddress the aforementioneddemerits of traditional geometry-
based methods, deep learning-based methods have been
proposed in recent years. Given a distortion model, one sim-
ple idea is to learn its parameters from large-scale training
data by regression. From another point of view, distorted
images and rectified images can be seen as paired samples in
two different domains, where each one can be transformed
into the other via a warp field. Base on these two ideas,
there are two main kinds of deep learning methods for image
rectification, i.e., model-based methods that aim to predict
the parameters of a specific distortion model and model-free

methods that aim to learn the warp field or generate the rec-
tified image. The most salient characteristic of model-free
methods is that the distortion parameters are not involved
in the framework and multiple distortion models can work
together under one framework. Compared with traditional
geometry-based methods, the target of model-based meth-
ods is the same as that of the two-stage methods, while the
target of model-free methods is the same as that of the one-
stage methods.

The most challenging issue for learning-based methods
is their requirement for massive training data. Since it is
hard to collect real-world paired training data, a typical solu-
tion is to generate synthetic training data based on distortion
models. As described in Sect. 3, there are many kinds of
distortion models. So the first step is to choose a distortion
model with parameters sampled from a prior distribution.
The synthetic images paired with the original normal images
are treated as training pairs. Besides, some semantics infor-
mation and/or structure information can also be annotated,
which can be leveraged to train a bettermodel. Note that if the
model is trained on a small dataset based on a specific distor-
tion model, the generalizability will be limited. Therefore, a
large-scale training dataset that covers as many distortions as
possible is expected to train a useful model with good gen-
eralizability. The general framework of the learning-based
methods is shown in Fig. 5.

4.2.1 Model-Based Methods

Model-based methods regress parameters of the explicit dis-
tortion model directly from the synthetic training data. For
example, Rong et al. (2016) uses images from ImageNet
(Deng et al. 2009) 3 to synthesize distorted training images.
Images with long lines are first selected and then the one-
parameter division model is used to synthesize the distorted
images. During training, it is formulated as a classification
problem where the known distortion parameter k is divided
into 401 sub-classes. In the testing phase, a weighted aver-
age strategy is proposed to calculate the distortion parameter
based on the predicted class probability. However, directly
synthesizing distorted images from normal ones will gener-
ate black areas near image boundaries. To address this issue,
Bogdan et al. (2018)4 leverages the textcolorredUCMmodel
(refer to Sect. 2.2) to synthesize images by re-projecting
images from a sphere. First, the panorama is projected onto
the sphere surface under the unified camera model. Then,
distorted images are generated via stereographic projection.
Accordingly, the distortion parameters are the focal length f
and the distance ξ from the projection center to the sphere

3 http://www.image-net.org/.
4 https://github.com/alexvbogdan/DeepCalib.
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DNN
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estimated
parameteres

warp field

rectified image

distortion model 1 ... distortion model k

Step 1

Step 2

Step 3

Step 4

Fig. 5 The general framework of the learning-based methods. In the
first step, the candidate pool of distortion models is constructed. Then,
one or more models can be chosen from it. Next, training pairs are gen-
erated bywarping normal images according to the distortionmodel with
randomly sampled parameters from a prior distribution. The sampled
parameters and/or the generated warp field can be used as the ground
truth. Then, a deep neural network is carefully designed as the key part
of learning-based methods. Auxiliary information such as straight lines
annotations and/or semantic segmentation maps can be incorporated
to assist the training. Next, the distortion parameters or the warp field
will be learned. Finally, the distorted image is rectified using the esti-
mated parameters or warp field accordingly. In some cases, the model
may learn parameters or warp field implicitly and output rectified image
directly

center. Three different structures of networks are compared
in the paper, including SingleNet, DualNet, and SeqNet.

Inspired by the traditional geometry-based methods that
use straight lines in the images as distortion clues, some deep
learning-based methods also explore these clues as guidance
to get better results. For example, Xue et al. (2019, 2020)
proposes a new dataset, named the synthetic line-rich fish-
eye (SLF) dataset, which contains fisheye images, heatmaps
of the distorted lines, rectified images, heatmaps of recti-
fied lines, and the distortion parameters. These annotations
are transferred from the wireframes dataset (Huang et al.
2018) 5 and SUNCG 3D dataset (Song et al. 2017)6. A deep
network composed of three cascade modules is utilized to
do the rectification. The first module is used to detect dis-
torted lines in the fisheye image. The second module takes
the original fisheye image, the detected distorted lines, and
their heatmap as inputs to predict the distortion parameters.
The third module is a differentiable rectification layer, which
aims to rectify the heatmap of distorted lines and distorted
images given the predicted distortion parameters. In (Xue

5 https://github.com/huangkuns/wireframe.
6 https://sscnet.cs.princeton.edu/.

et al. 2020)7, an attentive uncertainty regularization is intro-
duced to add an attention mask to the L1 loss between the
distorted image and the rectified image. Apart from the use-
ful structure information of lines, semantic information is
also explored for image rectification. For example, Yin et al.
(2018) adds a scene parsing module to aid the rectification
network. Specifically, the fisheye image first goes through
a base network to obtain the encoded feature map. Then, a
semantic segmentation head network is used to predict the
semantic segmentation map from the encoded feature map.
Finally, the distortion parameters can be estimated fromadis-
tortion parameter estimation head network, which takes the
shallow feature maps of the base network, the encoded fea-
ture map, and the scene segmentation map as inputs. These
feature maps can be seen as low-level, mid-level, and high-
level information in the original image, which improves the
prediction accuracy.

