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Abstract

Object tracking is viewed as a two-class ’one-versus-
rest’ classification problem, in which the sample distribu-
tion of the target is approximately Gaussian while the back-
ground samples are often multimodal. Based on these spe-
cial properties, we propose a graph embedding based dis-
criminative learning method, in which the topology struc-
tures of graphs are carefully designed to reflect the proper-
ties of the sample distributions. This method can simulta-
neously learn the subspace of the target and its local dis-
criminative structure against the background. Moreover,
a heuristic negative sample selection scheme is adopted to
make the classification more effective. In tracking proce-
dure, the graph based learning is embedded into a Bayesian
inference framework cascaded with hierarchical motion es-
timation, which significantly improves the accuracy and ef-
ficiency of the localization. Furthermore, an incremental
updating technique for the graphs is developed to capture
the changes in both appearance and illumination. Experi-
mental results demonstrate that, compared with two state-
of-the-art methods, the proposed tracking algorithm is more
efficient and effective, especially in dynamically changing
and clutter scenes.

1. Introduction

Object tracking has received significant attention due to
its crucial value in visual applications including surveil-
lance, human-computer interaction, intelligent transporta-
tion, augmented reality and video compression.

In the literature, there exists a variety of tracking algo-
rithms from different perspectives, such as the snakes model
[1], condensation [2], mean shift [3], appearance models
[4], the probabilistic data association filter [5] and so on.
These algorithms have achieved great successes in object
tracking. However, it is still a great challenge to build a vi-
sual tracking system that is robust to a wide variety of con-
ditions, especially if the system is based on a mobile cam-

era. In this case, the tracker must deal simultaneously with
the changes of both target and background. One traditional
solution to this problem is to design a updating scheme
based on a constant brightness constraint to accommodate
the changes in appearance and illumination [4, 6, 7]. The
underlying assumption is that the intensity of pixels inside
the target region remain the same between two consecutive
frames. However, the tracking errors accumulate, causing
the template to drift away from the target. An alternative
approach is to construct an appearance model which takes
account of all possible variations in the appearance of the
target [8, 9]. As in [8], a view-based eigenbasis representa-
tion of the object is learned off-line, and applied to form a
two-view matching tracking algorithm. However, it is very
difficult to collect training samples that cover all possible
cases. Thus, this algorithm is only feasible in some specific
conditions.

Recently incremental learning has provided an effective
way to tackle the above problem. Specially, incremental
subspace learning and its extensions have received more and
more attention due to the following merits [10, 11, 12, 13]:
(1) constant subspace assumption is more reasonable than
constant brightness assumption; (2) it is easy to capture the
changes of the appearance; (3) it is computation and stor-
age efficiency. The pioneering work applying the incremen-
tal subspace learning to tracking is due to Lim et al. [12],
where they extend the SKL (Sequential Karhunen-Loeve)
[14] algorithm to effectively learn the variations of both ap-
pearance and illumination in an incremental way. However,
their work only focuses on the matching between target sub-
space and candidates. The information for classification
in the background is discarded. In [13], a two-class FDA
(Fisher Discriminant Analysis) based model is proposed to
learn the discriminative subspace to separate the target from
the background. It has a more discriminative ability than
PCA models, since it utilizes the background appearance as
negative training data. Despite the success of FDA in the
tracking literature, it still has the following limitations:1)
the dimension of the embedding space is lower than the
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class number due to the rank deficiency of the between-class
scatter matrix, and that is rather restrictive in two-class clas-
sification problem; 2) it is optimal only in the case that the
data for each class are approximately Gaussian distributed
with equal covariance matrix. In fact, the sample distri-
bution of background is usually multimodal and irregular,
making FDA ineffective in this case.

