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Complete Calculus for Conjugated

Arrow Logic
SZABOLCS MIKULAS

ABSTRACT. We will give a strongly complete Hilbert-style infer-
ence system for a variant of arrow logic. Namely, we will consider
a logic whose connectives, beside the Booleans, are identity, the bi-
nary modality e, and its two conjugate modalities » and <. The
models for this logic are Kripke models with one ternary accessibility
relation corresponding to the modality e. A Hilbert-style inference
system will be defined; and we will prove the completeness of this
calculus with respect to the above semantics. We will also prove
that this logic is decidable for it has the finite model property. The
completeness proof uses an algebraic representation theorem, which
will be proved in the paper as well.

1 Introduction

Arrow logic is treated for instance in van Benthem 1991 and chapter 1.
That version of arrow logic contains all the Boolean connectives, and three
modal operators: identity, converse and composition. The proposed mod-
els for that logic are Kripke models with three accessibility relations corre-
sponding to the modalities above.

We will investigate a variant of arrow logic, called conjugated arrow
logic, CARL for short, which is given by forgetting the modality converse and
adding two new binary (or dyadic) modalities: » and €. The models for
CARL are Kripke models with one ternary accessibility relation correspond-
ing to composition e. The other two modalities are conjugate modalities of
e as, in temporal logic, sometimes-in-the-past is a conjugate of sometimes-
in-the-future. Since e is a binary modality, the accessibility relation inter-
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preting it is a ternary relation. Thus we can permute the arguments of
the relation in many ways; the interpretations of p and <« are given by
two such permutations. The idea that the binary connectives e, (and the
duals of) » and < can be considered as (dyadic) modalities is, €.g., 1n
Dirk Roorda’s dissertation on resource logics Roorda 1991. However, his
semantics uses three accessibility relations, one for each modality. See also
Kosta Dogen’s survey paper Dogen 1992. The connectives » and <« are
interesting for several reasons. Their presence is equivalent with that of the
residuals \ and / of e as we will see later. (The syntactic nature of » and
« and their relationship to e are investigated, e.g., in Jénsson and Tsinakis
1992.) The residuals \ and / are the well-known connectives of categorial
grammars, €.8. of the Lambek calculus. These are also connectives of many
substructural logics and Girard’s linear logic. Further motivation is that
\ and / can be considered as some kinds of implication as well: p\¢ is
preimplication meaning had ¢ then ¢ and @/ is postimplication ¢ if-ever
1, see Vaughan Pratt’s paper 1990. Further, identity 1s interpreted using
the above accessibility relation too: identity holds at a world iff it is the
composition of itself.

We will define a Hilbert-style inference system and show its strong com-
pleteness for CARL. We will also prove by filtration that CARL has the finite
model property, hence it is decidable.

One direction of further investigations would be adding more and more
connectives to our logic; another interesting direction is to consider more
«concrete” semantics for our logics, e.g., where the set of possible worlds
is a binary relation and the accessibility relation is relational composition.
Actually, Maarten Marx proved in Marx 1995 completeness for the pair
version of CARL, i.e., where the models are arbitrary binary relations and
the accessibility relation is relational composition restricted to the universe
of the model. Similar investigations are, €.8., in chapter 2 and Andréka and
Mikulés 1994. We could also restrict the class of models by requiring that
some further axioms should hold, as suggested, e.g., in van Benthem 1994.

2 Who is CARL?
In this section we give the precise definition of CARL.

Definition 2.1 (Conjugated Arrow Logic) Let P be a set, called the set
of parameters, and Cn = {A,—,op,4 ,16}. The set of formulas of CARL
is built up from P using the elements of Cn as connectives, where 10 is a
0-ary and — is a unary connective and the others are binary connectives,
in the usual way. The notion of subformula (of a formula) is assumed to
be known. We will also use the well-known derived connectives: —, ¥, V,
and the formula schemes: False, L, and True, T
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A Kripke frame for CARL is an ordered pair (W, C), where W, called
the set of possible worlds, is a non-empty set and C, called accessibility
relation, is a ternary relation on W, Le., CCWxWX W.

