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Figure 1: Revealing the hidden 3D world in a blurred image. The proposed model, once trained, takes as input a single

blurred image and produces the reconstructed 3D scene concealed in the blurs.

Abstract

What can we tell from a single motion-blurred image?

We show in this paper that a 3D scene can be revealed. Un-

like prior methods that focus on producing a deblurred im-

age, we propose to estimate and take advantage of the hid-

den message of a blurred image, the relative motion trajec-

tory, to restore the 3D scene collapsed during the exposure

process. To this end, we train a deep network that jointly

predicts the motion trajectory, the deblurred image, and the

depth one, all of which in turn form a collaborative and

self-supervised cycle that supervise one another to repro-

duce the input blurred image, enabling plausible 3D scene

reconstruction from a single blurred image. We test the pro-

posed model on several large-scale datasets we constructed

based on benchmarks, as well as real-world blurred images,

and show that it yields very encouraging quantitative and

qualitative results.

1. Introduction

Motion blur is caused by the relative motion between

the scene objects and the camera during the exposure pro-

cess. When the motion of the scene objects, or the camera,

or both, is significant during the exposure time, the image

tends to appear smeared along the direction of the relative

motion. Motion-blurred images are in many cases favored

by photographers and artists for aesthetic purpose, but sel-

dom by computer vision researchers, as many standard vi-

sion tools including detectors, trackers, and feature extrac-

tors have a hard time dealing with the blurs.

Much effort has thus been made in the image processing

and computer vision community to remove the “negative”

influences of the blurs. A straightforward and crude way is

to ignore blurred images, as done in SLAM systems [52]

because matching algorithms tend to fail on blurred im-

ages. Another more analytical way is to conduct deblurring,

which recovers a deblurred image from a blurred one. Over

the past decades, there has been a series of seminal work

along this line, demonstrating very promising and visually-

pleasing results.

Despite the excellent results achieved, deblurring meth-

ods limit its goal to producing a blur-free image and omit

the physical rationale behind the blurs. Since a blurred im-

age is the result of relative motions, it actually encodes the

motion information, though in a degraded way. The work

of [35] pioneered to extract a sequence of deblurred images

from a blurred one, yet still overlooked the motions con-

43218493



Spatial Reconstruction

Generate

Self-supervised Cycle

Generate

Reconstruct

Blurred image Camera   
Motion

Depth Map

Geene

Rececon

Blurred image

Base 
coordinate

at t-1

at t+1at t

Deblurred Image

BBB
ccoorcocoorccoor

aaa

Deblurred Image

GG

Depth Map

GG

Depth Map

Figure 2: Illustration of our model. Given a blurred image, we construct a network with three modules to estimate camera motions, the

deblurred image, and the depth map, all of which form a self-supervised cycle to reconstruct the input blurred image and further enable the

3D scene reconstruction from the blurs.

cealed.

We show in this paper that more hidden message can

be revealed in a blurred image. As motion is encoded in

the blurs, we propose to explicitly estimate the concealed

motion trajectories buried under the smearings, based on

which the static 3D scene can be restored, as demonstrated

in Fig. 1. To this end, we train a collaborative network,

which jointly infers motion trajectory and depth, both of

which in absolute scale, as well as deblurred frame instant.

All the three estimations, in turn, form a self-supervised cy-

cle to reproduce the original blurred image, in aim to imitate

the physical blurring process. Through this cycle, the dif-

ferent modules supervise and enhance one another, enabling

plausible 3D reconstruction, as shown in Fig. 2.

Unarguably, estimating motion trajectories from a single

blurred image is an inverse problem. To recover the most le-

gitimate motion process while preserving a reasonable com-

putational load, we approximate a blurred image, for which

the creation process is continuous, as an average of a se-

quence of frames. In this regard, we construct datasets

upon popular benchmarks, wherein each blurred image is

generated by taking the average of a clean-frame sequence

induced by deterministic motion. The constructed datasets

thus provide us with ground truths for training the collab-

orative network, and allow us to conduct depth-, motion-,

and frame-estimation, as well as the consequent 3D recon-

struction. The proposed model, once trained, yields very

promising results on synthetic and real-world blurred im-

ages.