In view of the forgoing discussions, we propose a graph
embedding framework to combine ISL (incremental sub-
space learning) and FDA (Fisher discriminant analysis) for
object tracking, and simultaneously compensate the limita-
tions of both ISL and FDA. While maintaining a relatively
low computational complexity, the proposed tracking algo-
rithm performs quite robustly in dynamically changing and
clutter environments. The main contributions of the pro-
posed tracking algorithm are summarized as follows:
• The subspace of the target and its local discrimina-

tive structure against the background are learned si-
multaneously from a graph embedding based learn-
ing framework to effectively capture the variational ap-
pearance changes and reliably separate the target from
the background.

• A heuristic negative sample selection scheme is pro-
posed to make the classification between target and
background more effective.

• The learning procedure is embedded into a Bayesian
inference framework cascaded with a hierarchical mo-
tion estimation algorithm in order to improve the accu-
racy and efficiency of the localization.

This paper is arranged as follows. Section 2 presents
the graph embedding based discriminative learning method.
The detail of the proposed tracking algorithm is described
in Section 3. Experimental results are shown in Section 4,
and Section 5 is devoted to conclusion.

2. Graph Embedding Based Learning

Graph embedding is a particular design of a graph with
some special constraints[17, 18]. In [17], Yan et al. pro-
pose a graph embedding framework for dimension reduc-
tion, which reformulates the classic PCA and FDA in a
graph embedding manner. Inspired by their work, we pro-
pose a graph embedding based method to effectively learn
the variational appearance changes and the discriminative
structure between the target and background.

2.1. Problem

As discussed in the introduction, ISL based tracker can
gradually capture variational changes of the target, how-
ever discarding the information in the background makes it
rather restrictive in cases when the object undergoes large
appearance changes, because the minimization of recon-
struction error provides a limited solution space (as illus-
trated in Fig.1(a)). The FDA based tracker takes account

(a) (b)
Figure 1. The possible solution space in (a) the minimization of
reconstruction error, and (b) the FDA projection (dashed line) and
discriminative projection (solid line).

of background appearance as negative training samples, en-
hancing the tracking performance to some degree. How-
ever, as shown in Fig.1(b), it tends to give undesired results
if training samples in a certain class are multimodal [15, 16],
which is often observed in tracking applications. So the
question is, despite the clutter environment, how to effec-
tively learn the variational changes of the target while pre-
serving the ability to discriminate the target from the back-
ground.

2.2. Graph Embedding for Dimension Reduction

Before introducing our work, let us review the graph em-
bedding framework for dimension reduction [17].

Let xi ∈ R
d(i = 1, 2, · · ·, n) be d-dimensional samples

and yi ∈ {1, 2, · · ·, C} be associated class labels. Let nc be
the number of samples in the class c, where

∑C
c=1 nc = n.

The sample matrix is written as: X = (x1|x2| · · · |xn). Let
G = {{xi}n

i=1, W} be an undirected weighted graph with
vertex set {xi}n

i=1and the similarity matrix W ∈ R
n×n. The

element wij of Wmeasures the similarity of the vertex pair i

and j. The element of diagonal matrix D and the Laplacian
matrix L of the graph G are defined as follows.

dii =
∑
j �=i

wij , L = D − W (1)

The graph embedding for dimension reduction is defined
as the optimal low dimensional vector representations for
the vertices of graph G that best characterize the similarity
relationship between the data pairs. A general form is to
minimize the graph preserving criterion as follows.

Z∗ = arg min
ZT BZ=I

∑
i,j

||zi − zj ||2wij

= arg min
ZT BZ=I

2tr(ZT LZ) (2)

where zi is the low dimension representation of xi, Z is
its data matrix, and B constrains the low dimensional rep-
resentation. Suppose only linear projection as zi = P T xi

is considered, and the constant factor in (2) is dropped for
simplicity. Thus the objective function (2) becomes

P ∗ = arg min
P T XBXT P=I

tr(P T XLXT P ) (3)

PCA pursues a subspace containing the maximum-
variance directions in the original space, which can be ob-
tained by solving the eigenstructure decomposition of co-
variance matrix S.