A Kripke model for CARL is a frame enriched with a valuation v. More
precisely, it is an ordered triple (W, C,v), where v : p — P(W), 1e, v
associates to every parameter a subset of W.

(Local) Truth of a formula @ at 2 world w € Win a model (W, C,v),
denoted by w IFv ¢, is defined by recursion as follows.

o Ifpe P, thean—vp(d-é-f)wev(p).

o wiey oA LS wik, @ &l ¥

o wlky 7@ S ot w Iy @ (also denoted as w v ¥)-

o wlky @ o g (3’&]1,’!1)2 & W)C’[U]_’w'z'w & wy lFy @ & wa Iky .

o wik, o» &5 Gui,w € W) Cwywws & wy Iy ¢ & w2 Iy 2.

o wlik, p 4V 4% (Fwy, w2 € W)Cuwwawi & wy Iy @ & w2 by -

o wlky to &L cuwww.

(Global) Truth in a model and validity in a frame are defined in the usual
way. That is,

o« (W,C,0)Fo A5 for every world w € W, wlky @

o W,C)Fy b for every valuation v, (W, C, v) F o
We say that a formula @ is a semantical consequence of the set I of formulas,
in symbols I' F ¢, Jff for every model (W, C,v),

(W,C,v) ET = (W,C,v) F ¢
where (W,C,v) ET abbreviates that, for every pel, (WG, v) F Y.
We recall the definitions of the residuals, denoted by \ and /, of e:

o w ity P\Y 24 (Ywy, w2 € W)(Cwrww2 & wy lFy @ = W2 Ik %)
o wlky /¥ =L (Vwy, w2 € W)(Cwwawi & wsy Iy ¥ = WL IFy @)
Then the following four formulas are semantically valid:
VIR S (2 ald o & (e 4)
ow v o A\ oat o (/)
3 Some Logic

The main result of this paper is the following strong completeness theo-
rem, which we will prove later using an algebraic representation theorem

(Theorem 4.3).

Theorem 3.1 (Strong Completeness) There 15 @ Hilbert-style inference
system which is strongly complete and strongly sound with respect to

=
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" CARL. That is, for every set T’ of formulas and formula ¢,
I'es #&= IHg
In fact, the inference system + defined in Definition 3.4 below has the above
property.
We will prove the following two theorems as well.

Theorem 3.2 (Decidability) CARL is decidable, i.e., the set of valid for-
mulas is a decidable set.

Theorem 3.3 (Finite Model Property) CARL has the finite model prop-
erty, i.e., for every formula ¢, if ¢ is not valid, then there is a finite
Kripke model which refutes it.

Definition 3.4 (Inference System ) The Hilbert-style inference system
I is given by the following axiom schemes and inference rules, where capi-
tal Greek letters denote formula schemes (metavariables which can be sub-
stituted by formulas) and L stands for the formula scheme False.

Axiom Schemes.
(i) axiom schemes for classical propositional logic
(i) Le®dePel el
(7it) @o(‘l’V@)(—)(@o\P)V(@o@)
(1v) (‘PV‘P).@(—)(‘I’.@)V(‘I’.@)
(v) PN — Do

Inference Rules.

(@eT)AO ¢ L (@eT)AO > L

(vi) (vi)
(@p» O)AV & L CERILS A"
I = A , 3T O0<A
(vigi) T (iz) [@e0) & (T h)

where double bar indicates that we have both the downward and the up-
ward rules. The definition of derivability of a formula ¢ from a set I' of
formulas, I' F ¢, is the usual.

The following formula is an equivalent version of (v) (in the presence of
(i), (i4i) and (iv)), and we will use it sometimes:

OAUAL > DPel.

