
Superscalar Problem

Consider the computation ((M1∗M2)+(M3∗M4))/(M5+M6), where M1, . . . denote
the content of memory locations.

1. Write an assembly program for this computation. Use a minimal number of registers.

2. Show the execution of your program on a superscalar processor. Assume that there is
an instruction window where all the fetched and decoded instructions can be stored.
The remaining pipeline stages are RR, EX and WB. Assume that there are four fetch
units, two decode units, two units for reading the registers, two ALUs and two units
writing to the registers.

3. Identify the dependencies in your code.

4. Remove the false dependencies by using register renaming.

5. Draw a diagram showing the execution of the modified code on the above superscalar
processor using.

1



Solution:

1. Here is an assembly code satisfying the requirements:

I1: LOAD r1, M1

I2: LOAD r2, M2

I3: MUL r1, r2

I4: LOAD r2, M3

I5: LOAD r3, M4

I6: MUL r2, r3

I7: ADD r1, r2

I8: LOAD r2, M5

I9: LOAD r3, M6

I10: ADD r2, r3

I11: DIV r1, r2

2. Here is a diagram showing the execution of the code. IW denotes the instruction
window where fetched and decoded instructions are stored. We do not show the IF
and ID decode stages and we start with the stage when I1 and I2 have just arrived
into the IW (so that they are ready for further processing in the next cycle).

IW RR EX WB Comments

0 I1,I2
1 I3,I4 I1,I2
2 I3,I5,I6 I4 I1,I2 r1,r2 not ready
3 I6,I7,I8 I3 I5 r2 in use, r1,r2,r3 not ready
4 I6,I7,I9,I10 I3,I8 I4,I5
5 I6,I7,I10,I11 I6 I9 I3 r2 not ready
6 I7,I10,I11 I6 I9 r3 in use
7 I7,I10,I11 I6
8 I10,I11 I7
9 I10,I11 I7 I8
10 I11 I10 I7
11 I11 I10
12 I11 I10
13 I11
14 I11
15 I11

3. Write–read (or true data) dependency: all the pairs of occurrences of a register ri
where instruction Ij writes to ri and instruction Ik reads from ri with j < k. For
instance, I1 − I3 on r1. Also I2 − I3(r2), I4 − I6(r2), I5 − I6(r3), I3 − I7(r1),
I6 − I7(r2), I8 − I10(r2), I9 − I10(r3), I7 − I11(r1), I10 − I11(r2).

2



Write–write (false or fake) dependency: all the pairs of occurrences of a register ri
where instruction Ij writes to ri and instruction Ik also writes to ri with j < k.
For instance, I2 − I4 on r2. Also I1 − I3/I7/I11(r1), I2 − I4/I6/I8/I10(r2),
I3 − I7/I11(r1), I4 − I6/I8/I10(r2), I5 − I9(r3), I6 − I8/I10(r2), I7 − I11(r1),
I8 − I10(r2).

Read–write (false or fake) dependency: all the pairs of occurrences of a register ri
where instruction Ij reads from ri and instruction Ik writes to ri with j < k. For
instance, I3−I4 on r2. Also I3−I7/I11(r1), I3−I4/I6/I8/I10(r2), I6−I8/I10(r2),
I6 − I9(r3), I7 − I11(r1), I7 − I8/I10(r2).

4. We can rename r2 in I4, I6, I7 to r2a and in I8, I10, I11 to r2b (thus removing the
write–write and read–write dependencies on r2) and also r3 in I9, I10 to r3a.

I1: LOAD r1, M1

I2: LOAD r2, M2

I3: MUL r1, r2

I4’: LOAD r2a, M3

I5’: LOAD r3, M4

I6’: MUL r2a, r3

I7’: ADD r1, r2a

I8’: LOAD r2b, M5

I9’: LOAD r3a, M6

I10’: ADD r2b, r3a

I11’: DIV r1, r2b

5. Here is the diagram after register renaming.

IW RR EX WB Comments

0 I1,I2
1 I3,I4’ I1,I2
2 I3,I5’,I6’ I4’ I1,I2 r1,r2 not ready
3 I6’,I7’,I8’ I3 I5’ I4’ r2a,r3 not ready
4 I6’,I7’,I9’,I10’ I3,I8’ I5’ r1,r2a not ready
5 I7’,I10’,I11’ I6’ I9’ I3,I8’ r2b,r3a not ready
6 I7’,I10’,I11’ I6’ I9’ r1,r2b not ready
7 I7’,I11’ I10’ I6’
8 I11’ I7’ I10’
9 I11’ I7’ I10’
10 I11’ I7’
11 I11’
12 I11’
13 I11’

3