S =
∑

i

(xi − µ)(xi − µ)T = X(I − 1

n
eeT )XT (4)

where e is an n-dimensional vector with e = [1, 1, · · ·, 1]T ,
and µ is the mean of all samples. Thus PCA can be refor-
mulated as

P ∗ = arg min
P T P=I

− tr(P T SP )

= arg min
P T P=I

− tr(P T X(I − 1

n
eeT )XT P ) (5)

with the graph structure {wij = 1/n, i �= j; B = I}.
FDA embeds the training samples so that the ratio of

within-class scatter matrix S(w) and between-class scatter
matrix S(b) is minimized.

S(w) =
C∑

c=1

∑
i:yi=c

(xi−µc)(xi−µc)
T = X(I− 1

nc

nc∑
c=1

ececT )XT

(6)

S(b) =
C∑

c=1

nc(µc − µ)(µc − µ)T = S − S(w) (7)

where
∑

i:yi=c denotes the summation over sample xi such
that yi = c, µc is the mean of samples in class c and ec is an
n dimensional vector with ec(i) = 1, if yi = c. As a result,
the object function of FDA can be described as follows.

P ∗ = arg min
P

tr(
P T S(w)P

P T S(b)P
) = arg min

P
tr(

P T S(w)P

P T SP
) (8)

with the graph structure {wij = δyi,yj /nyi}, and the con-
straint {B = I − 1

n
eeT }. Here δyi,yj is the function defined

such that yi = yj , δyi,yj = 1, otherwise δyi,yj
= 0.

2.3. Graph Embedding Based Learning

An investigation [16] shows that the undesired behav-
iorz of FDA in multimodal case is caused by the global-
ity when evaluating within-class compactness and between-
class separability. Since FDA maximizes between-class
separability under constraint of keeping within-class com-
pactness to a certain level, when one of the classes is multi-
modal, this constraint is actually quite restrictive since these
data samples should be typically evaluated as a single clus-
ter. Therefore, the ability for maximizing the between-class
separability is rather limited. A proper way to overcome
the above limitation is to evaluate within-class compactness
and between-class separability in a local manner to preserve
the multimodal structure.

In the following part, we construct three novel graphs
with topology structures designed to reflect the properties
of the sample distributions.

2.3.1 Graph Structure

Suppose we have collected a series of positive and nega-
tive samples corresponding to the target and background in
tracking applications. Recall that the data points {xi}n

i=1

are in R
d, and each xi is labeled by a class label yi ∈ {1, 2}.

The topology structures of graphs are designed as follows.

(a) Within-class Graph (b) Between-class Graph
Figure 2. The adjacency graphs for within-class compactness and
between class separability (Note that the adjacency graphs only
plot the connection edges for some typical samples for simplicity)

• Construct the target/foreground graph {Gf , W f}.
The PCA graph of foreground is constructed using the
affinity matrix {wf

ij = 1/nf}, where nf is the number
of target samples, as illustrated in Fig.2(a), because the
sample distribution is approximated by a Gaussian.

• Construct the background graph {Gb, W b}.
As shown in Fig.2(a), among the background samples,
an edge is added between xi and xj , if xj is one of xi’s
k-nearest neighbors. Each element wb

ij of the affinity
matrix refers to the weight of the edge between xi and
xj , and is determined by the local scaling method in
[19]

wb
ij = exp

(
−||xi − xj ||2

σiσj

)
(9)

where σi represents the local scaling of the data sam-
ples around xi, which is defined by

σi = ||xi − x
(k)
i || (10)

where x
(k)
i is kth nearest neighbor of xi. In [19], k = 7

is a universal value, by which no tuning parameter re-
mains, and it can effectively deal with data samples
that are distributed of different scales. By default,
wb

ij = 0, if xi and xj are not connected.

• Construct the between-class graph {G′, W ′}.
For G′, we instead consider each pair of xi and xj with
yi �= yj , and likewise, connect xi and xj , if xj is one
of xi’s k’-nearest neighbors. The affinity matrix W ′ is
also computed by the local scaling method. As shown
in Fig.2(b), maximizing the between-class separability
defined in this way has a similar meaning to maximize
the margin between the two classes. And it is compu-
tationally efficient to only focus on the marginal sam-
ples.