Our contribution is therefore a novel approach that, for

the first time, attempts to recover the absolute-scale 3D

scene from a single blurred image. It is accomplished by

training an innovative collaborative network that simultane-

ously estimates depth, clean images, and motion trajecto-

ries, each of which supervises another via a self-consistent

cycle to reproduce the input blurred image, on large-scale

datasets we build upon popular benchmarks. The proposed

approach produces encouraging results on synthetic and

real-world blurred images. Our code, model and datasets

will be released.

2. Related work

There have been numerous reconstruction methods aim-

ing to recover the 3D scene from one or multiple images, in-

cluding but not limited to reconstruction from shading [95],

from image texture [7, 8, 28], from camera motion [9], from

stereo [49], from scene recognition [48, 22, 26], from track-

ing process [90, 50, 84, 83] and from focus [56].

Our approach, however, focuses on estimating 3D re-

construction from a single blurred image, not relies on the

tracking process, which to our best knowledge is the first

attempt along this line. As our cyclic strategy involves

three modules, camera trajectory estimation, deblurring,

and depth estimation, in what follows, we briefly review

related work on these topics.

Camera trajectory estimation. Recent camera-

trajectory estimation models can be broadly divided into

three categories, based on the supervision level. The first

category is fully-supervised methods. For example, Agr-

wal et al. [1] learn good visual features from moving cam-

eras and predict the camera motion from a sequence of

images. Wang et al. [80, 81] implement a recurrent Con-

vNet architecture for visual odometry estimation. Ummen-

hofer et al. [77] design an architecture to learn the depth and

motion information from stereo images. The second cate-

gory is weakly-supervised models. Examples include the

approach of [34], which estimates the inter-frame motion by

utilizing the stereo geometry known a priori. Approaches in

the third category are unsupervised. For example, Vijaya-

narasimhan et al. [78] and Zhou et al. [97] propose unsu-

pervised methods to estimate the camera ego-motion using

the photometric error. The ones of [17, 18, 92] use stereo

information to estimate the odometry from a sequence of

images. Existing methods, however, conduct motion esti-

mation from clean images, which differs from our focus on

blurred images.

Deblurring. Blind deconvolution methods [62, 51, 4,

10, 88, 27, 93, 2, 19] for image deblurring have been widely

studied and achieved promising results. . Recently, the

models of [31, 32, 76, 61, 20, 60, 57, 53, 58] are designed to

handle images with more than single-motion blurs. Another

line of work focuses on video deblurring. For example,

Zhang et al. [94] propose a method that jointly estimates

the motions between consecutive frames, while Sellent et

al. [71] instead utilize stereo information. Wieschollek et

al. [86] introduce a recurrent ConvNet to deblur an image

by using temporal information. Kim et al. [38] propose a

method to simultaneously conduct deblurring and estimate
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the optical flow between consecutive images. Ren et al. [66]

exploit semantic information to guide the deblurring and

optical flow estimation. Su et al. [75] propose a ConvNet

for deblurring by utilizing inter-frame information. Pan et

al. [63] jointly estimate the scene flow and deblur the image.

There are some approaches for estimating the spatial in-

formation from blurs, but they all focus on image sequences

instead of a single image. For example, Park et al. [64]

develop a method for the joint estimation of camera pose,

depth, deblurring, and super-resolution from a sequence of

blurred images. More recently, Jin et al. [35] propose a

framework to extract a video sequence from a single blurred

image, yet overlook the spatial information that enables 3D

reconstruction.

Depth estimation. Earlier methods for depth esti-

mation rely on geometry-based algorithms from stereo

pairs [70, 14, 13]. Saxena et al. [68] first propose to ex-

ploit the monocular cues to estimate the scene depth, based

on which many methods are proposed, yielding encourag-

ing results [69, 29, 42, 45, 6, 39, 3, 73, 65, 16, 24, 91].

The methods of [98, 47, 36, 59, 89, 85], on the other

hand, exploit not only local but also global image cues.