Remark 3.5 Instead of the conjugates » and < we could choose the
residuals \ and /. Then the above three theorems still hold. This is true
because the conjugates and the residuals are definable by each other as we
mentioned after Definition 2.1. Thus we can replace each occurrence of
¢ » ¢ by its definition —(¢\ ) and similarly for <.
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Clearly, the conjugates and the residuals can be present at the same
‘time too. Then we have to add the definitions of the residuals as new
_axioms to the inference system in Definition 3.4.

Further, we could define a very weak converse too:

- &L (o 1) A (04 )

4 Some Algebra

In this section, we define the algebraic counterparts both of syntax (the
class KA of algebras) and of semantics (the class RKA of algebras), and
- prove that they are identical (Theorem 4.3).

‘ Note that by RKA we will denote a class of algebras, and we will use it
~ as the abbreviation of ‘representable Kripke algebra’ too. Given a class K
of algebras, we denote by IK and by SK the class of isomorphic copies and
subalgebras of members of K, respectively.

Definition 4.1 (Representable Kripke Algebra) The class of representable
Kripke algebras is defined as

RKA & S{(P(W), N, ~, 00, >C, <, 1d7) : W aset & CCWxWxW}
where N is intersection, ~ is set-theoretic complementation with respect to
W, ie., ~a=Wxa, and

aclbh & {zeW:(Bx,yEW)Cmyz&mEa&yEb}

anCb & (zew:@nyeW)Crzykacakyeb}

a<Ch & {zeW:(Hm,yEW)C’zy:B&:EEG&yEb}

1d6 ¥ {zeW:Cz2z}

for all elements a, b.

Definition 4.2 (Kripke Algebra) The class of (abstract) Kripke algebras,
denoted by KA, is defined as the class of algebras similar to RKA'’s satisfying
the axioms below. More precisely, every element of KA has the form

(A:/\a_'a.a’a‘a’"é}

where A is a non-empty set, .8 is a constant, — is a unary operation on
A and A,e,» , € are binary operations on A; and the following set Az of
quasi-equations is valid in KA:

(1) Boolean axioms

(2) Qex=ze0=0

(3) zelyve)=(zey)V(e2)

(4) (zvy)ez=(ze2)V(ye2)

() xAw<TOT

(6) (moy)Az=0<m>($>z)Ay——"0
(7) (zoy) Nz=0=(z4 y) Az =0,
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* where 0 is Boolean zero, zVy abbreviates ~(~zA-y)andz < Y abbreviates
Ay =2
Again, an axiom equivalent to (5) is
TAYyAW Szey.
The main algebraic result of this paper is the following theorem that we
will prove in the following section as well.
Theorem 4.3 (Representation Theorem) For every algebra A,
AeKA <« A€cIRKA

Moreover, if A is a finite algebra, then there are a finite set W and a
relation C CW x W x W such that A is isomorphic to @ subalgebra of the
RKA

(P(W),N,~,0, e aC .
5 Proofs

To prove Theorems 3.1 and 4.3 we need some lemmas (the proof of which
we postpone till the end of this section) and some definitions.
Let T be an arbitrary set of formulas of CARL; then for any formulas ¢

and v, we set

o=r v ETHp o .

The formula algebra F 1 defined as
F¥ (F,/\,—1,-,>,<,L6),
where F denotes the set of formulas of CARL.

Lemma 5.1 =r s a congruence relation on F.

Let Fr be the factor algebra of F by =r, i.e., Fr ef / =r. Further,
for any formula @, we let @ def {¢ : ¢ =r ¥} Let T denote the formula
Traze.

Lemma 5.2 1. For every formula ¢, I't- ¢ <= ¢ = T

2. Fr F Az.

Lemma 5.3 Let W be a non-empty set, A be a subalgebra of the full RKA
(’P(W),ﬁ,m,oc,bc, <€, 1d°), and v be a valuation. Then

(Av) Ep=1+=> (W,Cv)F o,
where 1 denotes Boolean unit.

Proof. (Theorem 3.1) Soundness is easy to check.