2.3.2 Subspace Learning

Given the graph structures, the subspace of the target and
the discriminative projection between two classes are ob-
tained in the following steps.
Step 1. Learn the subspace P of the target by solving the
Eq.(5) of the foreground graph.

Step 2. To obtain the discriminative projection V , we focus
on the following constrained optimization problem.



Maximize J(V ) =
∑
i,j

||V T xi − V T xj ||2w
′
ij

subject to
∑
i,j

||V T xi − V T xj ||2wij = 1

where
W =

(
W f 0

0 W b

)

the columns of the optimal solution V are the generalized
eigenvectors corresponding to the l largest eigenvalues in

X(D′ − W ′)XT v = λX(D − W )XT v (11)

where D and D′ are diagonal matrices defined in (1), and the
discriminative projection is formed as V = [v1, v2, · · ·, vl].
The proof is given in the Appendix.

As demonstrated in Fig.1(b), our approach can obtain a
more discriminative projection than FDA in the multimodal
case. In fact, it can also achieve comparable performance
with FDA in the Gaussian case.

3. Proposed Tracking Algorithm

3.1. Overview of the Approach

Bayesian inference has provided a flexible and effective
tracking framework. Therefore, we embed the graph based
discriminative learning into Bayesian inference framework
to form a robust tracking algorithm. The proposed track-
ing algorithm is schematically shown in Fig.3. First, the
SSD (sum of squared differences) [20] iteration is applied
to the current frame to estimate the motion of the object.
The refined prediction of the state vector provides direc-
tional information to the particle generation process, and the
number of particles as well as the region they covered are
controlled by the residual error of the prediction. After the
particle generation process, each particle is then evaluated
by the discriminative observation model, which is learned
via the graph embedding based method. A maximum a pos-
terior (MAP) estimate of state is obtained as the output, and
also is retained as a positive training sample. Meanwhile,
some negative samples are carefully selected according to
a heuristic strategy. Finally, the graph embedding struc-
ture and the SSD template are incremental updated when
the training samples are ready.

Below we give a detailed description about each com-
ponent in this framework, and the algorithm is summarized
finally.

3.2. Hierarchical Motion Estimation

The motivation of cascading the SSD [20] algorithm
with the Bayesian inference framework in our tracking al-
gorithm is to provide a heuristic prediction to the particle
generation process.

Suppose the target is well localized in frame t − 1 as il-
lustrated by the left column of Fig.4, and the corresponding
state is denoted as st−1. We first apply SSD iterations to
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Figure 3. Overview of the proposed tracking algorithm

Figure 4. Particle configurations from zero-order transition
model(middle column) and our transition model(right column)

frame t, and the convergent state is considered as predicted
state ŝt. In order to accelerate this procedure, we adopt the
multi-resolution scheme to form a hierarchical motion es-
timation. After it converges, we integrate the predicted in-
formation into a first-order state transition model to form an
adaptive state transition model, which is described as

st = ŝt + εt (12)

where εt is the system noise, and it is controlled by the
residual error of ŝt.

As compared with the zero-order transition model illus-
trated in the middle column of Fig.4, the proposed transition
model (the right column of Fig.4) generates particles more
efficiently, since they are tightly centered around the object
of interest so that the object can be accurately localized and
tracked with less particles.

3.3. Discriminative Observation Model

The observation model is a basic issue to be considered
as the Bayesian inference is adopted for tracking. In this
part, we propose a discriminative observation model, which
utilizes both subspaces obtained by the graph embedding
based learning to evaluate the observation candidates.

Suppose P and V represent the target subspace and the
discriminant subspace respectively, then the observation



model can be defined as follow.

p(oi|z+, z−, P, V ) ∝
exp(−||oi−PP T oi||+α(||z−−V T oi||−||z+−V T oi||)) (13)

where oi denotes the observation candidate, z+ and z− rep-
resent the centers of positive samples and negative samples
in the discriminant subspace, and α represents a weighting
factor. The left part in formula (13) calculates the recon-
struction error of the candidate in the target subspace, which
evaluates the similarity between the candidate and the target
subspace. while the right part evaluates the relative position
of the candidate in the discriminative subspace that adds a
constraint to pushes the tracker towards the positive sample
group and pulls it away from the negative clusterings.

