
How to establish whether a concurrent code satisfies

certain properties

The aim of this document to present some systematic ways to show
whether a concurrent code satisfies certain properties like mutual exclusion,
being deadlock-free and starvation-free.

The content of this document is supplementary and is not part of the
examinable material. The treatment of the concurrency problems below go
beyond what is expected from students. The hope is that students will find
this formal approach enlightening.

1 Incorrect codes

In general, it is easier to show if there is a flaw in the code than showing
correctness. So we will start with some incorrect “solutions” to the critical
section problem.

Consider the code (called 1st Attempt in the slides) for two processes,
P0 and P1, in Figure 1.

The labels Li are not part of the code; we will use them to refer to
locations, i.e., to specify where a process is in its execution. Thus if process
P0 is at location Li, then the next instruction it will execute is Li. The
critical section is divided into three lines (L4 − L6) emphasizing that it is
usually longer than a single instruction, so while one process is in its critical
section, a process switch can occur.

A state will be an ordered tuple (Li, Lj , x, y) indicating that P0 is at
location Li, P1 is at location Lj and that the current values of flag[0]

and flag[1] are x and y, respectively. We will abbreviate false by f and
true by t, respectively. Both processes start at L1 and the initial values
of the flags are false, i.e., the initial state is (L1, L1, f, f), and the process
which is chosen by the scheduler can make a transition, i.e., execute one
instruction. For instance, if P0 runs first, then it executes the statement

1



int flag[2] = {false, false};

void first-attempt (int i)

{
L1 while(true){
L2 while (flag[1-i]); //loop

L3 flag[i] = true;

L4 /* start-critical-section */;

L5 /* critical-section */;

L6 /* end-critical-section */;

L7 flag[i] = false;

L8 /* noncritical-section */;

}
}

Figure 1: 1st Attempt

while(true) and its new location will be L2. We can denote this step by

(L1, L1, f, f)
07→ (L2, L1, f, f).

To show that the code from Figure 1 does not achieve mutual exclusion
we have to find a run during which both processes can enter their critical
sections. That is, we have to find an (interleaved) execution of the two
processes both ending up at location L5. The following run will do:

(L1, L1, f, f)
07→ (L2, L1, f, f)

07→

(L3, L1, f, f)
17→ (L3, L2, f, f)

17→ (L3, L3, f, f)
17→ (L3, L4, f, t)

17→

(L3, L5, f, t)
07→ (L4, L5, t, t)

07→ (L5, L5, t, t)

In this run, first P0 gets the CPU and executes the statements L1, L2 and
L3. At this point there is a process switch, so P1 runs and executes the
statements L1, L2 (observe that flag[0] = false at this point), L3 and
L4. After another process switch, P0 executes L3 (note that P0 already
checked flag[1] when executed L2) and L4.

Exercise. In Figure 2 we have the modification of the code from Figure 1

2



(called 2nd Attempt in the slides). Find a run showing that the code from
Figure 2 does not avoid deadlock1.

int flag[2] = {false, false};

void second-attempt (int i)

{
L1 while(true){
L2 flag[i] = true;

L3 while (flag[1-i]); //loop

L4 /* start-critical-section */;

L5 /* critical-section */;

L6 /* end-critical-section */;

L7 flag[i] = false;

L8 /* noncritical-section */;

}
}

Figure 2: 2nd Attempt

2 Correct codes

When we want to prove correctness we usually look for some invariance
properties, IP for short, and use them to show the correctness of the code.
IPs are properties of the code that are maintained during every execution
of the code. Usually there are two steps in proving that an IP remains true:

1. show that IP is true initially

2. show that IP remains true whenever a process makes a transition (i.e.,
executes one instruction).

Then we can conclude that IP is true during all runs.

1Strictly speaking we should talk about livelock, but we will ignore the difference
between a process being blocked or executing the same statement indefinitely.

3



2.1 Critical section with semaphores

Figure 3 shows the typical scheme for solutions to critical section problems
using semaphores. We assume that there are a finite number of processes:
P1, . . . , Pn.

binary semaphore s = 1;

void cs-with-semaphore (int i)

{
L1 while(true){
L2 wait(s);

L3 /* start-critical-section */;

L4 /* critical-section */;

L5 /* end-critical-section */;

L6 signal(s);

L7 /* noncritical-section */;

}
}

Figure 3: Critcal Section with Semaphore

We want to prove mutual exclusion, i.e., that at most one process can
be in the critical section (at locations L3 − L6). Sometimes it is easier to
show a stronger statement, like the following.

IP1 At any point during the execution of the processes precisely one of the
following statements hold:

• P1 is in the critical section,

• P2 is in the critical section,

• . . .

• Pn−1 is in the critical section,

• Pn is in the critical section,

• s = 1.