For the completeness direction, we assume that ' ¥ . Then, by Lemma
5.2, 7 # 1. Now, let n be that valuation which associates its equivalence
class to each formula, i.e., n(p) = @ for every ¢ Then (Fr,n) F o =T
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By Lemma 5.2, for every ¢ €T, (Fr,n) F Py = T. Since, by Lemma
52, Fr F Az, Theorem 4.3 says that Fr € IRKA. Thus we have an
A € RKA and 2 valuation v such that (Av) # @ = 1, while for every
p el (A,v) E ¢ = 1. Whence, by Lemma 5.3, there is & Kripke model
M such that M H o, while for every ¥ €L ME 1, ie, T H p, which was
to be proved. O

Next we prove that CARL 18 decidable.

Proof. (Theorem 3.2) By the Completeness Theorem 3.1, {¢ Eg)=1¢:

 }; thus the set of valid formulas form 2 recursively enumerable set.
By Theorem 3.3, for every formula, we have & finite model that refutes

it. Since we can enumerate the set of finite models and the semantic value

of a formula i8 computable, the set {p: ¥ p}is recursively enumerable.
Since both {¥ : E o} and its complement are recursively enumerable,

{p: Fojisa decidable set. O

Now we prove the Representation Theorem. We will use an idea of

Németi 1992. )
Proof. (Theorem 4.3) It is easy 1O verify that RKA £ Az, so we will omit

it.
For the other direction, let us assume that A € KA. Then we will

represent this A as an algebra B whose operations are almost good. Indeed,
there will be a ternary relation C on the set of ultrafilters Uf (A) such that
the unary and binary operations can be defined via this C. Namely, if we

let i
CFGH«(:%F-G_(;H,

for every F,G, H € Uf(A), and for every a € A,
rep(a) & (F e Uf(A) 0 € F},

then rep is almost an isomorphism. The only problem ig that there may be
altrafilters F such that FeF C F but 5 ¢ Frie., rep(18) # {F CFFF}.
If we split these «had” ultrafilters into two parts carefully, then we will get

a B € RKA isomorphic to the original algebra A.
First we state and prove a lemma, where Uf(A) denotes the set of

Boolean ultrafilters of the algebra A, and for any subsets F and G of A
(the universe of A),

Fe(G {acA:(3f ¢ F)(3g € Ga=Ffegk
Fp Gand F < G are defined similarly.
Lemma 5.4 Let A € KA and Fo, Go be subsets of A with the finite inter-
section property (i.e., T,Y € Fo=zAY #0). Then

(3H € Uf(A)Foe Go < H=
(@F 2 Fo)3G 2 Go)F € Uf(A) & G € Uf(A) & F e GCH.
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« Proof. Let Fy, Go and H be as in the formulation of the lemma. Assume
that F} is not an ultrafilter, i.e., 3z(z ¢ Fo & -~z ¢ Fo). Let F” be the filter
generated by FoU{z} and F” be the filter generated by FoU {-z}. Assume
that ' e Go € H and F" ¢ Gy € H, ie., 3f13f2(3f, f' € Fy)(3g,¢" € Go)
sAf<f&freg¢ H&aNf <fr& fr0g ¢ H.
Then, since H is upward closed, we have, by (4), (zA f Jeg ¢ H. Similarly,
by (3) and (4), we get (z A f A f')e(gAg') ¢ H. By the same argument,
(~zAfAf)e(gAg) ¢ H. Putting together,

A elgngd) L (@nfaf)Venfaf)e(ghg) 2
=(@AfAf)e(ghg)V((mzAfAf)e(gAg)) ¢ H,

a contradiction, since f A f' € Foand g A g’ € Gp and Fy e Go C H. So
either F' e Go C H or F” ¢ Gy C H. Note that if F'eGo C H, then 0 ¢ F',
by (2), so F' is a proper filter. Using recursion, one can extend Fj to an
ultrafilter F' with the property F'e Go C H. Then, in the same way, Gy
can be extended to an ultrafilter G such that F'e G C H. Thus the lemma