3.4. Heuristic Selection of Negative Sample

Negative samples play an important role in the discrim-
inative learning process. If the negative sample lies too far
from the target subspace, then negative sample may not help
maximize the margin between two classes. On the other
hand, if the negative sample lies too close to the target sub-
space, they may lie partly in the target subspace such that
the estimated target subspace is pushed away from its true
place.

In this paper, the negative samples are heuristically se-
lected based on two subspace learned previously. First, the
reconstruction error and discriminant constraint of all par-
ticles in formula (13) are retained after evaluation of the
observations, which are denoted as {πr

i , πd
i }N

i=1 and N is the
number of particles. These two values describe how far the
sample lies to the target subspace and its relative position
in discriminant subspace. Then, the thresholds of both two
values are carefully extracted as {T r, T d} from {πr

i , πd
i }N

i=1.
Finally, each particle is evaluated to determine whether it is
a negative sample as follows.
• if (πr

i > T r)&&(πd
i < T d): denote that the sample lies

too far from the target;
• if (πr

i < T r)&&(πd
i > T d): denote that the sample lies

too close to the target;
• if(πr

i < T r)&&(πd
i < T d): denote that the sample is

similar to the target but lies near to the cluster of back-
ground samples. Thus it is selected as negative training
sample.

3.5. Incremental Updating
In most tracking applications, the tracker must simulta-

neously deal with the changes of both the target and the
environment. As a result, it is necessary to update the graph
structure and the SSD template incrementally to accommo-
date these changes.

In order to make the graph model depend more heav-
ily on the most recent observations, we assume that the past
data is gradually forgotten and new information is gradually
added to the graph structure. Suppose that after tracking k

frames, we have obtained k positive samples and m negative
samples, and normally k < m. First we need to efficiently
update the subspace of the target as well as its graph struc-
ture. In this paper, the strategy taken in [12] is adopted to
incrementally learn the eigenbasis as new data arrive. Then
the positive samples are added into the foreground graph,
and the k most previous samples are gradually dropped to
make the sample number balanced with negative ones. Due
to the clutter essence of background, it is unnecessary to
keep the background samples for long times. To make a
tradeoff between accuracy and efficiency, a batch replace-
ment strategy is adopted to construct the new graph struc-
ture of the background. For the between-class graph, we
only focus on the negative samples lying relatively near to
the target subspace. In addition, the SSD template is also
updated at the k

2
th frame, which means the two different

models are interleavedly updated in order not to possess the
computational resources simultaneously (A more sophisti-
cated updating strategy for incremental graph learning is
prepared in later publication).

3.6. Summary of Tracking Algorithm

A summary of the graph based tracking algorithm is de-
scribed as follows.

Algorithm 1 Graph Based Tracking Algorithm
Input: Given the available state information st and the learned
subspaces {P, V, z+, z−} of frame t;
1. Apply hierarchical SSD iteration to the observations of frame
t + 1 to obtain the predicted state of the target ŝt+1;

ŝt+1 = SSD(It+1, st)
where It+1 denotes the image matrix in frame t + 1;
2. Retain the residual error of the refined state ŝt+1, then the
particles are generated based on the adaptive transition model,
in which the number N and generation region ε are controlled
by the residual error:

s
(n)
t+1 = ŝt+1 + εt+1, n = 1 · · · N ;

3. Evaluate each particle by the graph based observation model
π(n) = p(ot+1|s(n)

t+1, z
+, z−, P, V ), n = 1 · · · N ;

Also retain the reconstruction error and the discriminant con-
straint for each particle;
5. Get an MAP estimate of the state and keep it as a positive
sample;

st+1 = arg max
s
(n)
t+1

p(s
(n)
t+1|o1:t+1) ≈ arg max

s
(n)
t+1

π(n);