Most of the fisheye distortions have a fixed pattern, i.e., the
twomost popular types of fisheye distortion, barrel distortion
and pincushion distortion, are radially symmetric and the dis-
tortion increases as the radius grows. Therefore, taking it as
a priori knowledge can help the network to converge faster
and better. For example, Shi et al. (2018) proposes an inverted
foveal layer specifically designed for barrel distortion, which
can be inserted into the parameter regression network to
accelerate the training process and obtain a smaller training
and testing loss. Liao et al. (2020b) uses a prior attentivemask
to help the parameter prediction. It is based on the follow-
ing observations: (1) the distortion center is not far from the
center of the lens, and (2) with the increase of the distance
between the pixel and the distortion center, the distortion
becomes larger. Specifically, in the first stage, aDC-Net takes
the original image and a coarse mask map as inputs and pre-
dicts a refined mask map. Next, this refined mask and the
original image are fed into a DP-Net to predict the distortion
parameters. Multi-scale features in DP-Net are fused and the
prediction is carried out in a cascaded way via sequential
classification and regression to improve the accuracy. Some
of the distortion parameters, e.g., tilt angle and focal length,
are difficult to estimate since they are not directly observable
in the image. To mitigate this issue, Lopez et al. (2019) uses
proxy variables instead of the extrinsic and intrinsic param-
eters, which have close relationships to visual clues and can
be estimated easily.

Comparisons of the typicalmodel-basedmethods are sum-
marized in Table 6. It can be seen that (1) the polynomial
model and the one-parameter division model are most com-
monly used; (2) usually less than five orders are used in the
polynomial model; (3) the size of the training image is small,
e.g., 256×256, and (4) each model is trained using different
synthetic datasets. The synthetic datasets are different from

7 https://xuezhucun.github.io/LaRecNet/.

123

https://github.com/huangkuns/wireframe
https://sscnet.cs.princeton.edu/
https://xuezhucun.github.io/LaRecNet/


International Journal of Computer Vision

Ta
bl
e
6

A
su
m
m
ar
y
of

so
m
e
ty
pi
ca
lm

od
el
-b
as
ed

m
et
ho
ds

M
et
ho

d
Si
ze

A
rc
hi
te
ct
ur
e

M
od

el
Pa
ra
m
et
er
s

In
fo
rm

at
io
n

D
at
as
et

R
on

g
et
al
.(
20
16
)

25
6

A
le
xN

et
D
iv
is
io
nc

k
–

Im
ag
eN

et
(D

en
g
et
al
.2
00
9)

Y
in

et
al
.(
20
18
)

–
V
G
G

Po
ly
.d

k 1
−5

m
u
,
m

v
,
u
0
,
v
0

Sc
en
e
pa
rs
in
g

A
D
E
20
K
(Z
ho
u
et
al
.2

01
9)

B
og

da
n
et
al
.(
20
18
)

29
9

In
ce
pt
io
nV

3
St
er
eo
gr
ap
hi
ce

f,
ξ

–
SU

N
36
0
(X

ia
o
et
al
.2
01
2)

a

Sh
ie
ta
l.
(2
01
8)

25
6

A
le
xN

et
R
es
N
et
18

D
iv
is
io
n

k
–

Im
ag
eN

et
(D

en
g
et
al
.2
00
9)

L
op

ez
et
al
.(
20
19
)

22
4

D
en
se
N
et
-1
61

Po
ly
.

k 1
−2

,
f,

θ
,
φ

H
or
iz
on

lin
e

SU
N
36
0
(X

ia
o
et
al
.2
01
2)

X
ue

et
al
.(
20
19
)
X
ue

et
al
.(
20
20
)

32
0

H
G
N
et
R
es
N
et
50

Po
ly
.

k 1
−5

m
u
,
m

v
,
u
0
,
v
0

L
in
es

SU
N
C
G
(S
on

g
et
al
.2
01
7)

W
ir
ef
ra
m
e
(H

ua
ng

et
al
.2
01
8)

L
ia
o
et
al
.(
20
20
b)

–
In
ce
pt
io
nV

3
Po

ly
.

k 0
,
k 2

,
k 3

,
k 4

u
0
,
v
0

Pr
io
r
m
as
k

O
xf
or
d
B
ui
ld
in
g
(P
hi
lb
in

et
al
.2
00
7)

Y
an
g
et
al
.(
20
20
)

12
8x
12
8

W
G
A
N
V
G
G
16

Po
ly
.

k 0
,
k 2

,
k 3

,
k 4

Pr
io
r
m
as
k
lo
ng

es
tl
in
e

Pl
ac
e2

(Z
ho

u
et
al
.2
01
8)

b

a
ht
tp
://
pe
op
le
.c
sa
il.
m
it.
ed
u/
jx
ia
o/
SU

N
36
0/

b
ht
tp
://
pl
ac
es
2.
cs
ai
l.m

it.
ed
u/

c T
he

Ty
pi
ca
lD

iv
is
io
n
M
od
el
in

Ta
bl
e
2

d
T
he

Po
ly
no

m
ia
lR

ad
ia
lD

is
to
rt
io
n
M
od

el
in

Ta
bl
e
2

e T
he

St
er
eo
gr
ap
hi
c
M
od
el
in

Ta
bl
e
3

123

http://people.csail.mit.edu/jxiao/SUN360/
http://places2.csail.mit.edu/


International Journal of Computer Vision

each other in two aspects, the standard image datasets and
the distortion models. Some of them use different standard
image datasets, or use the same image dataset but with dif-
ferent distortion models, or are different in both.