has been proved. O

As we mentioned before, let for every a € A,
rep(a) & {F € Uf(A):a € F},
and for every F,G, H € Uf(A),
CFGH &4 FeG C H.
Let rep” A % {rep(a) : a € A} and
BE (rep" A, N, ~, 0%, >C, <%, rep(16))

where ~ is set-theoretic complementation with respect to Uf(A), and 8%,
>C. <€ are defined by the frame (Uf(A),C), ie.,

rep(a) o rep(b) Lt {F € Uf(A) : (3G € rep(a))(3H € rep(b)) CGHF}

rep(a) >C rep(b) & {F € Uf(A) : (3G € rep(a))(3H € rep(b))CGFH}

rep(a) <€ rep(b) & {F € Uf(A) : (3G € rep(a))(3H € rep(b))CFHG}.
Now we will show that rep : A — B is an isomorphism. rep is a Boolean
isomorphism by Stone’s representation theorem.

rep(a) o€ rep(b) =

= {F € Uf(A) : (3G € rep(a))(3H € rep(b))CGHF} =
—{Fe Uf(A):3GIH(ae G&be H& Ge H C F)} @
={Fe Uf(A):aeb€ F}

= rep(aeb).

(@):(C):acG&beH=aebeF.
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(D) :Ifaeb € F, then, by Lemma 5.4, we can construct two ultrafilters
G and H such that a € G, b€ Hand Ge H C F.
rep(a) >¢ rep(b) =
= {F € Uf(A) : (3G € rep(a))(3H € rep(b))CGFH} =

_ {(F e Uf(A):3G3H(a € G&be H& Go F C H) ®

={FeUf(A):ap bEF}=
= rep(a » b).

(b) : (C) : Assume ~(a » b) € F. Thenae (~(a» b)) € H,so (ae(~(a®»
b))) A b # 0. Thus, by (6), (a » b) A —(a » b) # 0, a contradiction. So
aw be F.

(D):Letam bEF. LetG():{a:eA::t:Za}andHoz{a:eA:mZ
b}. First we show that (Go e F)U Hy can be extended to an ultrafilter H.
Let

1 (Goo F) & {ze A: (3ge Go)Af € F)z 2 g f}

and 71,20 € 1 (Goe F). Then, using monotonicity of e, z1 A Z2 b
(g10 /) A (gaefa) > (o fi) Alas fo) > ae(fiAfz) € GeF whence
2 Ax2 € T (GoeF). Sot (Goe F) is A-closed, and so is Ho. Now we
show that (1 (Goe F))U Hy has the finite intersection property, so it can be
extended to an ultrafilter H. Assume to the contrary that z € T (Goe F),
he Hyand c Ah =0, then 0 =zAh 2 (go fYyAb > (ae f)AD, ie,
0= (aef)Ab. Then, by (6),0=(a» b)AfE F, a contradiction. Clearly,
be H and Gy e F C H. Then, by Lemma 5.4, we can extend Gp to an
ultrafilter G such that G e F' C H, as desired.

Similar argument shows that rep(a) <€ rep(b) = rep(a <« b). Since
rep(16) is the identity constant in B, A= B

Later we will need the following fact.

(*) (VF € Uf(A)d € F = CFFF.

This holds, since z,y,t8 € F implies, by (5), zey >z AyAil € F,le,
FeFC.IF.

Now we define a Kripke frame (W', C’) and the corresponding RKA B,
which will turn out to be isomorphic to our original algebra A. First we
split the “bad” ultrafilters on A into two parts. Let

DY (Fe Uf(A): W ¢ F & CFFF}.

Let for every F € D, Fy and Fp be two distinct elements (of our set-
theoretic universe) not occurring in Uf(A), and

{F,FR} ifFeD

{F} if F¢D.
We assume also that for different F's from D the F,’s are completely dif-

s(F) €
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nt. If F ¢ D, then by both F; and F» we mean F. Let
W' (R, F 1 F e Uf(A)}

fere

and
¢’ = (| J{s(F)xs(G)xs(H) : CFGHY)~{(F., F;,Fi): F e D,i € {1,2}}.