Given the success of ConvNet in image processing, many

deep learning based methods have been proposed [21, 96,

44, 54, 72, 82, 67, 46, 37, 11]. Thanks to multi-level

contextual and structural information derived from deep

networks, such as AlexNet [40], VGG [74], and ResNet

[25], depth estimation has been boosted to a high-accuracy

level [12, 17, 41, 43, 87, 79, 15]. Although these methods

work well on single image depth estimation, they are not

designed for estimating depth from a blurred image, which

is the focus of our approach.

3. Preliminaries

Before introducing our model, we briefly review some

preliminaries including the creation of a blurred image and

the fundamental of 3D geometry, upon which we build our

network and the self-supervised cycle.
Blurring Process. The process of image blurring is con-

tinuous within the exposure time t of the camera:

B =
1

t

∫ t

I(t) dt, (1)

where B is the resulting blurred image, t is the exposure

time, and I(t) is the clean image of the scene at time t. To

model the blurring process in a computationally tractable

way, we approximate this continuous process using the av-

erage of a sequence of 2n + 1 frames in the exposure pro-

cess. We take the very middle frame, the n+1-frame, as the

reference frame, and compute the relative motions at other

frames with respect to this frame, as discussed in Sec. 4.
Vision geometry. Let p denote the 2D homogeneous

coordinate of a pixel in image I , and P denote the cor-
responding 3D homogeneous coordinate in I’s coordinate

system. Also, let D denote the depth map of an image I ,
with D(p) being the absolute distance between the camera’s
focal point and the real-world point P , whose projection on
I is p. Finally, let T denote the transformation matrix that
describes the absolute-scale motion of the camera, governed
by six parameters, three for translation and three for rota-
tion. For a pixel p, the corresponding 2D coordinate p′ after
the transformation T is computed as

p
′ = KTD(p)K−1

p, (2)

where the intrinsic parameter matrix K of the camera is as-

sumed known, as done in [92, 97]. In this process, the pixel

p of the original image I is first inversely projected back to

the 3D space, and then the obtained 3D point is transferred

to a new 3D location according to the transformation matrix

T . Finally, the new 3D point is re-projected to the new 2D

scene by applying K to the coordinates of the 3D points.

4. Method

In this section, we introduce the proposed approach to

recovering 3D scene from a single blurred image. We first

give an overview of our approach, then discuss the modules

of our network, and finally, show the self-supervised strat-

egy to jointly optimize all the modules.

4.1. Overview

Our model comprises three modules for motion-

estimation, deblurring, and depth-estimation, as well as an

innovative self-supervised scheme that optimizes all mod-

ules together. The self-supervision is achieved by forming

a cycle of three modules, all of which collaborate with each

other, in aim to together reproduce the input blurred image.

In other words, the input blurred image itself is utilized as

a supervision signal for computing the reconstruction loss,

during which process all the modules interact with and en-

hance each other.

We focus on static scene reconstruction and assume the

relative motion is caused by the camera movement. We thus

aim to estimate a static frame instant or reference frame, as

well as a sequence of relative camera motions with respect

to the reference that gives rise to the blurs. In our imple-

mentation, we take the frame instant in the very middle of

the sequence as the reference frame, as discussed in Sec. 3.

We follow a two-stage training strategy, which we find

to be more efficient and effective than the single-stage strat-

egy that trains modules with the cycle all at once. In the

first stage, we train the three modules independently, all in

a supervised manner. In the second stage, we stack the three

modules to form a self-supervised cycle, for which the goal

is, again, to allow the predictions to reproduce the original

blurred image so that the different modules can supervise

and benefit one another. It is noteworthy that in the sec-

ond stage, we provide ground truths for only the motion-

estimation module but not the other two, in order to avoid
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Figure 3: The architecture of our LSTM module for motion es-

timation. It takes as input a pair of images. The upper branch

receives a blurred image, while the lower receives a clean or de-

blurred image, taken to be the reference frame. It outputs a se-

quence of 2n motions with respect to the reference. Notably, the

lower branch is fed with clean images in the first training stage, and

with deblurred images from the deblurring module in the cyclic

self-supervision stage.

overfitting. Our experiments demonstrate that, compared to

the single-stage strategy, the two-stage training converges

much faster.

