
Fibonacci sequence with delayed branch

In this exercise we will see

• how to write an assembly code with iteration (using branch instruc-
tions),

• the effect of (conditional) branch instructions on the pipeline activity,

• the importance of brach prediction and

• how the “delayed branch” technique works.

The Fibonacci sequence F is defined as F (1) = F (2) = 1 and for n ≥ 2,

F (n + 1) = F (n) + F (n− 1)

i.e., the (n+1)th value is given by the sum of the nth value and the (n−1)th
value.

1. Write an assembly program typical of RISC machines for computing
the kth value F (k), where k is a natural number greater than 2 loaded
from a memory location M , and storing the result at memory location
M .

2. Show the execution of your program on a pipelined processor when M
contains the natural number 4. Assume that instructions are fetched
from an onboard cache and that there is an instruction window register
IW, where two fetched and decoded instructions can be stored. The
pipeline stages are F(etch), D(ecode), R(egister read), E(xecute) and
W(rite back). Explain where and why delay slots appear.

3. Repeat item 2, but assume that there is a branch prediction that always
gets it right.

4. Repeat item 2 by applying the delayed branch technique.

1



Solution:

1. Here is a suitable code (other solutions exist):

1. LOAD r2, M

2. LOAD r0, #1

3. LOAD r1, #1

4. SUB r2, r2, #1

5. ADD r3, r0, r1

6. LOAD r0, r1

7. LOAD r1, r3

8. BNE 4, r2, #2 // jump to instruction 4 if r2 is not equal to 2

9. STOR M, r3

where # indicates immediate addressing and BNE stands for “branch if
not equal”.

2



2. We assume that data movement between the CPU and memory occurs
in E and that loading a numerical value or a content of a register skips
E. For conditional branch instructions, checking the condition happens
in E and updating the PC in W. Instructions after the branch are not
processed until to outcome of the branch is known. The sign X shows
the delay caused by the conditional branch.

F D IW R E W Comments

1 I1
2 I2 I1
3 I3 I2 I1 I1 skips R
4 I4 I3 I2 I1 I2 skips R,E, r2=4
5 I5 I4 I3 I2 I3 skips R,E
6 I6 I5 I4 I3
7 I7 I6 I5 I4
8 I8 I7 I6 I5 I4 r2=3
9 I9 I8 I7 I5 I6 skips E, W busy, r3 not ready
10 I9 I8 I7 I6 R busy
11 I9 I8 I7 I7 skips E
12 I9 X I8 condition holds
13 I9 X I8 PC updated
14 I4 I9 X
15 I5 I4 I9 X
16 I6 I5 I9 I4
17 I7 I6 I9 I5 I4
18 I8 I7 I9 I6 I5 I4 r2=2
19 I8 I7,I9 I5 r3 not ready
20 I8,I9 I7 I6 R busy
21 I9 I8 I7
22 I9 X I8 condition fails
23 I9 no need to update PC
24 I9

3



3. Assuming that the branch prediction is correct we can get rid of some
delay slots. We assume that branch prediction happens once the con-
ditional branch instruction has been decoded.

F D IW R E W Comments

1 I1
2 I2 I1
3 I3 I2 I1 I1 skips R
4 I4 I3 I2 I1 I2 skips R,E, r2=4
5 I5 I4 I3 I2 I3 skips R,E
6 I6 I5 I4 I3
7 I7 I6 I5 I4
8 I8 I7 I6 I5 I4 r2=3
9 I9 I8 I7 I5 I6 skips E, W busy, r3 not ready
10 I9 I8 I7 I6 R busy, I4 is predicted
11 I4 I9 I8 I7 I7 skips E
12 I5 I4 I9 X I8 condition holds, prediction correct
13 I6 I5 I9 I4
14 I7 I6 I9 I5 I4
15 I8 I7 I9 I6 I5 I4 r2=2
16 I8 I7,I9 I5 r3 not ready
17 I8,I9 I7 I6 R busy, I9 predicted
18 I9 I8 I7
19 I9 X I8 condition fails, prediction correct
20 I9
21 I9

4



4. With delayed branch I7 and I8 are swapped and the effect of I8 is
delayed so that I7 can finish. This can be done, because I7 and I8 are
independent of each other.

1. LOAD r2, M

2. LOAD r0, #1

3. LOAD r1, #1

4. SUB r2, r2, #1

5. ADD r3, r0, r1

6. LOAD r0, r1

8. BNE 4, r2, #2 // jump to instruction 4 if r2 is not equal to 2

7. LOAD r1, r3

9. STOR M, r3

F D IW R E W Comments

1 I1
2 I2 I1
3 I3 I2 I1 I1 skips R
4 I4 I3 I2 I1 I2 skips R,E, r2=4
5 I5 I4 I3 I2 I3 skips R,E
6 I6 I5 I4 I3
7 I8 I6 I5 I4
8 I7 I8 I6 I5 I4 r2=3
9 I9 I7 I8 I5 I6 skips E, W busy
10 I9 I7 I8 I6 condition holds
11 I9 I8 I7 skips E, PC updated
12 I4 I9 I7 I7 fills delay slot
13 I5 I4 I9 X
14 I6 I5 I9 I4
15 I8 I6 I9 I5 I4
16 I7 I8 I9 I6 I5 I4 r2=2
17 I7 I9 I8 I5
18 I9 I7 I8 I6 condition fails
19 I9 I7 no need to update PC, r1 not ready
20 I9
21 I9

5