6. Select the negative samples accordingly;
7. Check the frame number to make a decision: update the
graph model or the SSD template;
Output: MAP estimation: st+1;

4. Experimental Results
In our experiment, the target is initialized manually

and affine transformations is considered only. Specifically,
the motion is characterized by s = (tx, ty, a1, a2, a3, a4)
where {tx, ty} denote the 2-D translation parameters and



Figure 5. Tracking performances of our algorithms (white: without motion estimation, green: with motion estimation).
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Figure 6. The number of particles possessed by two algorithms
(red: without motion estimation, green: with motion estimation).

{a1, a2, a3, a4} are deformation parameters. Each candi-
date image is rectified to a 20×20 patch, and the feature is
a 400-dimension vector with zero-mean-unit-variance nor-
malization. Several parts of experiments are presented to
demonstrate the advantages of the proposed algorithm. All
of the experiments are carried out on a dual-CPU Pentium
IV 3.4GHz PC with 512M memory and run in real time.

We first test our algorithm to track a rapidly mov-
ing object. In order to demonstrate the importance
of the motion estimation part, the David sequence1 is
sampled alternately to form a rapid motion testing se-
quence. The parameters are set to {N = 600, var(ε) =

[52, 52, 0.012, 0.022, 0.0022, 0.0012]} in our model without
the motion estimation part. As shown in Fig.5, it is clear that
the algorithm without the motion estimation fails in frame
31, because it can’t catch the rapid motion of the object. On
the other hand, the model cascaded with motion estimation
part can achieve a better performance with the same ε. Fig.6
displays the plot of actual number of particles possessed by
our adaptive transition model in each frame. The average
number of particle is 206.9, which means that in this case
we actually saved nearly 400 particles.

The second part shows the experimental performance of
our tracking algorithm, and a comparison to the ISL (in-
cremental subspace learning) algorithm[12] in handling the
abrupt changes of appearance and partial occlusion. The
tracking result in Fig.8(a) witnesses that the ISL can suc-
cessfully capture the slow changes of appearance, while it
can’t effectively adapt to the abrupt changes. Because the

1We acknowledge to the author of the source data available at the URL:
http://www.cs.toronto.edu/ dross/ivt/
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Figure 7. MSE between estimated points and groundtruth(red: in-
cremental subspace learning, green: the proposed algorithm)

ISL only provides a restrictive solution space to accommo-
date to the appearance changes, as shown in Fig.1(a). On
the contrary, the proposed algorithm can effectively cap-
ture these changes in both appearance and illumination,
since the discriminative projection provides a larger solu-
tion space to absorb these variations. To further illustrate
the superiority of our algorithm, we also test these two al-
gorithms with the labeled Dudek sequence2, and the MSE
(mean square error) between the estimated points and the
groundtruth is computed. The results in Fig.7 show that our
approach achieve a more accurate performance in localiza-
tion than ISL, especially around the frame 105 when the ob-
ject is confronted with partial occlusion. The average MSE
for our algorithm is 4.8194, while that for ISL is 5.7386.
Fig.8(b) presents detail performances of both the algorithms
in dealing with the partial occlusion. It is clear that discrim-
inant constraint in our model can push the tracker back to
the groudtruth position.

The discrimination analysis of the proposed algorithm
and the traditional FDA based tracker is demonstrated in
this part. As illustrated in Fig.9(a), both the two methods
are applied to a video sequence with a clutter background
that contains objects similar in appearance to the target.
Moreover, these two methods are also tested with a low
quality video sequence in a noisy and clutter environment
in Fig.9(b). It is obvious the FDA based tracker gradually
drift away from the groundtruth and finally loses the track
completely. While the proposed algorithm follows the tar-
get well in both clutter and noisy background. To investi-

2We acknowledge to the author of the source data available at the URL:
http://www.cs.toronto.edu/vis/projects/dudekfaceSequence.html



(a) Object with abrupt changes

(b) Object with partial occlusion

Figure 8. Tracking performances of ISL and our algorithm (white: incremental subspace learning, green: the proposed algorithm)
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Figure 10. MSE between estimated points and groundtruth and the
discriminative ability (red: FDA based algorithm, green: the pro-
posed algorithm)

gate the reason, we have a quantitatively analysis of both
algorithms in accuracy and discriminative ability. The dis-
criminative ability of the projection in frame t is defined as
follows.