Now we define a representation function Rep as

Rep(b) & {F1, F, : F € b}
for every b € B. Then let B' be the Rep-image of B, i.e., B < Rep''B

and o
e 7 / t !
B % (B,n,~,0% >, 2%, 1d%),

where ~ is set-theoretic complementation with respect to W' and the other
ofined as in Definition 4.1 (using W' and C’ instead of W
and C, respectively). Clearly, B’ is an RKA; so it remains to show that
Rep : B— B’ is an isomorphism, for then A = B, by A= B.

Clearly, Rep is a Boolean isomorphism. For the identity we have:

Rep(rep(18)) = U{s(F): F € rep(td)} ©
U{s(F):6 € F& CFFF} =
{F:FeUf(A)~D&ecF&CFFF}U

(F,F FeD&ueF &CFFF} 2
{F:FEW’&MEF&C’FFF}@
(F:FeW &C'FFF}=
e .
(¢): F € rep(1d) implies 16 € F, so,
(d): By the definition of D, FED
definition of C".
(e): C'FFF implies F' € Uf

the definition of D.
In checking that Rep preserves o, B> and <1, we will use the following

lemma.
Lemma 5.5 (Va,b€ B)(Vz € W')
(3z € Rep(a))(Jy € Rep(b))C'zyz <=
(3F € a)(3G € b)(3H € Uf(A))z € s(H) & CFGH.

The same holds for C'zzy and C'2yx.
Proof. (=): Assume C'zyz. Let F' € a, G ¢ bwith z € s(F) and y € 5(G), |
and let H € Uf(A) such that z € s(H). Then (z,y,2) € s(F)xs(G)xs(H), |
thus, by the definition of ¢', CFGH holds. '

(<): We have two cases.
CASE 1: F =G = H € D. Then H, + Hy, so we can choose T,y € s(H)

operations are d

I

It

Il

by (%), CFFF.
implies not CFFF; then apply the

(A)~ D and CFFF, whence 1§ € F, by
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with z =y # 2. Now, (z,y,2) € s(H) x s(H) x s(H) whence C'zyz.
CASE 2: not Case 1. Then let z € s(F), y € s(G). Again, (z,y,2) €

s(F) x s(G) x s(H). Thus C'ryz holds, which finishes the proof of the
lemma. a

Rep(a) o°" Rep(b) =
={z € W':(3z € Rep(a))(3y € Rep(b))C'zyz} e
={zeW':(3F €a)(3G €b)(3H € Uf(A))z € s(H) & CFGH} =
={s(H): H € Uf(A) & (3F € a)(3G € b)CFGH} =
= J{s(H): H € ao® b} =
= Rep(a o b).

Rep(a) > Rep(b) =

= {z € W' : (3z € Rep(a))(Jy € Rep(b))C'zzy} e
={z€W':(3F €a)(3G € b)(3H € Uf(A))z € s(H) & CFHG} =
= {s(H) : H € Uf(A) & (3F € a)(3G € b)CFHG} =
=U{s(H): Hearb}=
= Rep(a >© b).

The case of < is similar.
Thus Rep : B — B’ is an isomorphism, whence A = B = B’ € RKA,

ie., A € IRKA.
If |A| < w, then |Uf(A)| < w, and so |B’| < w. Thus finite algebras are

represented on finite bases. So we have proved Theorem 4.3. (]

