Abstract—We consider the tensor-based spectral-spatial feature extraction problem for hyperspectral image classification. First, a tensor framework based on circular convolution is proposed. Based on this framework, we extend the traditional PCA to its tensorial version TPCA, which is applied to the spectral-spatial features of hyperspectral image data. The experiments show that the classification accuracy obtained using TPCA features is significantly higher than the accuracies obtained by its rivals.

Index Terms—tensor model, principal component analysis, feature extraction, hyperspectral image classification.

I. INTRODUCTION

HYPERSONTICAL imaging sensors collect hyperspectral images in the form of 3D arrays, with two spatial dimensions representing the image width and height, and a spectral dimension describing the spectral bands, whose number is usually more than one hundred. Due to the redundancy of the raw representation, it is advantageous to design effective feature extractors to exploit the spectral information of hyperspectral images [1], [2]. For example, via a linear projection after an eigenanalysis, PCA (Principal Component Analysis) reduces a high-dimensional vector to a lower dimensional feature vector. By choosing the so-called principal components, the obtained feature vectors can retain most of the available information. But PCA, like many other vector-based counterparts, lacks, in its model, a prior mechanism to capture the spatial information in the relative positions of the pixels. This deficiency of vectorial models can be overcome using a tensorial representations of hyperspectral imagery.

There exist many different tensor models derived from different perspectives. Tensor models are essentially extensions of traditional vector models. In the recent years, tensor-based approaches have been successfully applied in many different areas, including image analysis, video processing [3], [4] and remote sensing imagery analysis [5], [6], etc. For example, Zhang et al. reported a tensor discriminative locality alignment method, called TDLA, to extract features from hyperspectral images [6]. Zhong et al. proposed a tensorial discriminant extractor called LTDA to obtain spectral-spatial features from hyperspectral images for image classification [7].

The aforementioned works have shown the superior representation capability of a tensor-based multilinear algebra, compared with that of the traditional matrix algebra. For example, in the work of M. E. Kilmer et al [8], the authors introduced the t-product model and defined a generalization of matrix multiplication for tensors in the form of 3D arrays (tensors of order three). The generalized matrix multiplication is based on the circular convolution operation and can be implemented more efficiently via the Fourier transform. The t-product model is further developed using the concepts of tubal scalar (also known as tubal fiber), frontal slice, array folding and unfolding, etc, to establish its connection to traditional linear algebra [9], [10]. This development make it possible to generalize all the classical algorithms formulated in linear algebra.

Inspired by the recently reported “t-product” tensor model, we propose a tensor-based spectral-spatial feature extractor for classifying the pixels of a hyperspectral image. First, a novel straightforward tensor algebraic framework is proposed. In the framework, the “t-product” tensors are confined to the same size and therefore form an algebraic tensor ring. The algebraic framework combines the “multi-way” merits of high-order arrays and the “multi-way” intuitions of traditional matrices since the “t-product” tensors serve as the entries of our proposed tensor-vectors or tensor-matrices. This algebraic framework is backwards compatible with the traditional linear algebra based on non-tensorial vectors and matrices. With the help of the proposed tensor algebra, we extend PCA to its tensorial counterpart TPCA (Tensor PCA), which has a prior mechanism to exploit the spatial information of images. We demonstrate in our experiments on some publicly available images that the TPCA outperforms PCA and some other vector or tensorial feature extractors in terms of classification accuracy.

This letter is organized as follows. In Section II, we discuss the tensor algebraic framework. In Section III we propose a tensorial feature extractor called TPCA (Tensor Principal Component Analysis) and its fast version via the Fourier transform. In Section IV, we present the experimental results and analysis. Finally, we conclude this letter in Section V.

II. TENSOR ALGEBRA

In this section, we extend the “t-product” model [8], [9], [10] to a novel tensor algebraic framework, which is backwards compatible to the traditional matrix algebra. Without
The product of tensors comply with the operations defined in our tensor algebraic framework by the following definitions.

