
Example — Memory Addressing

Consider the computation ((M1∗M2)+M3)−M4 where each Mi indicates
the content of a memory location.

1. Write an assembly program for the above computation using minimum
number of registers.

2. Show the delay slots when the code is executed on a five-stage pipeline.
Assume that instructions and data have to be loaded from main mem-
ory. Assume that there is an instruction window IW, where fetched and
decoded instructions can be stored until they can be further processed
(out-of-order if possible).

3. Repeat the previous item, but now assume that instructions and data
are loaded from onboard caches.

1



Solution to Example — Memory Addressing

1. Here is the code:

I1 LOAD r1, M1

I2 LOAD r2, M2

I3 MUL r1, r1, r2

I4 LOAD r2, M3

I5 ADD r1, r1, r2

I6 LOAD r2, M4

I7 SUB r1, r1, r2

2. Here is the diagram showing delay slots:

IF ID IW RR EX WB Comments

1 I1
2 I2 I1
3 I2 I1 I1 skips RR, data bus busy
4 I2 I1 I2 skips RR, data bus busy
5 I3 I2
6 I4 I3
7 I5 I4 I3
8 I6 I5 I4 I3 I4 skips RR
9 I6 I5 I4 I3 r2 not ready, data bus busy
10 I5 I6 I4 data bus busy
11 I7 I5
12 I7 I5 I6
13 I7 I5 r1 not ready
14 I7
15 I7
16 I7

In cycles 3 and 4, I3 cannot be fetched (the data bus is busy with
loading M1 and M2), in cycles 9 and 10, I7 cannot be fetched (the data
bus is busy with loading M3 and M4). In cycle 10, I6 can execute, since
r2 is updated only in WB (in cycle 12), and I5 has read r2 in cycle 11.
In cycles 9 and 10, I5 has to wait (r2 is not ready yet), and in cycle 12,
I7 has to wait (r1 is not ready yet).

2



3. Using onboard caches speeds up the execution.

IF ID IW RR EX WB Comments

1 I1
2 I2 I1
3 I3 I2 I1 I1 skips RR,EX
4 I4 I3 I2 I2 skips RR,EX
5 I5 I4 I3
6 I6 I5 I3 I4 I4 skips RR,EX
7 I7 I6 I5 I3 r1 not ready
8 I7 I6 I5 r2 in use
9 I7 I5 I6 I6 skips RR,EX, r1,r2 not ready
10 I7 I5
11 I7
12 I7
13 I7

3