Discr(t) = N−1
n

Nn∑
i=1

||z+ − z−
i ||2 (14)

where z−i is the ith negative sample in the projective
space and Nn is the number of negative samples. Fig.10
plots the results of MSE between estimated points and
groundtruth and the discriminative ability of the projection
in each frame. Obviously, our approach achieves a more
accurate localization and has a more discriminative abil-
ity. Since FDA maximize between-class separability under
constraint of keeping within-class compactness to a certain
level. When the background class is clutter and irregular,
this constraint is too restrictive. Therefore, the ability for
maximizing the between-class separability is rather limited.
On the other hand, the local evaluation employed in our al-
gorithm is less restrictive and it encodes the sample distri-
butions into the graph structures, while enhancing the dis-
criminative ability.

5. Conclusion
This paper presents a graph embedding based object

tracking algorithm in an unified framework, which can
effectively learn the variational appearance changes and
the discriminative structure between foreground and
background simultaneously. In our implementation, the
graph embedding structure inside background samples is

evaluated in a local way for its irregular and multimodal
properties. Also the conjunction between the vertex pair
from different classes is defined on the margin of sample
sets. Both of these two structures can greatly compensate
the intrinsic drawbacks of traditional FDA when applied
in tracking tasks. Meanwhile, this learning procedure is
embedded into a Bayesian inference framework cascaded
with a hierarchical motion estimation, which significantly
improves the accuracy and efficiency of the object tracking.
After carefully selecting data samples in several frames, an
incremental updating technique for the models is proposed
to accommodate for the changes in both appearance and
illumination. Experimental results have demonstrated
the efficiency and effectiveness of the proposed tracking
algorithm.

Appendix

Lemma 1 The solution of the constraint optimization prob-
lem:

Maximize J(V ) =
∑
i,j

||V T xi − V T xj ||2w
′
ij

subject to
∑
i,j

||V T xi − V T xj ||2wij = 1

where V ∈ R
d×l, is given by the generalized eigenvectors

corresponds to the l largest eigenvalues of the following
equation.

X(D′ − W ′)XT v = λX(D − W )XT v

where D′, D are diagonal matrices defined in Eq.(1).

Proof: Since ||A||2 = tr(AAT ), we see that:

J =
∑
i,j

tr{(V T xi − V T xj)(V
T xi − V T xj)

T }w′
ij

=
∑
i,j

tr{V T (xi − xj)(xi − xj)
T V }w′

ij

The operation of trace is linear and w′
ij is a scalar, we can

move the summation and w′
ij inside the trace:

J = tr{V T
∑
i,j

((xi − xj)w
′
ij(xi − xj)

T )V }

= tr{V T (2XD′XT − 2XW ′XT )V }



(a) Object in clutter background

(b) Object in noisy environment

Figure 9. Tracking performances of FDA and our algorithm (white: FDA based algorithm, green: the proposed algorithm)

= 2tr{V T (X(D′ − W ′)XT )V }
Thus the optimization problem can be reformulated as

Maximize J(V ) = 2tr{V T (X(D′ − W ′)XT )V }
subject to 2tr{V T (X(D − W )XT )V } = 1

The Lagrangian is given by:

L = 2tr{V T (X(D′ − W ′)XT )V }
+λ{1 − 2tr{V T (X(D − W )XT )V })}

Let V = [v1, · · ·, vl], and we have:
∂L

∂v
= 4X(D′ − W ′)XT v − 4λX(D − W )XT v

Thus, the optimization problem is solved by finding the
l generalized eigenvectors that correspond to the l largest
eigenvalues of the given equation.

X(D′ − W ′)XT v = λX(D − W )XT v
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