Definition 1. Scalar multiplication: given tensor \(x_t \) and scalar \(\alpha \), the product \(d_t = \alpha x_t \) is a tensor of the same size as \(x_t \) such that \([d_t]_{i,j} = \alpha [x_t]_{i,j} \), \(\forall i,j \).

Definition 2. Vectors and matrices of tensors: A vector of tensors is a list of elements of \(R \). A matrix of tensors is an array of elements of \(R \).

In our tensor algebraic framework, the mathematical operations between elements of vectors of tensors or of matrices of tensors comply with the operations defined in \(R \). Some definitions of the mathematical manipulations of vectors and matrices of tensors are given as follows.

Definition 3. Tensor matrix multiplication: given \(X_t \in R^{D_1 \times D_2} \) and \(Y_t \in R^{D_3 \times D_4} \), their product \(C_t = X_t \circ Y_t \) is a new tensor matrix, such that \([C_t]_{i,j} = \sum_{k=1}^{D_2} [X_t]_{i,k} \circ [Y_t]_{k,j} \), \(\forall i,j \).

Definition 4. Identity matrix of tensors: The identity matrix of tensors \(E_t \) is a matrix such that \([E_t]_{i,j} = e_t \) if \(i = j \), otherwise \([E_t]_{i,j} = z_t \).

Definition 5. Tensor transposition: given tensor \(x_t \), its transpose \(x_t^\top \) is a tensor of the same size, satisfying \([x_t^\top]_{i,j} = [x_t]_{j,i} \), \(\forall i,j \).

Definition 6. Tensor matrix transposition: given \(X_t \in R^{D_1 \times D_2} \), \(X_t^\top \in R^{D_2 \times D_1} \) is a new tensor matrix satisfying \([X_t^\top]_{i,j} = [X_t]_{j,i}^\top \), \(\forall i,j \), where \([X_t]_{j,i}^\top \) is the transpose of tensor \([X_t]_{j,i} \), as defined by Definition 5.

Definition 7. Orthonormal matrix of tensors: if the matrix \(X_t \) of tensors satisfies \(X_t^\top \circ X_t = E_t \), we call \(X_t \) an orthonormal matrix of tensors.

Definition 8. Singular value decomposition of a square tensor matrix: each matrix \(G_t \in R^{D \times D} \) has a singular value decomposition \(G_t = U_t \circ S_t \circ V_t^\top \) such that \(U_t \in R^{D \times D} \) and \(V_t \in R^{D \times D} \) are both orthonormal tensor matrices and \(S_t \in R^{D \times D} \) is a diagonal tensor matrix and \([S_t]_{i,i} = [S_t]_{i,i}^\top \), \(\forall i \).

To speed up the computations with vectors and matrices of tensors, we extend the Fourier transform of a tensor to the Fourier transform of a vector or matrix of tensors.

Definition 9. Fourier transform of a tensor matrix: given a tensor matrix \(X_t \), let its Fourier transform be \(F(X_t) \), such that \([F(X_t)]_{i,j} = F([X_t]_{i,j}) \), \(\forall i,j \).

The Fourier transform of a tensor matrix is defined in the Fourier transform of its matrix tensorial entities. This definition give a mechanism to decompose a tensor matrix in the Fourier domain to a range of sperate traditional matrix.

To have the mechanism, we define the following slice of a tensor matrix by the index of its tensorial entity \((\omega_1, \omega_2)\), for all \(\omega_1 = 1, \ldots, m \) and \(\omega_2 = 1, \ldots, n \).

Definition 10. Slice of a tensor matrix: given \(X_t \in R^{D_1 \times D_2} \), let its slice by index \((\omega_1, \omega_2)\) be \(X_{ftm}^{\omega_1 \omega_2} \) such that \(X_{ftm}^{\omega_1 \omega_2} \in R^{D_1 \times D_2} \) and \([X_{ftm}^{\omega_1 \omega_2}]_{i,j} = [X_t]_{i,j} \omega_1 \omega_2 \), \(\forall i,j \).