In the following proof of the finite model property, we will follow the
strategy in the proofs of Theorems 3.6.2 and 3.6.3 in Roorda 1991. There,
Dirk Roorda proves finite model property for logics with dyadic modalities

using filtration.
Proof. (Theorem 3.3) Assume that ¥ ¢ and let (W,C,v) be any model

refuting . Let ¥ be the set consisting of +d and the subformulas of ¢. We
define the equivalence relation ~ on W as
ey & (Ve D) (alh, ¥ <=y, P).
We choose an arbitrary but fixed element w’ from every equivalence class
{x e W:z = w}. Let
w '  we Wy
and et
v (p) = {w' 1w € v(p)}

for every p; € P. Clearly, W' is finite and v is a valuation. Let C" C
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W' x W' x W' be defined as
C'z'y'w’ &L
[((Viby @ g € T) (& IFy ¥ & ' IFy Yo = w' Ik, Y1 092) &
(V?,bl » s € E)(.’E" Ik, ’l,bl & w' k-, Py = y' Ik, ¢1 > ’l,bg) &
(Vip1 € g € D) (W' Iky 01 &Y' Iy 2 = &' Ik, Y1 € ¢P2)) or
(' =y =v & Cw'w'uw')].
Let (min) be the following formula:
(weW &z,yeW & Czyw' = C'z'y'v') &
(w' e W & z,y e W & Caw'y = C'z'w'y) &
(w' e W & z,y € W & Cw'yz = C'w'y'2’)
where z' denotes the distinguished element of the equivalence class of z,

and similarly for y.
By (max) we mean the following formula:

(C'z'y'w' &b oths €L & 2’ Iky 01 & Y IFy th2) = w' Iy pr@2) &
(C'z'y'w' &1 B Y € T &z’ by Y1 & w' by ) = ' IFy 1 B 12)
(C'z'y'w' & Yy 4 P2 €T & w' IFy Y1 &Y' Iy o) = 2 |ky Y1 € 3h2).

Lemma 5.6 Let C' be defined as above. Then (min) and (max) hold.

Proof Let w' € W & z,y € W & Cazyw'. If ¢y @)y € X is arbitrary
and z' Ik, ¥ & y' Ik, 2, then z Ik, ¥y & y Ik, tg, thus w' Iy, Py @ 9y,
by Czyw’. If ¥ » g € ¥ is arbitrary and 2’ IF, ¢ & w' Ik, 2, then
z Fy 1, thus y Ik, Y1 B 2o, by Czyw'. So y' Ik, ¢ B 1P2. Similarly, if
Y1 € 1Py € I is arbitrary and w’ Ib, 1 & ' Iy 1o, then 2’ Ik, 1 € 9.
Then, by the definition of C’, we have C'z'y'w’.

Similar arguments prove the other two implications of (min). One can
easily prove (max) using case distinction according to whether ' = y' = w’
holds. O

Now we define the relation I-, between the set of possible worlds W’
of the model (W’,C’,v') and the set of formulas. The definition of I, is
the usual for parameters, Boolean connectives, and for e, » and «, cf.
Definition 2.1; but for the identity we have:

d
w' I, 15 &5 w' Ik, o,

&

Then we can prove the following lemma.
Lemma 5.7 (V¢ € £)(Yw € W)
wlky, P = ', .

Proof. Proving the lemma we will use without mentioning that, since w’ ~
w, wlk, ¥ <= w' Ik, ¥, and that W’ C W. We will prove by induction
and refer to the induction hypothesis by ‘i.h.’.

(Vpi € P)(w' € v(p:) <= w' € V'(pi))
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- wlky by = W oy V1 £ w' Wy 1 =0’ IFy ~%r
wlky Yy Ay == w' by &' Iy o £hy
- — W, P &w Y=
e w'lF, ¥ A
Jz,y € W)Cayw' & ok, ¥1 &y 1Fy $2 ep)

(
(3z,y € W)C'z'y'w' & x Ik 1 & yly V2 £
(Ei:r’,y’ = Wr)cfwlyfw! & .’13, “_;’ 1/)1 & yr ”_fur ,(/)2 =

wlkFy Y10 Y2

=

N

=

= w’ ”';; 'lf)}_ [ ] ’lpz

w H, preys = (3,Y € WHC'z'y'w' & ' I, 1 &Y' -, 2 LA
= (Bx’,y' c W’)C’x’y’w’ &z Ik, ¥ & y Iy e (ngx)
5
e
=
e
=