In what follows, we give more details on the three mod-

ules and the self-supervision strategy. To highlight the fea-

sibility of inferring the static 3D scene from a blurred im-

age, we mainly rely on compact networks to handle depth-,

deblur-, and motion-estimation tasks. More sophisticated

end-to-end networks can be readily applied as well and are

likely to yield even better performances.

4.2. Motion-estimation Module

Our motion-estimation module, as depicted in Fig. 3,

takes as input a blurred image, as well as a clean image

or a deblurred one estimated by the deblurring module de-

scribed in Sec. 4.3. It outputs a sequence of 2n+ 1 relative

camera motions with respect to the reference frame. This

network architecture is motivated by the recent success of

image captioning [5], whose goal is to produce a sequence

of words describing an input image. The major difference

is that our network is fed with a pair of images instead of

one.

Specifically, we employ a ResNet152 [25] to extract the

features from the second last fully-connected layer for both

input images, and then concatenate the obtained features

into one, which is fed as input to a Long-Short Term Mem-

ory (LSTM) network comprising 2n LSTM blocks with

shared parameters. The LSTM network is expected to learn

the temporal coherence of the camera motion and to output

a sequence of 2n camera poses with respect to the reference

frame. To unify the size of the feature vectors fed to the

LSTM blocks, we introduce a linear3 layer, which is im-

plemented for the second to the last frame instants but not

for the first one.
Recall that camera motion, described with the trans-

formation matrix T , is characterized by a rotation vector
u ∈ R

3 and a translation vector v ∈ R
3, where the former

128
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Deblurred 
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64256128128128128 320 320 320 128 128 512 128 128 128 128 256 64128

Figure 4: The architecture of our deblurring module.

one depicts the Pitch-, Yaw-, and Roll-rotation and the lat-
ter represents the translation along the X-, Y-, and Z-axis.
Through out experiments, we find out that learning u and
v separately leads to more favorable results. The losses of
our LSTM for learning the two three-dimension variables
are taken to be

Lu =
1

N

N∑
i=1

‖ui − û
i‖2, Lv =

1

N

N∑
i=1

‖vi − v̂
i‖2, (3)

where ui, vi are the ground truths of the i-th motion, ûi, v̂i

are their estimations, and N is the number of samples.

4.3. Deblurring Module

The deblurring module takes the blurred image as input
and produces a deblurred image, which we take to be the
reference frame. In our implementation, we adopt the CNN-
L15 model [30] that shows state-of-the-art performance yet
comes in a compact size, with some minor modifications.
The rough network structure shows in Fig. 4. We add batch
normalization [33] on each layer except the last layer and
change the active function of last layer from ReLU to be
Tanh. The loss for deblurring is taken to be pixel-level
square loss between the deblurred image and the ground
truth:

Lb =
1

N

N∑
i=1

‖Ii − Î
i‖2, (4)

where Ii and Îi represent the i-th ground truth and the de-

blurred image respectively, and N denotes the number of

samples.

4.4. Depth-estimation Module

The case for the depth-estimation module is slightly

more complicated than the other two, as it has to handle

heterogeneous inputs in the two stages of training. Recall

that in the first stage we train the three modules separately

all in the supervised way, yet in the second stage, as to be

discussed in Sec. 4.5, we provide supervision signal only

to the motion estimation and allow the cycle to enhance the

depth and deblurring module. In other words, in the first

stage the depth-estimation module is fed with clean images

as input to produce depth, but in the second it is provided

with deblurred images, which may still contain smearings.
The depth-estimation module is, therefore, expected to

produce reasonable results even when the input images still
contain blurs. To this end, we devise a two-branch network
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Figure 6: The architecture of our depth-estimation module.