Let the slice of \(X_{ftm} \) be \(F(X_{ftm}) \) by index \((\omega_1, \omega_2)\) be \(X_{ftm}^{\omega_1 \omega_2} \), such that \(X_{ftm}^{\omega_1 \omega_2} \in C^{D_1 \times D_2} \) and \([X_{ftm}^{\omega_1 \omega_2}]_{i,j} = [X_{ftm}]_{i,j} \omega_1 \omega_2 \), \(\forall i,j \).

Tensor vector is a special case of tensor matrix, thus the slicing of a tensor vector complies with the the definition of the slicing of a tensor matrix.

By virtue of Definitions 9 and 10, given the tensor size of \(m \times n \), a mathematical tensor matrix operation can be decomposed to and efficiently computed by \(m \times n \) separate traditional matrix operations in the Fourier domain.

III. TPCA: TENSOR PRINCIPAL COMPONENT ANALYSIS

A. PCA

Traditional PCA can be briefly described as follows — given \(x_1, \ldots, x_N \in R^D \) and \(\bar{x} = (1/N)\sum_{k=1}^N x_k \), the covariance matrix \(G \) is given by \(G = \frac{1}{N-1} \sum_{k=1}^N (x_k - \bar{x})(x_k - \bar{x})^\top \).
The singular value decomposition of G is computed such that $G = U \cdot S \cdot V^T$ where both U and V are $D \times D$ orthonormal matrices, in that $U^T \cdot U = V^T \cdot V = I_{D \times D}$ and $S = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_D)$, where $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_D \geq 0$.

Then, given $y \in \mathbb{R}^D$, its PCA features are given by $\hat{y} = U^T \cdot (y - \bar{y})$. To reduce the dimension of \hat{y} from D to d ($d < D$), the last $(D - d)$ entries of \hat{y} are simply discarded.

B. TPCA

TPCA (Tensor PCA) is a straightforward tensorial extension of the traditional PCA — given $X_{tv,1}, X_{tv,2}, \ldots, X_{tv,N} \in \mathbb{R}^D$ and $\bar{X}_{tv} = (1/N) \sum_{k=1}^{N} X_{tv,k}$ tensor matrix $G_{tm} \in \mathbb{R}^{D \times D \times D}$ is defined by

$$G_{tm} = \frac{1}{N} \sum_{k=1}^{N} (X_{tv,k} - \bar{X}_{tv}) \circ (X_{tv,k} - \bar{X}_{tv})^T$$ \hspace{1cm} (1)

Its singular value decomposition is computed as in Definition 8, namely

$$G_{tm} = U_{tm} \circ S_{tm} \circ V_{tm}^T.$$ \hspace{1cm} (2)

Then, given a query tensor vector $Y_{tv} \in \mathbb{R}^D$, its tensor feature vector \hat{Y}_{tv} is given by

$$\hat{Y}_{tv} = U_{tm}^T \circ (Y_{tv} - \bar{X}_{tv}).$$ \hspace{1cm} (3)

We call \hat{Y}_{tv} the TPCA vector of Y_{tv}. To accommodate the traditional algorithms which only deal with traditional vectors, with the help of the tensor slicing operation, we propose a mapping $\delta(\cdot)$ to transform $\hat{Y}_{tv} \in \mathbb{R}^D$ to $\delta(\hat{Y}_{tv}) \in \mathbb{R}^D$ — let the tensor size be $m \times n$, $\delta(Y_{tv})$ is given by

$$\delta(\hat{Y}_{tv}) = \frac{1}{mn} \sum_{\omega_i = 1}^{m} \sum_{\omega_2 = 1}^{n} \hat{Y}_{tv}(\omega_1, \omega_2).$$ \hspace{1cm} (4)

We call $\bar{y} = \delta(U_{tm}^T \circ (Y_{tv} - \bar{X}_{tv}))$ the traditional TPCA feature vector, which can be conveniently employed by traditional non-tensorial algorithms. To reduce the dimension of \bar{y} from D to d, the last $(D - d)$ entries are simply discarded.