4.2.2 Model-Free Methods

Since model-based methods aim to estimate the parameters
corresponding to a specific distortion model, it is inflexible
for them to adapt to various distortion models in one frame-
work. By contrast, model-free methods do not estimate the
distortion parameters but try to learn the warp field that trans-
forms the distorted image to the undistorted one by per-pixel
displacement vector. Because the warp field does not bind
with the distortion model, it is possible to represent multi-
ple types of distortion models in one warp field, leading to
a promising general solution. Li et al. (2019)8 pre-defines
six different types of distortion models and designs two
types of networks, i.e., GeoNetS and GeoNetM, to predict
the warp field. GeoNetS estimates a single-model distortion
field, which is calculated via the predicted distortion param-
eters and supervised explicitly by the ground truth flow field.
However, GeoNetS is limited to only one specific distortion
model once being trained. To estimate the distortion field that
covers all six types of models using one network, GeoNetM
is proposed which has a multi-task structure, one head for
classification of the distortion types and the other head for
estimation of the flow field. It uses the estimated flow field to
fit the parameters of the predicted type of distortion model.
Finally, the flow field is regenerated based on the distortion
model with the fitted parameters, which can be seen as a
fusion of both tasks, making the result more accurate. Liao
et al. (2020c) also proposes a model-free learning framework
that can handle multiple types of distortion models in one
deep model and expects better generalizability. Specifically,
16 distortion models are leveraged to synthesize the train-
ing data. Instead of estimating the heterogeneous distortion
parameters, they propose estimating the distortion distribu-
tion map (DDM), which could cover any distortion model in
the same form.DDMdescribes distortion as the ratio between
the coordinates of the same pixel in the distorted and rec-
tified image, rather than the movement or displacement of
the pixel. They use an encoder-decoder network to estimate
DDM, which guides the extraction of semantic information
from the distorted image. Meanwhile, they also use another
encoder to learn structure features from the canny edge map.
Next, the semantic information and structure features are
fused via an attention map. Finally, a decoder uses the fused
feature to predict the rectified image.

In some other works, the rectification problem is treated as
an image-to-image translation problem, where the standard

8 https://github.com/xiaoyu258/GeoProj.

perspective image and thedistorted image are seen as samples
from two different domains. As a powerful tool in domain
transformation, GAN (Goodfellow et al. 2014) is also intro-
duced in image rectification. For example, Liao et al. (2020a)
presents the DR-GAN, a conditional generative adversarial
network for automatic radial distortion rectification. The rec-
tified image is generated by the generator and a low-to-high
perceptual loss is used to improve the output image qual-
ity. Further on, Yang et al. (2020) adds a prior attentive map
as in (Liao et al. 2020c) and takes the longest straight line
in the standard image as the weighting map when calculat-
ing forward and backward loss. The attentive map is used to
quantify the distortion spatially. Forward loss is defined in
the distorted image domain while backward loss is defined
in the standard image domain. A summary of the model-free
methods is presented in Table 7.

4.3 Discussion

4.3.1 Traditinal Geometry-Based Methods

Traditional geometry-based methods can be divided into two
categories, i.e., the one-stage methods and the two-stage
methods. In the former category, a warp field is optimized
directly, e.g., (Kopf et al. 2009; Carroll et al. 2009, 2010).
These methods are usually carried out in an interactive man-
ner and leverage the constraint of user-specified contents that
need to be preserved or adjusted. However, it may be chal-
lenging for a user without domain knowledge to select the
proper contents that lead to a satisfying result.

In two-stage methods, some preliminary tasks like line
detection, circle fitting, vanishingpoints localization, or point
correspondence in multi-view images are first carried out
automatically. And then distortion parameters are estimated
based on the constraints of these elements. Although every
step of the procedure can be completely automatic, the errors
in each stage will accumulate to the deterioration of the
estimation of the parameters. More importantly, the two pro-
cedures are always coupled together, making them hard to be
disentangled and optimized separately. To address this issue,
some iterative algorithms are proposed to refine the estimate
in a loop, but the errors may accumulate step by step in the
iterative pipeline.

Generally, on the one hand, the demerit of traditional
geometry-based methods is the high complexity that too
many hyper-parameters in each sub-task need to be tuned
carefully, e.g., the thresholds in edge detection and line
segments grouping. Besides, the empirically selected param-
eters may not work well in various scenarios in practical
applications. On the other hand, the merit of traditional
geometry-basedmethods is that the solutions are always ana-
lytical and explainable where the outputs of each step have
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explicit meanings. Besides, they have good generalizability
to different sizes of images.

4.3.2 Learning-Based Methods

Similar to the deep learning methods for other computer
vision tasks, the performance of learning-based methods for
image rectification also depends on large-scale training data.
To our best knowledge, there is no real-world paired train-
ing data available for image rectification. Existing methods
always use their own training data synthesized based on spe-
cific types of distortionmodels,making it difficult to compare
their performance.

Moreover, the synthetic training data depends on the
chosen distortionmodels, which consequently limits the gen-
eralizability of the trained model. Although one can sample
various parameters from a prior distribution to generate large
amounts of training data, they are limited to the exact specific
type of distortion model. Even if multiple distortion models
can be used to build the training dataset (Li et al. 2019; Liao
et al. 2020c), there is still a gap between the synthetic train-
ing images and real-world wide-angle images from various
wide FOV cameras like fisheye cameras and omnidirectional
cameras. More efforts should be made to bridge the gap.

Besides, leveraging supervision from mid-level guidance
like lines and high-level guidance like semantics has attracted
increasing attention in recent years. For example, when mid-
level guidance like straight lines is used as extra supervision
(Xue et al. 2020), the network is supervised to learn how
the structural elements (e.g., lines) in the image should
be rectified, thereby obtaining better generalizability. One
step further, high-level guidance can provide more abun-
dant information about regions than the mid-level ones, e.g.,
scene parsing. It has been proven that incorporating high-
level guidance into the network can improve the rectification
result (Yin et al. 2018; Lőrincz et al. 2019). Therefore, it is
promising and worth trying to explore other forms of high-
level guidance, e.g., depth or instance segmentation.

