Chapter 9

Relevance Feedback and Query Expansion
Motivation

In this chapter we are going to look at methods on how to improve the recall of a search (without compromising precision too much)

- “aircraft” in query doesn’t match with “plane” in document
- “heat” in query doesn’t match with “thermodynamics” in document

Two important methods for doing this

- Relevance feedback
- Query expansion
Relevance Feedback: Basic Idea

- The user issues a (short, simple) query
- The system returns an initial set of retrieval results
- The user marks some returned documents as relevant or not relevant
- The system computes a better representation of the information need based on the user feedback
- The system displays a revised set of retrieval results
- This can go through one or more iterations

- We will use the term *ad hoc retrieval* to refer to regular retrieval without relevance feedback.
Example

Shopping related 607,000 images are indexed and classified in the database.
Only one keyword is allowed!!!

bike

Designed by Baris Sumengen and Shawn Newsam

Powered by JLAMP2000 (Java, Linux, Apache, Mysql, Perl, Windows2000)
Results for Initial Query
User Feedback: Select What is Relevant
Results After Relevance Feedback
The Rocchio Algorithm

- The classic algorithm for implementing relevance feedback
- Incorporates relevance feedback information into the vector space model
 - It does so by “fiddling around” with the query vector \vec{q}
 - Given a set of relevant documents and a set of non-relevant documents
 - It tries to maximize the similarity of \vec{q} with the relevant documents
 - It tries to minimize the similarity of \vec{q} with the non-relevant documents
The Rocchio algorithm tries to find the optimal position of the query vector:
Formal Definition

- Given a set \(D_r \) of relevant docs and a set \(D_{nr} \) of non-relevant docs
- Rocchio chooses the query \(\vec{q}_{opt} \) that satisfies

\[
\vec{q}_{opt} = \max_{\vec{q}} [\text{sim}(\vec{q}, D_r) - \text{sim}(\vec{q}, D_{nr})]
\]

- Where \(\text{sim}(\vec{q}, D) \) is the (average) cosine measure
- Closely related to maximum separation between relevant and nonrelevant docs
- This optimal query vector is:

\[
\vec{q}_{opt} = \frac{1}{|D_r|} \sum_{\vec{d}_j \in D_r} \vec{d}_j + \left[\frac{1}{|D_r|} \sum_{\vec{d}_j \in D_r} \vec{d}_j - \frac{1}{|D_{nr}|} \sum_{\vec{d}_j \in D_{nr}} \vec{d}_j \right]
\]
Centroids

\[\frac{1}{|D|} \sum_{d \in D} \vec{v}(d) \] is called a centroid

The centroid is the center of mass of a set of points

Recall that we represent documents as points in a high-dimensional space.
Centroid: Examples
Centroid: Examples
Centroid: Examples
Centroid: Examples
Optimal Solution

As already mentioned, the optimal query vector is:

$$\vec{q}_{opt} = \frac{1}{|D_r|} \sum_{\vec{d}_j \in D_r} \vec{d}_j + \left[\frac{1}{|D_r|} \sum_{\vec{d}_j \in D_r} \vec{d}_j - \frac{1}{|D_{nr}|} \sum_{\vec{d}_j \in D_{nr}} \vec{d}_j \right]$$

q-opt = centroid-relevant +

[centroid-relevant - centroid-non-relevant]

We move the centroid of the relevant documents by the difference between the two centroids.
Illustration

circles: relevant documents, Xs: nonrelevant documents
Illustration

$\vec{\mu}_R$: centroid of relevant documents
$\vec{\mu}_R$ does not separate relevant/nonrelevant.
Illustration

\[\vec{\mu}_{NR} \]: centroid of nonrelevant documents
\[\vec{\mu}_R - \vec{\mu}_{NR} \]: difference vector
Add difference vector to $\vec{\mu}_R \ldots$
Illustration

\[\vec{q}_{opt} \]

\[\vec{\mu}_R - \vec{\mu}_{NR} \]

\[\vec{\mu}_R \]

\[\vec{\mu}_{NR} \]

\[\ldots \text{to get } \vec{q}_{opt} \]
\vec{q}_{opt} separates relevant/nonrelevant perfectly.
\vec{q}_{opt} separates relevant/nonrelevant perfectly.
Any Problems?