TPCA is organized in Algorithm 1.

Algorithm 1. Tensor Principal Component Analysis

Input: Query tensor vector $Y_{tv} \in \mathbb{R}^D$ and N training tensor vectors $X_{tv,1}, \ldots, X_{tv,N} \in \mathbb{R}^D$.

Output: non-tensorial TPCA feature vector $y \in \mathbb{R}^D$

1. Compute G_{tm} and \bar{X}_{tv} as in equation (1).
2. Compute U_{tm} as in equation (2).
3. Compute \hat{Y}_{tv} as in equation (3).
4. **return** $y \leftarrow \delta(\hat{Y}_{tv})$.

C. Fast TPCA via the Fourier transform

Note that, with the help of the slicing operation, equation (2) can be computed much more efficiently via a series of traditional SVDs computed in the Fourier domain. More specifically, given the tensor matrix G_{tm}, and $\Omega \triangleq \{ (\omega_1, \omega_2) : \omega_1 = 1, \cdots, m, \omega_2 = 1, \cdots, n \}$, equation (2) can be computed as in the following pseudo-code.

1. $G_{ftm} \leftarrow F(G_{tm})$.
2. **for all** $(\omega_1, \omega_2) \in \Omega$ do
3. Compute the traditional SVD of slice $G_{ftm}(\omega_1, \omega_2)$ such that $G_{ftm}(\omega_1, \omega_2) = U \cdot S \cdot V^H$, where V^H is the Hermitian transpose of the matrix V. $U \cdot S \cdot V^H$ is the tensorial TPCA feature vector of \bar{y}.

D. Computational complexity

By the above mentioned speeding-up scheme, a tensorial operation (such as TPCA or the tensor SVD) is decomposed to $|\Omega|$ separate corresponding traditional non-tensorial operations computed in the Fourier domain. If the traditional operation in the Fourier involves one flop, the corresponding tensorial operation needs $|\Omega|$ flops. If the cost of Fourier transform is ignored, the computational complexity of TPCA or tensor SVD is proportional to $|\Omega|$. A complex number is a tensor with $|\Omega| = 1$, therefore the computational complexity of PCA (or SVD) is $O(1)$. The computational complexity of TPCA (or tensor SVD) is $O(|\Omega|)$.

IV. EXPERIMENTS

Two publicly available image sets are employed in our experiments. One is the Indian Pines scene. It consists of 145×145 pixels and 200 spectral bands. The groundtruth of the Indian Pines scene is based on 16 classes. Another image set is the Pavia University scene. It consists of 610×340 pixels with 103 spectral bands. Its groundtruth is based on 9 classes.

A. Tensorization

We employ a straightforward approach to tensorize the given images — given a hyperspectral image $Z \in \mathbb{R}^{D_1 \times D_2 \times D_3}$, let $Z_{i,j} \in \mathbb{R}^{D_3}$ denote the traditional vector representation of the (i,j)-th pixel such that $Z_{i,j} = [Z]_{i,j,k}, \forall i, j, k$. Then, we tensorize each pixel sample to a tensor vector whose entries are 3×3 tensors, transforming traditional vector $Z_{i,j} \in \mathbb{R}^{D_3}$ to tensor vector $Z_{tv, (i,j)} \in \mathbb{R}^{D_3}, \forall i, j$. More specifically, $Z_{tv, (i,j)}$ is defined via its slice $Z_{tv, (i,j)}(\omega_1, \omega_2) \in \mathbb{R}^{D_3}$ as

$$Z_{tv, (i,j)}(\omega_1, \omega_2) = Z_{iv, j'}, \forall i, j, \omega_1, \omega_2$$