4.3.3 Relationship

Generally, no matter the traditional geometry-based meth-
ods or the learning-based methods, they both try to estimate
the mapping between the distorted image and the undis-
torted one. The distortion model, as a bridge between the two
domains, plays an important role in this estimation. In most
cases, the estimation is equivalent to predicting the parame-
ters of the distortion model. In traditional geometry-based
methods, the prediction is formulated as an optimization
problem, where the loss function that measures the distor-
tion is minimized. In learning-based methods, it is usually
formulated as a regression problem, where the parameters

are regressed by minimizing the distance between the pre-
dicted parameters and the ground truth ones.

Existing learning-based methods depend on the distortion
model implicitly or explicitly, whereas traditional geometry-
based methods can get rid of distortion models completely,
e.g., (Sacht 2010). Although distortion parameters may not
be needed as supervision in model-free learning methods,
the distortion model has to be assumed as a prior knowledge
for synthesizing the training data. Therefore, the distorted
image or the equivalent supervision signal, i.e., warp field
(Liao et al. 2020c), are still based on the distortion model.
By contrast, traditional geometry-basedmethods use straight
lines as constraints by maximizing their straightness, which
is distortion model agnostic.

Traditional geometry-basedmethods can only assume one
distortion model in one solution since different models could
lead to different forms of loss functions which are very
hard to formulate in a single framework. For example, the
same distortion can be generated by different models with
different parameters. By contrast, owing to the strong repre-
sentation capacity of deep networks, learning-basedmethods
(or model-free methods specifically) could adapt to multiple
distortion models in one solution (Li et al. 2019; Liao et al.
2020c), as long as adequate training data that covers these
distortion models are provided. However, even with multiple
distortion models, learning-based methods commonly have
the problem of generalization, i.e., the deep model that is
trained onone datasetmayperformpoorly on another dataset,
or the one trained on the synthetic dataset can not work well
on real images. In contrast to that, geometry-based methods
are invariant to the domain of the images. No matter if the
image is synthetic or real, or from an unknown dataset, they
can provide consistent and explainable outputs, which is very
difficult for learning-based methods.

Learning-basedmethods usually run faster than traditional
geometry-based methods, especially the ones including an
iterative refinement process, since learning-based methods
only need one forward-pass computation in the testing phase,
which can be accelerated by using modern GPUs. However,
when the size of the input image increases, the computation
cost of learning-based methods will increase accordingly,
while that of traditional methods may almost stay the same.
Because the number of lineswill not increase as the size of the
image increases. Note that the computation of edge detection
is relatively small comparedwith the optimization procedure.
Compared with learning-based methods, geometry-based
methods have to decide many hyper-parameters empiri-
cally and some of them are vital to the performance. In
contrast, learning-based methods not only have fewer hyper-
parameters but also are not that sensitive to them.
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5 Performance Evaluation

The evaluation of the image rectification can be carried out
both qualitatively by subjective visual comparison and quan-
titatively according to objective metrics. However, as far as
we knew, the lack of a benchmark dataset makes the eval-
uation difficult, which should be an important future work
as will be discussed in Sect. 6. In this paper, we provided
an evaluation of typical rectification methods by collecting
and analyzing the results from different methods in the exist-
ing literature. We also provide a strong baseline model and
carry out an empirical study of different distortion models on
synthetic datasets and real-world wide-angle images.

5.1 Experiment Settings

Datasets The ability of the learning-based methods partly
depends on the training set. In early work, e.g., (Rong et al.
2016), the distorted training data is synthesized directly from
standard images from the ImageNet dataset (Denget al. 2009)
using randomly chosen distortion parameters. Since extra
semantic or structure information has been proved useful for
facilitating the training of deep networks, some datasets in
related high-level computer vision tasks are also utilized for
synthesizing distortion training images. For example, in (Yin
et al. 2018), scene parsing annotations in ADE20k dataset
(Zhou et al. 2019) 9 can be used as the high-level semantic
supervision. Similarly, the network in (Lőrincz et al. 2019)
is supervised by extra semantic labels from KITTI odometry
dataset (Geiger et al. 2012)10 and synthetic images via the
Carla driving simulator (Dosovitskiy et al. 2017)11. Lines, as
the most common structure, are used as the extra supervision
in several works (Lopez et al. 2019; Xue et al. 2019; Liao
et al. 2020c; Yang et al. 2020). For example, the proposed
line-rich dataset in (Xue et al. 2019, 2020) provide both the
ground truth distortion parameters and the 2D/3D line seg-
ment annotations in man-made environments. Consequently,
the LaRecNet trained on this dataset achieved state-of-the-art
results. Some samples of the synthetic datasets are shown in
Fig. 6.

Metrics When the ground truth image is known, the dif-
ference between the rectified image and the original image
can measure the accuracy of the rectification. PSNR and
SSIM (Wang et al. 2004) are two widely used image quality
assessment metrics with known reference, where the former
accounts for mean square error and the latter accounts for
the structural difference. We adopted them as objective eval-
uation metrics in this paper. Besides, in order to precisely

9 https://groups.csail.mit.edu/vision/datasets/ADE20K/.
10 http://www.cvlibs.net/datasets/kitti/.
11 https://carla.org/.

measure the geometric accuracy of the rectified image, some
new metrics have been proposed in (Rong et al. 2016; Xue
et al. 2020). For example, precision and recall can be used
to measure if the pixels on the distorted lines are still on the
straight lines after rectification (Xue et al. 2020). The preci-
sion and recall are calculated by

Precision = |P ∩ G|/|P|, Recall = |P ∩ G|/|G|, (54)

where P is the set of pixels on lines in the rectified image
and G is the set of line pixels in the ground truth (standard)
image. | · | denotes the number of pixels in the set. |P ∩ G|
is the number of correctly rectified pixels (positive samples).
Precision measures the ratio of correctly rectified line pixels
in the rectified image and recall measures the ratio of the line
pixels in the ground truth image that are correctly rectified.
The overall performance ismeasured by themaximal F-score
of every pair of precision and recall at different thresholds
(Xue et al. 2020). The F-score is defined as:

F = 2 · Precision · Recall
Precision + Recall

. (55)

Furthermore, the accuracy of the estimated distortion
parameters can be measured by the reprojection error (RPE)
(Xue et al. 2020). Given the ground truth and the estimated
distortion parameters, every pixel on the distorted image can
be re-projected to the rectified image using the inverted dis-
tortion model. If the estimated parameters are accurate, the
distance between the re-projected pixels and the ground truth
should be zero.