4



In case of n = 2 we can write this as the formula

(A1 ∧ ¬A2 ∧ (s = 0)) ∨ (¬A1 ∧A2 ∧ (s = 0)) ∨ (¬A1 ∧ ¬A2 ∧ (s = 1))

where Ai stand for the statement ‘Pi is in the critical section’, ¬ is negation,
∧ is conjunction and ∨ is disjunction (taking into account that s is either 0
or 1).

We prove that IP1 is invariant.

1. The initial state is when all the processes are at location L1, and IP1
is clearly true here, since none of the processes is in the critical section
and the initial value of s is 1.

2. Next we have to show that IP1 remains true during all the possible
transitions.

If a process makes the transition L1 7→ L2, then the value of s does
not change and the process does not enter the critical section, so IP1
remains true.

Next assume that one of the processes, say Pi, tries to make the tran-
sition L2 7→ L3. There are two cases according to the current value
of s. First assume that s = 1. Since IP1 is true before the transition,
there is no process in the critical section. In this case the transition is
enabled, i.e., Pi can move to L4 and, according to the wait operation
on semaphores, the new value of s is 0. Thus Pi is in the critical sec-
tion and s = 0, so IP1 remains true. The second case is when s = 0.
Since we assume that IP1 is true before the transition, there must be
one process already in the critical section. Furthermore, according to
the wait operation on semaphores, Pi is blocked and cannot move into
the critical section. Thus IP1 remains true in this case as well.

During transitions L3 7→ L4, L4 7→ L5, L5 7→ L6 the process remains
in the critical section and s is unchanged, so IP2 remains true.

During transition L6 7→ L7 a process (the only process which has been
in) leaves the critical section by performing a signal on s. There are
two cases according to whether there are processes blocked on s. If the
semaphore queue is empty, then the value of s is increased to 1 and
there will be no process in the critical section. If there are processes
waiting on s, then the value of s remains 0 and one of the processes
is unblocked so that it can resume execution from location L3 (i.e.,
inside the critical section). So IP1 remains true in this case too.

Finally, transition L7 7→ L1 does not change the truth value of IP1.

5



We are ready to show mutual exclusion. Assume that Pi is in the critical
section and another process Pj tries to enter the critical section. According
to IP1 the current value of s is 0. So Pj becomes blocked when it tries
to make the transition L2 7→ L3 (i.e., tries to perform wait on the empty
semaphore).

Next we show that deadlock cannot occur. Deadlock would occur if none
of the processes were able to enter the critical section. This means that s = 0
(otherwise one of the processes can perform the wait on s). By IP1 there is
already a process in the critical section, so there is no deadlock.

2.2 Peterson’s solution

Recall Peterson’s solution for two processes (again identified by 0 and 1,
respectively), see Figure 4.

int turn;

int interested[2] = false;

void peterson (int i)

{
L1 while(true){
L2 interested[i] = true;

L3 turn = i;

L4 while (turn == i && interested[1-i] == true); //loop

L5 /* start-critical-section */;

L6 /* critical-section */;

L7 /* end-critical-section */;

L8 interested[i] = false;

L9 /* noncritical-section */;

}
}

Figure 4: Peterson’s solution

6



The code avoids deadlock, since

turn == i && interested[1-i] == true

cannot be true for both processes at the same time (turn is either 0 or 1),
whence one of the processes can make the transition L4 7→ L5.

Showing mutual exclusion is a bit harder. First observe the following
obvious invariance property:

IP1 If process Pi is in the critical section then interested[i] == true.

Assume that one of the processes, say P0, is in the critical section and
the other process P1 wants to enter the critical section. We have to show
that P1 cannot enter the critical section. We use case distinction according
to the location of P1 when P0 entered the critical section, i.e., made the
transition L4 7→ L5.

Locations L1, L2, L3: In these cases P1 did not execute the statement turn
= i when P0 entered the critical section. Hence P1 has to execute L4,
i.e., turn == 1 when P1 is trying to make the transition L4 7→ L5.
Also we have interested[0] == true by IP1. Thus

turn == i && interested[1-i] == true

is true for P1, i.e., P1 cannot enter the critical section.

Location L4: If P1 was at location L4 when P0 entered the critical section,
then it already executed L3, i.e., turn = i. Thus we had

turn == 1 && interested[0] == true

when P0 made the transition L4 7→ L5. Hence P1 cannot make the
transition L4 7→ L5.

Locations L5, L6, L7, L8: According to this (hypothetical) scenario P1 was
in the critical section when P0 entered the critical section. By the
previous case, we have that P0 was not at L4 when P0 entered the
critical section (see the case Location L4 above with the roles of P0

and P1 interchanged). Thus P0 had to execute L3 before entering the
critical section. This means that when it tried to make the transition
L4 7→ L5 we had turn == 0 and interested[1] == true (since P1

was already in the critical section). Thus P0 in fact was not able to
make this transition, showing that this case is impossible.