where $i' \equiv \text{mod}(i + \omega_1 - 3, D_1) + 1$ and $j' \equiv \text{mod}(j + \omega_2 - 3, D_2) + 1$.
We call $\{(i', j') : \omega_1 = 1, 2, 3 \text{ and } \omega_2 = 1, 2, 3\}$ the 3×3 circular-shift neighborhood of (i, j). Given a hyperspectral image with N training pixels and D bands $(D = D_3)$, we denote the acquired tensor vectors in order by $X_{t_1, \cdots, t_7} \in \mathbb{R}^D$, which are inputs in Algorithm 1.

B. Experimental results

We report the overall accuracies (OA) and the κ coefficient of the classification results obtained by five feature extractors and three classifiers. Higher values of OA and κ indicate a better classification result [11]. The employed classifiers are Nearest Neighbour (NN), Support Vector Machine (SVM) and Random Forest (RF). The Gaussian RBF kernel is employed for SVM and, in the experiments, the Gaussian parameter $\sigma \in \{2^i\}_{i=-5}^{10}$ and the regularization parameter $C \in \{2^j\}_{j=0}^{15}$ are trained from the 5-fold cross validation.

The extractors include two classical vector-based algorithms — PCA and LDA, and three state-of-the-art tensor-based algorithms — TDLA [6], LTDA [7] and TPCA (ours). We also give the quantitative results obtained by the original raw vector representation (denoted as “original”) as a comparison baseline. For PCA, TPCA and LDA, we use a range of values for the feature dimension D, namely $D = 5, 10, \cdots, D_{\text{max}}$ with $D_{\text{max}} = 200$ for the Indian Pines image and $D_{\text{max}} = 100$ for the Pavia University image. The highest classification accuracy for the range of values of D is reported. In the experiments, 10% of the pixels of interests are uniformly randomly chosen as the training samples, the rest of the pixels are chosen as query samples. The classification experiment is repeated independently 10 times and the average OA and κ is recorded.

The quantitative comparison of the classification results is given in Table I. The third and fourth column of Table I show the classification result of OA and κ obtained on the Indian Pines image. It is clear that the results obtained by the tensorial features (TDLA, LTDA and TPCA) are better than those obtained by the vectorial features (PCA and LDA). Furthermore, among all the extractors, TPCA always yields the highest OA and the largest κ, outperforming its tensorial rivals TDLA and LTDA. For a comparison with its vectorial counterpart, the OA obtained by TPCA is about 6% -11% higher than that obtained by PCA — with RF, the TPCA accuracy is 91.01% compared with the baseline 76.78% and the PCA accuracy 79.78%. The Indian Pines image, the groundtruth and the classification maps with the highest classification accuracies for the different experimental settings are shown in Figure 2. It is clear that TPCA yields the best classification.

Since PCA and TPCA have a similar structure, to compare their performances, the OA curves of PCA and TPCA over varying feature dimension, obtained by classifiers NN, SVM, RF on the Indian Pines image, are given in Figure 3. The figure shows that, no matter which classifier and feature dimension are chosen, TPCA always outperforms PCA.

The classification results obtained using a range of classifiers and feature extractors on the Pavia University image are given in the last two columns of Table I. The visual classification maps obtained by RF with different extractors, are shown in Figure 2. The maps with the highest classification accuracies for the different experimental settings are shown. To compare the performances of PCA and TPCA, the OA curves of PCA and TPCA for changing feature dimension, obtained by classifiers NN, SVM, RF on the Pavia University image, are given in Figure 4. From Table I, Figure 2 and Figure 4, a similar observation that TPCA outperforms its rivals can be drawn, supporting our claims for TPCA.