5.2 Performance Evaluation of State-of-the-Art
Methods

We collected the reported results in the state-of-the-art
(SOTA) works and analyzed the performance accordingly.
Here we selected six SOTA methods for comparison, among
which Bukhari and Dailey (2013) and Alemán-Flores et al.
(2014a) are two representative traditional geometry-based
methods, Rong et al. (2016) is a typical and seminal model-
based method, Liao et al. (2020a) is a model-free method.
In order to verify the effectiveness of extra information and
guidance in parameter regression, we also included Yin et al.
(2018) and Xue et al. (2020) in the evaluation. We chose
PSNR, SSIM, F-score, and RPE as four objective metrics for
the evaluation. Four datasets were used by referring to Yin
et al. (2018),Xue et al. (2020), and Liao et al. (2020a), named
as SLF (the SyntheticLine-rich Fisheye test set used in (Xue
et al. 2020)), FV (theFisheyeVideo test set used in (Xue et al.
2020)), FR (the test set used in FishEyeRecNet (Yin et al.
2018)), and DR (the test set used in DR-GAN (Liao et al.
2020a)), respectively. The DR dataset was synthesized using
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(a)

(c)

(b)

(d)

Fig. 6 Some examples from different synthesized training sets. a Dis-
torted imageswith scene parsing annotations synthesized fromADE20k
(Zhou et al. 2019). The figure is reproduced from (Yin et al. 2018). b
Distorted images with wireframe annotations synthesized from Wire-
Frame dataset (Huang et al. 2018). The figure is reproduced from (Xue

et al. 2020). c Synthetic images from PLACE2 dataset (Zhou et al.
2018). The figure is reproduced from (Yang et al. 2020). d Distorted
images synthesized from ImageNet (Deng et al. 2009). The figure is
reproduced from (Rong et al. 2016)

Table 8 PSNR/SSIM of
state-of-the-art methods on
different test sets

Model SLF FV FR DR

Bukhari and Dailey (2013) – 9.34/0.18 9.84/0.16 11.47/0.2429 12.52/0.3082

Alemán-Flores et al. (2014a) – 10.23/0.26 10.72/0.30 -/- 13.22/0.3311

Rong et al. (2016) DM 12.92/0.32 11.81/0.30 13.08/0.3356 13.96/0.3741

Yin et al. (2018) Poly. -/- -/- 14.96/0.4129 -/-

Xue et al. (2020) Poly. 28.06/0.90 22.34/0.82 -/- -/-

Liao et al. (2020a) – -/- -/- -/- 16.59/0.6835

Our baseline DM 25.10/0.83 -/- 24.76/0.81 -/-

the even-order polynomial distortion model with six distor-
tion parameters. By contrast, nine distortion parameters were
used in the generation of SLF and FR datasets. Furthermore,
DR dataset consists of 30,000 training image pairs while SLF
dataset has 46,000 training samples and FR dataset contains
24,500 samples. Considering the distortion model and the
number of training samples, SLF dataset is more complex
than DR and FR dataset. FV dataset contains both synthetic
images and real fisheye videos, thereby it can be used to test
the generalizability of the methods.

The PSNR and SSIM of six SOTA methods tested on
these four datasetswere summarized in Table 8. Although the
scores of some methods are not available, the overall trends
still make sense. First of all, deep learning-based methods
have higher PSNR and SSIM scores than traditional meth-
ods. As a pioneer work, Rong et al. (2016) divides the range
of the parameters into 401 classes, so the estimation accu-
racy is limited.But owing to the powerful capacity of the deep
neural network, it still obtains a gain of 1dB ∼ 3dB PSNR
over traditional methods. Second, extra semantic annotations
can benefit rectification. Yin et al. (2018) predicts the recti-
fied image and the scene parsing result simultaneously. With
the extra guidance of the semantics and the direct L2 loss
on the ground truth image, it improves the PSNR by nearly
2dB compared to (Rong et al. 2016). Similarly, Xue et al.

(2020) uses the straight line annotations to guide the rectifi-
cation like the traditional methods do. The supervision of the
straight lines significantly advances the learning methods,
i.e., leading to an overall 10dB improvement. From Table 9,
we can also see that points on lines are projected back to
the straight lines after rectification. The principle that lines
should be straight after rectification is also useful in learning-
based methods.

In most of the learning-based methods, L1 or L2 loss is
used between the corrected image and the ground truth, but
these two losses can not handle detailswell (Isola et al. 2017).
In (Rong et al. 2016), perception loss is introduces into image
rectification. Without using extra annotations, it leverages
perception loss to supervise the training and achieves com-
parable resultswith (Yin et al. 2018). Like other deep learning
methods, the fusion of multi-scale and multi-stage features
is also useful in image rectification. In (Xue et al. 2020),
both global and local features are used to predict the distor-
tion parameters, and then the average value is taken as the
final result. Rong et al. (2016) adopt a U-Net (Ronneberger
et al. 2015) like architecture and use multi-level features to
generate the corrected image.
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Table 9 F-score and RPE of state-of-the-art methods