Branch (a) is inherited from the deblurring module to jointly han-

dle the blur information and extract local depth clues. Branch (b)
is implemented with the first six layers of VGG net to extract

global depth clues.

for depth estimation, as shown in Fig. 6. The branch (a) has
the same structure as the deblurring module, which simulta-
neously handles the remaining blur information in the input
image and extracts local depth clues. The branch (b), on the
other hand, focuses on extracting global depth clues. It is
implemented by taking the first six layers from VGG [74],
followed by upsampling the features to the same size as
those in branch (a). The features from both branches are
then concatenated and fed to a network of the same archi-
tecture as the deblurring one, with the only difference being
that the activation function is ReLU in the last layer. The
loss of the depth-estimation module is taken to be

Ld =
1

N

N∑
i=1

‖Di − D̂
i‖2, (5)

where Di and D̂i denote respectively the i-th ground truth

and the prediction, and N is the number of samples.

4.5. Self-supervised Scheme

If the predictions of the motion-estimation module, the

deblurring module, and the depth-estimation module are

plausible, then together they should reconstruct the orig-

inal blurred image. With this motivation, we stack the

three modules in a cycle, for which the goal is to ensure

all the predictions, in turn, reproduce the input blurred im-

age. With the cycle, the blurred image itself is treated as the

supervision signal, allowing the different modules to col-

laboratively supervise and benefit one another.

Our design for the cycle is depicted in Fig. 5. Intuitively,

given an input blurred image, the deblurring module pro-

duces a deblurred image as the reference frame, which is

then fed to both the depth module and the motion mod-

ule. The former module outputs a depth map and the lat-

ter generates a motion sequence. Both outputs are, together

with the deblurred reference frame, utilized to produce a

sequence of clean images, which are further averaged to re-

produce the input blurred image and for computing the loss.
Specifically, let p denote the homogeneous coordinate of

a pixel in the deblurred reference frame. Given a camera

motion T̂ estimated by the motion module and depth map

D̂ estimated by the depth module, the corresponding pixel
coordinate p′ after undergoing the motion is computed, ac-
cording to Eq. 2,

p
′ = KT̂D̂(p)K−1

p, (6)

where again K is assumed to be given as done in previous

works [92, 97]. We repeat this process for all the pixels by

applying bilinear interpolation and in this way get a com-

plete image, I ′, that undergoes a motion of T̂ with respect

to the reference frame I .
As the motion module estimates 2n relative motions, we
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compute 2n such images using Eq. 6, all of which are then
averaged to approximate the input blurred image for com-
puting the loss. We write the cyclic-reconstruction loss as

Lr =
1

N

N∑
i=1

‖Bi − B̂
i
r‖

2
, (7)

where B is the i-th input blurred image, B̂i
r =

1

2n+1

∑2n+1

k=1
B̂i,k, with B̂i,k being the image at k-th frame

instant within the sequence, and N is the number of sam-

ples.
As discussed, we only utilize the motion supervision in

the cycle-tuning stage. We thus have the final loss functions,
one for rotation and one for translation, as follows,

L̃u = Lu + αLr, L̃v = Lv + αLr, (8)

where α is taken to be 10−3.

5. Experiments

In this section, we provide our experimental setups and

show the results. Since we are not aware of any existing

work that performs exactly the same task as we do here, we

mainly focus on showing the promise of the proposed net-

work especially the self-supervised cycle design. We also

compare part of our network with other popular models, and

then substitute our module with others to verify the value of

the cycle by comparing the performance of other models

without and with the cycle.

Our goal is, again, to show the possibility of recovering

the 3D scene from a blurred image, rather than trying to

beat the state-of-the-art deblurring, depth- and trajectory-

estimation, and 3D reconstruction models. More compli-

cated networks, as long as they are end-to-end trainable, can

be adopted in our cycle with possibly better performances.

5.1. Datasets and Implementation Details.

NYU Depth v2 [55]. It comprises 464 indoor scenes,

among which we use 364 scenes for training and 100 for

testing. Blurred images are created by averaging 7 consec-

utive frames. In total, we create 57K blurred samples for

training and 13K for testing using about 420K frames. We

adopt this dataset for constructing blurred images, because

it provides a depth map for each video frame and the frame

rate is high with respect to the camera motions. We also

tried KITTI but found spatial gaps between two consecutive

frames are too large, making the synthetic blurs unrealistic.