w “"'u ¢1 .1/)2

(Go,y € W)Caw'y & oy 1 &y lho b2 S

(Jz,y € WHC'z'w'y' & z IFy 1 & y Iy Y2 LA

(3',y' € WHC'z'w'y' & ' IFy, 1 &y IF, =

w' IF, P> P2 = (3z',y € W)C'z'w'y' & 2\, &y by P2 LR
= (&, € wHC'z'w'y &2 by UV &Y IFy Y2 (n-.gx)
= wlky ’gb1 | 1,02

and similar argument proves the case of «. Finally,

w I, 16 == w' by id

wlFy Y1 » o )

by definition.
So far so good, but we would like to have
w' I, 15 = Clu'w'w'.
To achieve it we will apply the same trick as in the proof of the Represen-

tation Theorem 4.3.
Let

i

T4 (pW'), N, ~y 08, B, < {w' s’ Iy i)
Note that we do not know whether 7 € RKA. It is easy to check that for
all formula ¢

i
SRR L T Y

(TWYEY =1 (W', C' ") F 9,
and so (T,v') i ¢ = 1. First we note that
w' H, 8 = w' € 1d°".

Indeed,
w IF, 18 = w' Iy 10 Cw'w'w = Clu'w'w' <= w' € 1d°".
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In the proof of the Representation Theorem 4.3 we met exactly the same
problem. There we had an algebra B whose identity was not the “real” one.
Then we could split the “bad” elements of the base of B and then we got a
B' € RKA isomorphic to B. Now, if we do the same trick with T instead of
B, then we get a 7' € RKA isomorphic to 7, where W' and C" are defined
using W' and C’ precisely in the same way as in the representation proof.
(There a certain W' and C’ were defined using some W and C.) Note that
since W' was finite, so is W”. Then T’ is the subalgebra of the finitely

based full RKA
(PW"),N,~, 0", -C", 2", 1d%").

By T N T', we have

(T ") Fe=1,
where v"" is the valuation determined by v, i.e., v"'(¢) is the image of v'(¢)
along the isomorphism. Thus, by Lemma 5.3

(W", C”, 'U”) '?( QD

That is we constructed a finite model refuting the non-valid formula ¢. [

Now we will prove the lemmas that were used in the proof of the Com-
pleteness Theorem 3.1.

Proof. (Lemma 5.1) By propositional axioms and Modus Ponens, =r is an
equivalence relation.

Now assume that T - A ¢ B & I' F C « D. Then, by propositional
calculus again, '+ ~A4 < ~Band ' AAC <> BAD. By the substitution
rule (iz) for o, ' Ae C <> Be D. For » we have

L'-(Bw» D)A(-(B» D)) <« (propositional calculus)
L'H(Bw» D)A(-(Bp D))« L & (vi)
T+ (Be(~(B» D)))AD <+« L <& (propositional calculus and (1z))
I'(Ae(=(B» D))AC+ L1 & (vi)
T'F(A» C)A(=(Bw» D))+ L & (propositional calculus)
'A» C—>Bp» D.

By symmetry, TF Bp» D — Ap C.
The proof for « is similar. Thus we have proved the lemma. O

Proof. (Lemma 5.2) 1 is true by propositional calculus.

The proof of 2 is as follows. Let z; = 2 be an equation of Ax, v be an
arbitrary valuation and v(z;) = p1 and v(z2) = p2. Then, since p1 <> p2 is
an axiom of CARL, ['F p; <> p2. Thus py = Pz, whence (Fr,v) F 21 = Z2.

Let (z; = x2) = (z3 = ) be a quasi-equation of Az. Let v be a
valuation and v(z;) = p; for 1 <4 < 4. Then

p1 & P2
P3 <> P4
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stance of an inference rule of CARL. Now assume that p1 = P2 is

n in
in Fr, whence [' F p1 < p2. By the rule above, T’ - p3 > ps, hence
O

:,._‘pg in Fr. Thus Fr F 21 = T2 = T3 = T4
of. (Lemma 5.3) Easy by definition.
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