F-score RPE

SLF FV SLF FV

Bukhari and Dailey (2013) 0.29 - 164.75 156.3

Alemán-Flores et al. (2014a) 0.30 - 125.42 125.31

Rong et al. (2016) 0.33 - 121.69 125.31

Xue et al. (2020) 0.82 - 0.33 1.68

The highest F-score and lowest RPE values are given in bold

5.3 A Strong Baseline and Benchmark

Dataset12. Existing methods generate their training samples
using standard images from different datasets based on dif-
ferent distortion models or with parameters sampled from
different distributions. Consequently, it is hard to compare
all the methods in the same setting. To mitigate this issue, we
built a benchmark by synthesizing training and test images
from three source datasets, ADE20k dataset (Zhou et al.
2019), WireFrame dataset (Huang et al. 2018) and COCO
dataset (Lin et al. 2014) based on three distortion models,
i.e., the Field-Of-View distortion model in Row 4 of Table 2
(denoting “FOV”), the typical Division Model in Row 5 of
Table 2 (denoting “DM”), and the Equidistant Distortion
model in Table 3 (denoting “ED”). Details about these dis-
tortion models can be found in Sect. 3. The three datasets are
the most common ones in the vision community, and are also
often used in rectification, while the three distortion models
are the most simple and typical ones for wide FOV cameras.

The ADE20K dataset contains 20k images for training
and 2k images for testing, while the WireFrame dataset con-
tains 5k images for training and 462 images for testing. As
for the COCO dataset, we used the 40k images in the test
set to generate the training samples and the 5k images in
the validation set to generate the test samples. Each orig-
inal image was center-cropped with maximum size at the
height or width side, which was then resized to 257 × 257.
The distortion parameter of each distortion model is sampled
from a uniform distribution within a pre-defined range, i.e.,
[−0.02,−1] for the one-parameter divisionmodel, [0.2, 1.2]
for the FOV model, and [0.7, 2] for the equidistant model.
The training samples are synthesized on the fly during train-
ing.

Network Architecture We used ResNet50 (He et al.
2016) pre-trained on ImageNet(Deng et al. 2009) as the back-
bone network which is a widely used and de facto standard
structure in deep learning community., and changed the out-
put channel of the FC layer to one for predicting the distortion
parameter k. We devised a differentiable warp module to
embody thewarp functionF , which takes the distorted image

12 The source code, dataset, models, and more results will be released
at: https://github.com/loong8888/WAIR.

ResNet50   

Warp

Fig. 7 The diagram of the proposed baseline model

FOV

DM

ED

DM EDFOV GT

(a) (b) (c) (d) (e)

Fig. 8 Results of our baseline models on synthetic images. a The syn-
thetic images using the three distortion models. The original images
are from the ADE20k test set. b–f The rectified results of the FOV
ADE20k model, the DM ADE20k model, and the ED ADE20k model.
e The ground truth

and the estimated distortion parameter k as inputs and outputs
the rectified image. L1 loss between the rectified image and
the ground truth image was minimized during the training.
The whole network was trained end-to-end. The structure of
the proposed baseline model is illustrated in Fig. 7.

Results We trained three baseline models for each of the
distortion models separately on the corresponding training
dataset synthesized from the ADE20k dataset. Specifically,
for each source dataset, we synthesized training and test
samples using one of the distortion models, respectively.
Therefore, we built nine datasets in total, three for each
source dataset. Each model was only trained on the corre-
sponding synthetic ADE20k training set but tested on all the
synthesized test sets. For simplicity, we used the names of
the distortion models and the original datasets to denote the
synthetic datasets and the corresponding deep neural net-
work models that were trained on them. For example, the
FOV ADE20k dataset denotes the synthetic dataset gener-
ated from the ADE20k dataset based on the FOV distortion
model, while the FOV ADE20k model denotes the deep
model trained on the FOV ADE20k dataset. The PSNR and
SSIM of the test results were summarized in Table 10. The
scores in each row are the results of one specific deep model
tested on all the test sets, while the scores in each column are
the results of different deep models tested on the same test
set.
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Table 10 PSNR/SSIM of our baseline deep models on different test sets. FOV, DM and ED denote the FOV distortion model, one-parameter
Division Model, and the EquiDistant distortion model, respectively

Dataset ADE20K WireFrame COCO

FOV DM ED FOV DM ED FOV DM ED

FOV 26.43/0.85 16.65/0.45 18.84/0.54 26.45/0.86 16.65/0.51 19.06/0.61 25.91/0.84 16.09/0.43 18.51/0.53

DM 21.03/0.63 24.76/0.81 25.48/0.83 21.02/0.68 25.10/0.83 25.32/0.84 20.43/0.61 24.00/0.79 24.83/0.81

ED 18.83/0.56 23.37/0.75 26.01/0.84 19.02/0.63 23.77/0.79 25.83/0.85 18.05/0.55 22.73/0.74 25.45/0.83

The best PSNR/SSIM values are given in bold

From Table 10, we can find that the performance of each
deep model is roughly the same across the three synthetic
datasets that are based on the samedistortionmodel, although
it was only trained on the synthetic ADE20k dataset. For
example, the DM ADE20k deep model achieves 24.76dB,
25.10dB, and 24.00dB on the DMADE20k test dataset, DM
WireFrame test dataset, and DM COCO test dataset respec-
tively. The difference in the metrics among different source
datasets is marginal. No matter if it is an image of indoor
man-made furniture or a natural scene, our model could rec-
tify the image since it had learned to know how the structural
elements like lines should be corrected. These results imply
that the key for image rectification is to find the distortion
cues, e.g. lines, rather than the semantics of image contents.
Since the performance of the deep models across the datasets
is consistent, we did not train the deep models on the syn-
thetic WireFrame and COCO datasets.