- So now we can do a perfect modification of the query vector?
- Unfortunately, that’s not quite true . . .
- This would work if we had the full sets of relevant and non-relevant documents
 - However, the full set of relevant documents is not known
 - Actually, that’s what we want to find . . .
- So, how’s Rocchio’s algorithm used in practice?
Rocchio 1971 Algorithm (SMART)

Used in practice:

\[\vec{q}_m = \alpha \vec{q}_0 + \beta \frac{1}{|D_r|} \sum_{\vec{d}_j \in D_r} \vec{d}_j - \gamma \frac{1}{|D_{nr}|} \sum_{\vec{d}_j \in D_{nr}} \vec{d}_j \]

- \(q_m \): modified query vector;
- \(q_0 \): original query vector;
- \(D_r \) and \(D_{nr} \): sets of known relevant and nonrelevant documents respectively;
- \(\alpha, \beta, \) and \(\gamma \): weights attached to each term

New query (slowly) moves towards relevant documents and away from nonrelevant documents.

Tradeoff \(\alpha \) vs. \(\beta/\gamma \): If we have a lot of judged documents, we want a higher \(\beta/\gamma \).
Illustration

- Initial query
- Revised query
- X known non-relevant documents
- O known relevant documents
Probabilistic Relevance Feedback

Rather than reweighting the query in a vector space, we could build a classifier.

A classifier determines which classification an entity belongs to (e.g. classifying a document as relevant or non-relevant).

One way of doing this is with a Naive Bayes probabilistic model.

We can estimate the probability of a term t appearing in a document, depending on whether it is relevant or not.

We’ll come back to this when discussing probabilistic approaches for IR.
When Does Relevance Feedback Work?

The success of relevance feedback depends on certain assumptions:

- User has to have sufficient knowledge to be able to make an initial query (otherwise we’ll be way off target):
- There can be various reasons why initial query may fail (leading to the result that no relevant documents are found):
 - Misspellings
 - Queries and documents are in different languages
 - Mismatch of user’s and system’s vocabulary: e.g. astronaut vs. cosmonaut
When Does Relevance Feedback Work? (2)

- Relevance prototypes are well-behaved, i.e.
 - Term distribution in relevant documents will be similar to that in the documents marked by the users (relevant documents in one cluster)
 - Term distribution in all non-relevant documents will be different

- Problematic cases:
 - Subsets of the documents using different vocabulary, such as Burma vs. Myanmar
 - Answer set is inherently disjunctive: e.g. irrational prime numbers
 - Instances of a general concept, which often are a disjunction of more specific concepts, e.g. felines.
Relevance Feedback: Evaluation

- Relevance feedback can give very substantial gains in retrieval performance
- Empirically, one round of relevance feedback is often very useful
 - Two (or more) rounds are marginally useful
- At least five judged documents are recommended (otherwise process is unstable)
Straightforward evaluation strategy:

- Start with an initial query q_0 and compute a precision-recall graph
- After getting feedback, compute the modified query q_m, again compute a precision-recall graph

This results in spectacular gains: on the order of 50% in mean average precision

Unfortunately, this is cheating...
Relevance Feedback: Evaluation (3)

- Gains are partly due to known relevant documents (judged by the user) now ranked higher

- Alternatives:
 - Evaluate performance on *residual collection*, that is the collection without documents judged by user
 - Now modified query may often perform worse: many relevant documents found by IR system don’t count . . .
 - Use two collections: one for initial query, the other for comparative evaluation
 - Do user studies
 - Probably best (and fairest) evaluation method
Relevance Feedback on the Web

- Relevance feedback has been little used in web search
- Exception: Excite web search engine
 - Initially provided full relevance feedback
 - However, the feature was in time dropped, due to lack of use

What are the reasons for this?
- Most users would like to complete their search in a single interaction
- Relevance feedback is hard to explain to the average user (no incentive to give feedback)
- Web search users are only rarely concerned with increasing recall
Pseudo-relevance Feedback

Pseudo-relevance feedback, also known as blind relevance feedback, automates the manual part of relevance feedback.

- Use normal retrieval to find an initial set of most relevant documents.
- Assume that the top-K ranked documents are relevant, use these as relevance feedback.