ICL-NUIM dataset [23]. It is smaller in size as com-

pared to the NYU one. By following the same procedure as

done for NYU, we create 706 blurred samples using 4.9K

frames from two scenes for training and 604 samples using

4.2K frames from another two scenes for testing. Due to the

limited training samples, we adopt the network pre-trained

on NYU and finetune it on this dataset.

Term Pre-NYU C-NYU Pre-ICL C-ICL

Translationx 3.589 2.584 3.813 2.961

Translationy 3.735 2.746 3.796 3.142

Translationz 2.446 1.492 2.452 2.112

Yaw 0.209 0.110 0.239 0.201

Pitch 0.184 0.084 0.185 0.147

Roll 0.180 0.082 0.206 0.144

Table 1: Results of the motion-estimation module. Translations

are measured in centimeters and rotations in degrees. Pre-NYU

refers to the network trained using ground-truth clean images on

NYU, and C-NYU is the one with the self-supervised cycle, for

which the input is the output of the deblur module. Pre-ICL

and C-ICL refer to the corresponding networks on the ICL-NUIM

dataset.

Term Pre-NYU C-NYU Pre-ICL C-ICL

PSNR 25.94 27.22 26.43 27.19

SSIM 0.8543 0.8931 0.8895 0.9206

Table 2: Results of deblurring without (Pre-NYU/ICL) and with

(C-NYU/ICL) the self-supervised cycle on the two datasets.

Implementation. Our networks are implemented using

PyTorch and with two Tesla V-100 SXM2 GPUs. The batch

sizes for the motion estimation, deblurring and depth esti-

mation module are 64, 4 and 4, respectively. During the

cycle stage, the batch size is set to 2 for all modules due to

the memory limitation. As our blurred dataset is trained by

averaging 7 images, we train the LSTM model of Sec. 4.2

to predict 6 motions with respective to the reference frame.

5.2. Motion Estimation

Tab. 1 shows the absolute errors of translation (in cen-

timeters), and of rotation angles along three axes (in de-

grees). It can be seen that with the self-supervised cycle,

the errors on translations decrease about 1cm and those on

rotations reduce up to 50%. It is noteworthy that the im-

provements on ICL are smaller than those on NYU, due to

limited training samples.

5.3. Deblurring

We show the deblurring results in Tab. 2, where the self-

supervised cycle again yields significant improvements. On

the NYU dataset, the PNSR get increased by more than 1dB

and the SSIM by 0.04. The same trend is observed on ICL,

where PSNR improves more than 0.75dB and the SSIM im-

proves more than 0.03. These results indicate that the self-

supervised cycle enhances not only the pixel-based appear-

ance of the deblurred images, but also the more global struc-

tural patterns, which are crucial for the succeeding depth

estimation, motion estimation, and reconstruction tasks.

5.4. Depth Estimation

As shown in Tab. 3, the self-supervised cycle improves

the performance of depth estimation by a large margin, in
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(f)(e)(d)(c)(a) (b) (g)
Figure 7: Results on the NYU dataset in the top 5 rows and the ICL dataset in the bottom 2 rows. Column (a) depicts the input blurred

images, (c) depicts the deblurred reference frames, (b) and (d) are the first and the last projected frames, (e) corresponds to the ground-truth

clean reference frames, (f) displays the predicted depth maps, and (g) demonstrates the 3D reconstruction results.

Term Pre-NYU C-NYU Pre-ICL C-ICL

Abs Rel 0.217 0.184 0.220 0.206

SqRel 0.213 0.156 0.216 0.180

RMSE 0.911 0.607 0.918 0.661

RMSE log 0.289 0.222 0.293 0.244

δ < 1.25 0.607 0.733 0.603 0.684

δ < 1.252 0.884 0.932 0.879 0.918

δ < 1.253 0.969 0.982 0.961 0.972

Table 3: Results of the depth estimation without (Pre-NYU/ICL)

and with (C-NYU/ICL) the self-supervised cycle on the two

datasets.

terms of both the error metrics including Abs Rel, SqRel,

RMSE and RMSE log, and the accuracy ones δ < 1.25n.