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Extractor</th>
<th>Indian Pines</th>
<th>Pavia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OA</td>
<td>κ</td>
<td>OA</td>
</tr>
<tr>
<td>NN</td>
<td>original</td>
<td>75.43</td>
<td>0.9272</td>
</tr>
<tr>
<td></td>
<td>PCA</td>
<td>73.49</td>
<td>0.6977</td>
</tr>
<tr>
<td></td>
<td>LDA</td>
<td>71.54</td>
<td>0.6642</td>
</tr>
<tr>
<td></td>
<td>TDLA[6]</td>
<td>74.21</td>
<td>0.7209</td>
</tr>
<tr>
<td></td>
<td>LTDA[7]</td>
<td>75.14</td>
<td>0.7216</td>
</tr>
<tr>
<td></td>
<td>TPCA[ours]</td>
<td>79.15</td>
<td>0.7624</td>
</tr>
<tr>
<td>SVM</td>
<td>original</td>
<td>82.90</td>
<td>0.8063</td>
</tr>
<tr>
<td></td>
<td>PCA</td>
<td>85.06</td>
<td>0.8065</td>
</tr>
<tr>
<td></td>
<td>LDA</td>
<td>79.53</td>
<td>0.7673</td>
</tr>
<tr>
<td></td>
<td>TDLA[6]</td>
<td>83.51</td>
<td>0.8168</td>
</tr>
<tr>
<td></td>
<td>LTDA[7]</td>
<td>85.68</td>
<td>0.8372</td>
</tr>
<tr>
<td></td>
<td>TPCA[ours]</td>
<td>90.62</td>
<td>0.8930</td>
</tr>
<tr>
<td>RF</td>
<td>original</td>
<td>76.78</td>
<td>0.7315</td>
</tr>
<tr>
<td></td>
<td>PCA</td>
<td>79.78</td>
<td>0.7607</td>
</tr>
<tr>
<td></td>
<td>LDA</td>
<td>76.59</td>
<td>0.7353</td>
</tr>
<tr>
<td></td>
<td>TDLA[6]</td>
<td>84.96</td>
<td>0.8247</td>
</tr>
<tr>
<td></td>
<td>LTDA[7]</td>
<td>86.57</td>
<td>0.8475</td>
</tr>
<tr>
<td></td>
<td>TPCA[ours]</td>
<td>91.01</td>
<td>0.8969</td>
</tr>
</tbody>
</table>

V. Conclusion

A novel tensor-based feature extractor called TPCA (Tensor Principal Component Analysis) is proposed for hyperspectral image classification. First, we propose a new tensor matrix algebraic framework, which combines the merits of the recently emerged t-product model, which is based on the circular convolution, and the traditional matrix algebra. With the help of the proposed algebraic framework, we extend the traditional PCA algorithm to its tensorial variant TPCA. To speed up the tensor-based computing of TPCA, we also propose a fast TPCA for which the calculations are conducted in the Fourier domain. With a tensorization scheme via a neighborhood of each pixel, each sample is defined by a tensorial vector whose entries are all second-order tensors and TPCA can effectively extract the spectral-spatial information in a given hyperspectral image. To make TPCA applicable to traditional vector-based classifiers, we design a straightforward but effective approach to transform TPCA’s output tensor vector to a traditional vector. Experiments to classify the pixels of two publicly available benchmark hyperspectral images show that TPCA outperforms its rivals including PCA, LDA, TDLA and LTDA in term of classification accuracy.

Acknowledgements

This work is funded by the National Natural Science Foundation of China (No. 1404607), the open foundation program of the Shaanxi Provincial Key Laboratory of Speech and Image Information Processing (No. SJ2013001), the High-end Foreign Experts Recruitment Program (No. GDW20134100119) and the Key Science and Technology Program of Henan (No. 1404607).
In this work, Liang Liao and Stephen Maybank are primarily responsible for the algebraic framework of tensorial matrices and TPCA. Yuemei Ren is primarily responsible for the experiments on the hyperspectral data. Liao also contributed significantly to the experiments.

REFERENCES