This automatic technique mostly works.

However, can lead to query drift:

Example: query is about copper mines and the top documents are mostly about mines in Chile, then next step may retrieve mainly documents on Chile.
Indirect Relevance Feedback

- Use indirect sources of evidence, this is called *indirect* or *implicit relevance feedback*
- Implicit feedback usually less reliable than explicit feedback, but is more useful than pseudo relevance feedback
- Ideal for high volume systems like web search engines:
 - Clicks on links are assumed to indicate that the page is more likely to be relevant
 - Click rates can be gathered globally for *clickstream mining*
Global vs. Local Methods

Two general approaches for increasing recall through query reformulation:

- Local methods are query-dependent
 - Relevance feedback is a local method
- Global methods are independent of the query
 - Query expansion is a global method
Query Expansion

In (global) query expansion, the query is modified based on some global resource, i.e. a resource that is not query-dependent.

Main information we use: (near-)synonymy

A publication or database that collects (near-)synonyms is called a *thesaurus*.

We will look at two types of thesauri: manually created and automatically created.
Example
Types of User Feedback

- User gives feedback on documents: more common in relevance feedback
- User gives feedback on words or phrases: more common in query expansion
- Relevance feedback can also be thought of as a type of query expansion, as we add terms to the query
- The terms added in relevance feedback are based on “local” information in the result list.
- The terms added in query expansion are often based on “global” information that is not query-specific.
Thesaurus-based Query Expansion

For each term t in the query, expand the query with words the thesaurus lists as semantically related with t.

Example: hospital \rightarrow medical

Generally increases recall

Can decrease precision, particularly with ambiguous terms:

- interest rate \rightarrow interest rate fascinate evaluate
Manual Thesauri

- Manual thesauri often maintained by publishers (e.g. PubMed)
- Widely used in specialized search engines for science and engineering
- It’s very expensive to create a manual thesaurus and to maintain it over time
- A manual thesaurus is roughly equivalent to annotation with a *controlled vocabulary*.
Example
Automatic Thesaurus Generation

- Attempt to generate a thesaurus automatically by analyzing the distribution of words in documents or by mining query logs.

- Fundamental notion: similarity between two words.

- Definition 1: Two words are similar if they co-occur with similar words.

- Definition 2: Two words are similar if they occur in a given grammatical relation with the same words.
 - You can harvest, peel, eat, prepare, etc. apples and oranges, so apples and oranges must be similar.

- Co-occurrence is more robust, grammatical relations are more accurate.
Examples

<table>
<thead>
<tr>
<th>Word</th>
<th>Nearest neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>absolutely</td>
<td>absurd, whatsoever, totally, exactly, nothing</td>
</tr>
<tr>
<td>bottomed</td>
<td>dip, copper, drops, topped, slide, trimmed</td>
</tr>
<tr>
<td>captivating</td>
<td>shimmer, stunningly, superbly, plucky, witty</td>
</tr>
<tr>
<td>doghouse</td>
<td>dog, porch, crawling, beside, downstairs</td>
</tr>
<tr>
<td>makeup</td>
<td>repellent, lotion, glossy, sunscreen, skin, gel</td>
</tr>
<tr>
<td>mediating</td>
<td>reconciliation, negotiate, case, conciliation</td>
</tr>
<tr>
<td>keeping</td>
<td>hoping, bring, wiping, could, some, would</td>
</tr>
<tr>
<td>lithographs</td>
<td>drawings, Picasso, Dali, sculptures, Gauguin</td>
</tr>
<tr>
<td>pathogens</td>
<td>toxins, bacteria, organisms, bacterial, parasite</td>
</tr>
<tr>
<td>senses</td>
<td>grasp, psyche, truly, clumsy, naive, innate</td>
</tr>
</tbody>
</table>
Summary

Relevance feedback has been shown to be very effective at improving relevance of results.

Its successful use requires queries for which the set of relevant documents is medium to large.

Full relevance feedback often onerous for users; its implementation not very efficient in most IR systems.

Query expansion often used in web-based or highly specialized IR systems.

Overall, query expansion

- is less successful than relevance feedback, though it may be as good as pseudo-relevance feedback
- is easier to understand by users