The other finding is that the ability to rectify various dis-
torted images depends on the distortion model used in the
network. For example, the FOV ADE20k model obtained
26.43 dB on the FOVADE20k test set while the performance
dropped significantly to 16.65 dB and 18.84 dB on the DM
ADE20k and ED ADE20k test set, respectively. We can get
the same observation from the subjective rectification results
of the three deep models in Fig. 8. FOV ADE20k model
obtained under-rectified results for some images synthesized
based on the other two distortion models. By contrast, the
DM ADE20k model could correct the distortions caused by
the equidistant distortion model and FOV distortion model
quite well. Indeed, the performance of the DM deep model
was very stable among all the test sets. Generally, the DM
deep model achieved the best average performance among
all the models on all the test sets.

When tested on images from the real fisheye dataset
(Eichenseer and Kaup 2016), the performance of the three
deep models is also different from one to the other, as shown
in Fig. 9. We can easily find that both the DM deep model
and ED deep model produced promising results, while the
FOV deep model failed in most cases. The observation is
the same as that in the synthesized dataset. The ability of
one model to rectify the distortions generated by a model
of its own family is called self-consistency while the ability

Fig. 9 Results of our baseline models on real fisheye images
(Eichenseer and Kaup 2016). a Input fisheye images. b–dResults of the
FOV ADE20k model, the DM ADE20k model, and the ED ADE20k
model

to rectify the distortions generated by other models outside
of its family is called universality (Tang et al. 2012). From
the results in Table 10 and Fig. 8, we can see that all three
models are self-consistent, while the division model is more
universal than the others. This conclusion is the same as that
in (Tang et al. 2012).

5.4 Discussion

In real-world applications, we want to find a universal distor-
tionmodel (Tang et al. 2012) that canhandle different types of
distortions in real-world wide-angle images. However, from
both the objective and subjective evaluation results of exist-
ing SOTA methods and our baseline models, we can see that
it is difficult to obtain a universal model since each distortion
model is based on specific assumptions and always adapted
for a specific type of distortions (Liao et al. 2020c). Owing
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to the powerful representation capability of deep neural net-
works, some methods try to incorporate multiple distortion
models into one framework (Li et al. 2019; Liao et al. 2020c),
which makes it possible to provide a more general solution.
Although multiple distortion models can improve the gen-
eralizability, they can not cover all the distortions in the
real world. In Fig. 10, four SOTA methods and our base-
line method were compared on images from the real fisheye
dataset (Eichenseer and Kaup 2016). As can be seen, some
of them failed on real fisheye images, e.g., Rong et al. (2016)
obtained under-corrected results, while Bogdan et al. (2018)
obtained over-corrected results in some cases. Although Xue
et al. (2020) achieved promising results, it required rich lines
to guide the rectification, which may not apply to images
with fewer structures. Our baseline method obtained compa-
rable results as Xue et al. (2020), but it was only trained on
the synthetic dataset without the need for extra annotations.
Besides, the methods in Alemán-Flores et al. (2014a) and
Bukhari and Dailey (2013) cannot handle these real fisheye
neither.

Learning-based methods regress the parameters or esti-
mate the warp field via a single forward-pass computation,
no matter how complex the distortion model is or how many
distortion models are involved. As for traditional geometry-
based methods, we can also divide deep learning-based
methods into one-stage methods and two-stage methods.
If an independent post-processing step is needed to rectify
the image using the estimated parameters or the warp field,
the method is called a two-stage method, e.g. (Rong et al.
2016). If the rectification step is integrated into the deep net-
work and the output is the corrected image, the method is
called a one-stage method, e.g. (Yin et al. 2018). Gener-
ally, one-stage methods are faster than two-stage methods,
but the performance still depends on the network capacity
and the distortion model. In contrast to the learning-based
methods, traditional methods often need to minimize a com-
plex objective function iteratively, which is time-consuming
and difficult to accelerate. Thereby, traditional methods are
slower than learning-based methods in most cases and some-
times even 10-100 times slower. We collected the average
running time of some traditional and learning-basedmethods
from (Yin et al. 2018) and (Liao et al. 2020a) and summarized
them in Table 11. Although they were evaluated on differ-
ent hardware, the results can still reveal the trend. From the
table, we can see that all learning-based methods are faster
than traditional methods, e.g., the one-stage learning-based
method in (Liao et al. 2020a) processed a 256×256 image in
only 0.038 seconds. Our baseline method belongs to the one-
stagemethod.We integrated the rectification layer in the deep
model and generated the rectified image via a single forward-
pass.We tested our method on the NVIDIA Tesla V100 GPU
and it took 8 milliseconds to process a 257 × 257 image,
i.e. 125 FPS, which is about 4× faster than that of (Rong

et al. 2016). It is noteworthy that although learning-based
methods are always faster, a smaller image is usually used
compared to that of the traditional methods, e.g. 256 × 256
in (Rong et al. 2016; Liao et al. 2020a) and 257× 257 in our
baseline method. For model-based methods, the predicted
parameters can be used to rectify high-resolution images
directly with only more computations during warping. For
the model-free methods, although the estimated warp field
can be up-sampled to match the high resolution of the dis-
torted image for warping, the details may be lost due to the
up-sampling.

6 Future Directions

Although existing methods have produced impressive results
for certain types of distortions, there is currently no general
solution for all distortion types. Furthermore, as the number
of regulation terms in the objective function increases, the
computational complexity and optimization stability become
intractable, making it difficult to deal with various types of
distortions. Due to the strong representation capacity of deep
neural networks, deep learning-based methods have become
popular and are delivering promising results. Nevertheless,
more effort is needed to improve overall performance. We
discuss several promising future research directions below.