The large improvement on δ < 1.25 shows that our cy-

cle improves depth estimation on a large number of pix-

els across the image, indicating that the cycle benefits the

global depth-estimation performance. Please note that,

as discussed in Sec. 4.4, the pre-trained depth module is

learned on clean images.

5.5. Analysis

Results on real-world blurred images. We show in

Fig. 8 the results of our model on some real-world blurred

images, taken by Asus Xtion Pro as camera parameters are

close to those of Kinect v2. We show the blurred images on

column (a), followed by three recovered clean frames, the

ground-truth clean reference frames, depth maps, and 3D

reconstructions. The results are visually pleasing despite

not perfect.

Comparisons to other models. Here we conduct abla-

tion studies to verify the performance of our depth estima-

tion module and show why it fits our purpose. Specifically,

we compare our network with a popular one from Eigen et

al. [12]. When training Eigen’s network, we followed the

training strategy provided in [12]. All ablation experiments

are conducted on the NYU dataset.

We compare the performances of Eigen’s network and

ours when trained on the clean image. As shown in Tab. 4,

the results of the two models are very similar. When trained
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(e)(d)(c)(b)(a) (f)
Figure 8: Results on real-world blurred images. Column (a) shows the blurred images, (c) corresponds to the deblurred reference frames,

(b) and (d) are the first and the last projected frames, (e) shows the predicted depth maps, and (f) shows the 3D reconstruction results.

Term Pre-Eigen’s [12] Pre-Ours Pre-Eigen’s Pre-Ours C-Eigen’s C-Ours

on Clean on Clean on Deblurred on Deblurred

Abs Rel 0.215 0.217 0.231 0.224 0.198 0.184

SqRel 0.212 0.213 0.244 0.232 0.177 0.156

RMSE 0.907 0.911 0.921 0.917 0.651 0.607

RMSE log 0.285 0.289 0.291 0.290 0.237 0.222

δ < 1.25 0.611 0.607 0.583 0.604 0.696 0.733

δ < 1.252 0.887 0.884 0.869 0.880 0.922 0.932

δ < 1.253 0.971 0.969 0.964 0.967 0.979 0.982

Table 4: Results of Eigen’s depth network and ours under different setups. We compare the performances of the two networks pre-trained

on clean images (Pre-Eigen’s/Ours on Clean), the performances of the two networks trained using outputs of the deblur network (Pre-

Eigen’s/Ours on Deblurred), and those of the two using the proposed self-supervised cycle (C-Eigen’s/Ours).

Term With Eigen’s depth With our depth

PSNR 26.13 27.22

SSIM 0.8697 0.8931

Table 5: Comparing deblurring network after self-supervised cy-

cle with ours depth estimation module and Eigen’s depth network.

Term With Eigen’s depth With our depth

Translationx 2.762 2.584

Translationy 3.008 2.746

Translationz 1.699 1.492

Yaw 0.135 0.110

Pitch 0.107 0.084

Roll 0.096 0.082

Table 6: Comparing motion estimation module after self-

supervised cycle with ours depth estimation module and Eigen’s

depth network.

on deblurred images and trained using the cycle, however,

our network produces visibly better results, indicating that

the proposed depth module with the two-branch architecture

depicted in Fig. 6 can better handle blur information.

We further show the results of the deblurring and mo-

tion estimation using Eigen’s depth network and ours in

Tabs. 5 and 6 respectively. From both tables, we see that

the proposed model yields superior results thanks to the bet-

ter depth estimation. The results also indicate the important

role that depth plays within the self-supervised cycle.

6. Conclusion

We show in this paper that given a blurred image, one can

recover the 3D world hidden under the blurs given the cam-

era intrinsic parameters. We accomplish this via training

a deep network of three modules, one for motion estima-

tion, one for deblurring, and one for depth estimation, all of

which form a cycle to in turn reproduce the input blurred

image and supervise one another. We construct datasets

upon several large-scale benchmarks for training our model,

and demonstrate the effectiveness of the proposed model on

these datasets as well as real-world blurred images. In the

future work, we will endeavor to estimate dynamic scenes

from single blurred images, and incorporate more tasks like

scene parsing into the framework.
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