Location L9: The argument is the same as for the case Locations L1, L2, L3.

7



2.3 Critical section with exchange

Recall the code for critical section for N processes using the exchange in-
struction from Figure 5.

int bolt = 0;

int key[N] = 1;

void cs-with-exchange (int i)

{
L1 while(true){
L2 while (key(i) == 1) {exchange (key(i), bolt)};
L3 /* start-critical-section */;

L4 /* critical-section */;

L5 /* end-critical-section */;

L6 exchange (key(i), bolt);

L7 /* noncritical-section */;

}
}

Figure 5: Critcal Section with Exchange

We want to show that

• mutual exclusion is achieved and

• deadlock is avoided.

The main idea of the code is that the following two properties remain true
during every execution of the processes.

IP1 There is a processes in the critical section (i.e., at locations L3 − L6)
if and only if bolt = 1.

IP2 A process Pi is in its critical section (i.e., at locations L3 − L6) if and
only if key(i) = 0.

Let us assume for the moment that the above conditions are indeed true to
show correctness of the code.

8



For mutual exclusion assume that process Pi is in the critical section.
Then by IP1 we know that bolt = 1. Now assume that another process Pj

tries to enter the critical section. Since Pj is not in the critical section yet,
IP2 tells us that key(j) = 1. If Pj tries to make the transition L2 7→ L3, this
attempt will fail (key(i) remains 1 after exchanging it with bolt). Hence
Pj cannot enter the critical section while Pi is in the critical section.

Showing that deadlock is avoided is easy too. Deadlock would occur if
none of the processes would be able to enter the critical section, i.e., to make
the transition L2 7→ L3. Since none of the processes is in the critical section,
IP1 tells us that bolt = 0. Then one of the processes (the first one to be
scheduled), say Pi, can make the transition, since key(i) will be 0 after
exchanging it with bolt.

It remains to show that IP1 and IP2 are invariant. Although they are
rather intuitive, proving them is not straightforward. Let us start with the
‘only if’ direction of IP2.

IP2’ When process Pi is in its critical section (i.e., at locations L3 − L6)
then key(i) = 0.

The transition L2 7→ L3 can be made only when key(i) = 0 (maybe af-
ter exchanging key(i) and bolt), otherwise the process would execute the
statement L2 again. Thus key(i) = 0 when Pi is at L3. Other processes
do not have access to key(i), hence it remains 0 until Pi leaves the critical
section (by executing L6).

The following additional property will be useful.

IP0 The sum of bolt and the key(i) variables is always N :

bolt +

N∑
1

key(i) = N

Let us check that IP0 is indeed maintained during every execution. The
initial values of these variables (bolt = 0 and key(i) = 1 for each process
Pi) make IP0 true at the initial state. The “dangerous” transitions are
when the values of bolt and key(i) are updated. These are the transitions
L2 7→ L3 and L6 7→ L7, i.e., when a process executes the statements L2

and L6, respectively. In both cases the sum bolt +
∑N

1 key(i) remains
unchanged, since the values of bolt and key(i) are swapped. Thus we can
conclude that IP0 is indeed invariant.

Using IP0 we can show IP1 as follows. Initially IP1 is true, since bolt =
0 and none of the processes is in the critical section. Whichever process

9



makes the transition L1 7→ L2 IP1 remains true (the value of bolt does
not change and the process remains outside of the critical section). The
“dangerous” transitions are L2 7→ L3 and L6 7→ L7. First, consider the
case when a process Pi enters its critical section by making the transition
L2 7→ L3. We saw that this transition can be made only when key(i) = 0
and it stays 0 while Pi is in the critical section. By IP0, we have that
bolt must be 1 after this transition. Hence IP1 remains true during this
transition. IP1 remains true whenever a process makes any of the transitions
L3 7→ L4, L4 7→ L5 or L5 7→ L6. Next look at transition L6 7→ L7 made
by process Pi. Pi is in its critical section at L6, so we know by IP2’ that
key(i) = 0. Since IP1 is true at L6, it must be that bolt = 1. After
executing L6 process Pi is outside its critical section and bolt = 0, as
desired. The remaining transitions L6 7→ L7 and L7 7→ L1. do not change
the truth value of IP1.

Finally, we can prove the ‘if’ direction of IP2:

When processes Pi is not in its critical section then key(i) = 1.

Obviously, this property is true initially and the transition L1 7→ L2 does
not change the value of key(i). At L3 − L6, Pi is in the critical section, so
we do not have to check the value of key(i). When Pi leaves the critical
section, it changes the value of key(i). By IP1, bolt = 1 when Pi is at L6.
Thus after executing L6, we have key(i) = 1, and it stays unchanged until
Pi tries to enter the critical section again.

10