Distortion Model-independent Rectification In both
traditional geometry-basedmethods and deep learning-based
methods, specific distortion models are used to model the
distortion explicitly or implicitly. However, these can only
represent certain distortion types, thereby limiting the appli-
cation of these rectification methods. Although efforts have
been made to utilize several models at the same time (Li
et al. 2019; Liao et al. 2020c), the included distortion types
are still too limited to account for all the distortion types
found in real-world wide-angle images. The distortionmodel
can be seen as a bridge between the distorted image domain
and the normal image domain, through which constraints or
supervision can be constructed, e.g., straight lines in normal
images become circular arcs in distorted images under the
one-parameter division model (Brauer-Burchardt and Voss
2001). If we have prior knowledge about what the objects
should look like in the scene (e.g., a wall being vertical and
the projection of a ball being a circle), new losses based on it
can be used to guide the rectification or to supervise training,
negating the need for a distortion model.

Unpaired Training Data Existing deep learning-based
methods train the network using distorted and undistorted
image pairs, which are hard to collect from the real world.
Alternatively, they can be synthesized based on some spe-
cific and limited distortion models. Most of these methods
define the rectification problem as a regression of the dis-
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Table 11 Comparison of
running time (seconds)

Methods Platform Time

Bukhari and Dailey (2013) Intel i5-4200U CPU 62.53

Alemán-Flores et al. (2014a) Intel Xeon E5-1620 CPU 2.13

(Zhang et al. 2015a) Intel i5-4200U CPU 80.07

Rong et al. (2016) NVIDIA Tesla K80 GPU 0.87

Yin et al. (2018) NVIDIA Tesla K80 GPU 1.31

Liao et al. (2020a) NVIDIA TITAN X GPU 0.038

Our baseline NVIDIA Tesla V100 GPU 0.008

The shorted time is given in bold

Fig. 10 The results of SOTAmethods and our baseline on images from
the real fisheye dataset (Eichenseer andKaup 2016). a The input fisheye
images. b Results of Alemán-Flores et al. (2014a). c Results of Rong

et al. (2016). d Results of Bogdan et al. (2018). e Results of Xue et al.
(2020). f Results of Our baseline method using the DM ADE20k deep
model. g The crop out results of (f). h The ground truth

tortion parameters or an estimate of the warp field derived
from the distortion model. If the distorted and undistorted
images are regarded as samples from two different domains,
image rectification can be formulated as an unsupervised
or self-supervised image-to-image translation problem, in
which paired training data may not be necessary (Zhu et al.
2017; Chao et al. 2020; Fan et al. 2020). In this case, dif-
ferent consistency constraints could be explored, e.g., cycle
consistency and geometric constraints of structural elements.
Compared to the image style or texture transfer tasks (Gatys
et al. 2016; Isola et al. 2017), image rectification is restricted
by the geometric consistency of the image contents.

Perceptual Quality Assessment Not all lines and shapes
can be simultaneously preserved for wide-angle image rec-
tification. There needs to be a trade-off between different
distortion terms to find a feasible solution that favors spe-

cific aspects, which is subjective in nature. People may give a
significantly different quality assessment for the same image
conditioned on their perceptual preferences. Distinct, sub-
jective metrics have been used to measure image quality in
various tasks. Therefore, one can use the perceptual image
quality assessment metric to guide rectification, such that
even if the rectified image is not the same as the ground truth
undistorted image, it has a better perceptual quality. More-
over, the attention mechanism can play an important role in
this kind of subjective evaluationmetric,which is alsoworthy
of further study.

High-resolution ImageRectificationAlmost all existing
deep learning-based methods are trained on low-resolution
images, i.e., typically smaller than 350 × 350. Since high-
resolution images have now become very common as camera
sensors have improved, high-resolution image rectification
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is important in practice. However, it faces two major obsta-
cles: the computational cost and the recovery of details in
regions far from the distortion center. While the former can
be addressed by designing lightweight neural networks and
leveraging modern GPUs for acceleration, the latter is an
inherently challenging problem due to the inhomogeneous
resolution of distorted images. Borrowing ideas from the
areas of image super-resolution (Ledig et al. 2017; Lim et al.
2017;Wang et al. 2020) and inpainting (Bertalmio et al. 2000,
2003; Yu et al. 2018; Elharrouss et al. 2020) may be helpful
to address this issue.

Loss Functions In existing methods, a typical loss is cal-
culated as the difference between the original image and
the predicted image, i.e., L1 or L2 loss, which is the key
component of the total objective function. In unsupervised
or self-supervised training methods, where the models are
trained with unpaired training images, new losses should be
carefully designed to preserve the structural elements and
salient contents of images. Perceptual losses are also worth
exploring to guide the rectification model to generate a visu-
ally pleasing result.

Benchmark Datasets Almost all deep learning-based
methods use their own synthetic training and test sets, which
are synthesized based on different distortion models with
different parameters. Since rectification model performance
depends on the training data, it is hard to disentangle each
method’s performance from the specific synthetic dataset
used. Therefore, it is crucial to establish a benchmark dataset
containing both real-world and synthetic images with vari-
ous types of distortions as well as annotations to evaluate and
compare different methods using the same protocol.

7 Conclusion

In this paper, we present a comprehensive survey of progress
in the area of wide-angle image rectification. Some typical
camera models and distortion models playing a fundamen-
tal role in image rectification are described and discussed.
We empirically find that the division model has the best
universality. Models trained on synthetic data have the best
generalizability to both synthetic images with other types
of distortions and real-world fisheye images. Moreover,
we comprehensively review progress in two main types of
image rectification methods, i.e., traditional geometry-based
methods and deep learning-based methods. Specifically, we
discuss their relationships, differences, strengths, and limi-
tations. We also evaluate the performance of state-of-the-art
methods on public synthetic and real-world datasets. Gener-
ally, deep learning-based methods are promising approaches
that merit further study, achieving good performance and
running faster than traditional geometry-based methods. We
also devise a new baseline model that has comparable perfor-

mance with SOTA methods. Some ongoing challenges and
potential research directions in this area are also summarized.
Wehope that this survey benefits future research on this topic.
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