
From simple pipelined to superscalar

In this exercise we will see the benefits of superscalar processors which

• have several execution units (so there may be several pipelines running simultane-
ously)

• use the register renaming technique (to remove false dependencies)

• use out-of-order execution of the code (to minimize the number of delay slots).

Consider the computation

((r1 ∗M1) + ([r2] ∗M2)) ∗ (M3 + M4)

where M1, . . . denote direct (memory) addressing, r1 denotes (direct) register addressing
and [r2] denotes register indirect addressing.

1. Write an assembly program typical of RISC machines for this computation. Use at
most three registers and store the result in r1.

2. Show the execution of your program from item 1 on a five-stage pipelined processor.
Assume that instructions are fetched from an onboard instruction cache. Assume
that there is an instruction window where all the fetched and decoded instructions
can be stored. Use out-of-order execution.

3. Show the dependencies (both true and false) in your code from item 1.

4. Show the execution of your program from item 1 on a superscalar version of the pro-
cessor from item 2, where for each of the five pipeline stages there are two functional
units. Use out-of-order execution.

5. Rewrite your code from item 1 by using register renaming to remove the false depen-
dencies.

6. Show the execution of your program from item 5 on the superscalar processor from
item 4.

1



Solution:

1. Here is an assembly code satisfying the requirements:

I1: LOAD r3, M1

I2: MUL r1, r3

I3: LOAD r2, [r2]

I4: LOAD r3, M2

I5: MUL r2, r3

I6: ADD r1, r2

I7: LOAD r2, M3

I8: LOAD r3, M4

I9: ADD r2, r3

I10: MUL r1, r2

2. Here is a diagram showing the out-of-order execution of the code. E.g., processing
I7 (EX in cycle 9) can start before processing I5 (RR in cycle 10), but we have to be
careful not to mess up the program semantics: I7 can go to WB (in cycle 14) only
after I6 has read r2 (in cycle 13).

IF ID IW RR EX WB Comments

1 I1
2 I2 I1
3 I3 I2 I1
4 I4 I3 I2 I1 r3 not ready
5 I5 I4 I3 I2 I3 needs RR!!!
6 I6 I5 I4 I3 I2
7 I7 I6 I5,I4 I3 I2 r2,r3 not ready
8 I8 I7 I6,I5 I4 I3 r2 not ready
9 I9 I8 I6,I5 I7 I4 r2 in use
10 I10 I9 I8,I6 I5 r3 in use
11 I10 I9,I8,I6 I5 r2,r3 not ready
12 I10,I9,I6 I8 I5 r1,r2 not ready
13 I10,I9 I6 I8
14 I10,I9 I6 I7
15 I10,I9 I6
16 I10 I9
17 I10 I9
18 I10 I9
19 I10
20 I10
21 I10

2



3. Write–Read (WR) or Read–After–Write (RAW), a true data dependency: all the
pairs of occurrences of a register ri where instruction Ij writes to ri and instruction
Ik reads from ri with j<k. For instance, I1-I2 on r3, I2-I6 on r1, I5-I6 on r2, I9-I10
on r2..

Write–write (WW) or Write–After–Write (WAW), a false dependency: all the pairs
of occurrences of a register ri where instruction Ij writes to ri and instruction Ik also
writes to ri with j<k. For instance, I1-I4 on r3.

Read–Write (RW), or Write–After–Read (WAR), a false dependency: all the pairs
of occurrences of a register ri where instruction Ij reads from ri and instruction Ik
writes to ri with j<k. For instance, I2-I4 on r3.

4. We can avoid some delay slots using the extra functional units and out-of-order
execution, but we have to be careful not to mess up the program semantics (e.g.,
processing I4 can start earlier, but it has to wait with WB until I2 has read r3).

IF ID IW RR EX WB Comments

1 I1,I2
2 I3,I4 I1,I2
3 I5,I6 I3,I4 I2 I1 r3 not ready
4 I7,I8 I5,I6 I2 I3 I4 I1
5 I9,I10 I7,I8 I5,I6 I2 I3 r3 in use, r1,r2 not ready
6 I9,I10 I5,I6,I8 I2,I7 I3,I4 EX busy
7 I6,I9,I10 I5 I8 I2 r1,r2,r3 not ready
8 I6,I9,I10 I5 I8
9 I6,I9,I10 I5
10 I9,I10 I6
11 I9,I10 I6 I7
12 I10 I9 I6
13 I10 I9
14 I10 I9
15 I10
16 I10
17 I10

3



5. We can rename r3 in I4,I5 to r3a (removing the WAW I4-I1 and WAR I4-I2 on r3) r2
in I7,I9,I10 to r2a (removing the WAW I7-I5 and WAR I7-I5 on r2) and r3 in I8,I9
to r3b (removing the WAW I8-I4 and WAR I8-I5 on r3).

I1: LOAD r3, M1

I2: MUL r1, r3

I3: LOAD r2, [r2]

I4: LOAD r3a, M2

I5: MUL r2, r3a

I6: ADD r1, r2

I7: LOAD r2a, M3

I8: LOAD r3b, M4

I9: ADD r2a, r3b

I10: MUL r1, r2a

6. We can get rid of more delay slots due to the removal of false dependencies.

IF ID IW RR EX WB Comments

1 I1,I2
2 I3,I4 I1,I2
3 I5,I6 I3,I4 I2 I1 r3 not ready
4 I7,I8 I5,I6 I2 I3 I4 I1
5 I9,I10 I7,I8 I5,I6 I2 I3 I4 r2,r3a not ready
6 I9,I10 I5,I6,I8 I2,I7 I3 EX busy
7 I6,I9,I10 I5 I8 I2,I7 r3b,r2a,r1 not ready
8 I6,I9,I10 I5 I8
9 I6,I10 I9 I5
10 I10 I6 I9
11 I10 I6 I9
12 I10 I6
13 I10
14 I10
15 I10

4


