Superscalar Problem

Consider the computation $((M 1 * M 2)+(M 3 * M 4)) /(M 5+M 6)$, where $M 1, \ldots$ denote the content of memory locations.

1. Write an assembly program for this computation. Use a minimal number of registers.
2. Show the execution of your program on a superscalar processor. Assume that there is an instruction window where all the fetched and decoded instructions can be stored. The remaining pipeline stages are RR, EX and WB. Assume that there are four fetch units, two decode units, two units for reading the registers, two ALUs and two units writing to the registers.
3. Identify the dependencies in your code.
4. Remove the false dependencies by using register renaming.
5. Draw a diagram showing the execution of the modified code on the above superscalar processor using.

Solution:

1. Here is an assembly code satisfying the requirements:

$$
\begin{aligned}
& \text { I1: LOAD r1, M1 } \\
& \text { I2: LOAD r2, M2 } \\
& \text { I3: MUL r1, r2 } \\
& \text { I4: LOAD r2, M3 } \\
& \text { I5: LOAD r3, M4 } \\
& \text { I6: MUL r2, r3 } \\
& \text { I7: ADD r1, r2 } \\
& \text { I8: LOAD r2, M5 } \\
& \text { I9: LOAD r3, M6 } \\
& \text { I10: ADD r2, r3 } \\
& \text { I11: DIV r1, r2 }
\end{aligned}
$$

2. Here is a diagram showing the execution of the code. IW denotes the instruction window where fetched and decoded instructions are stored. We do not show the IF and ID decode stages and we start with the stage when I1 and I2 have just arrived into the IW (so that they are ready for further processing in the next cycle).

	IW	RR	EX	WB	Comments
0	$\mathrm{I} 1, \mathrm{I} 2$				
1	$\mathrm{I} 3, \mathrm{I} 4$		$\mathrm{I} 1, \mathrm{I} 2$		
2	$\mathrm{I} 3, \mathrm{I} 5, \mathrm{I} 6$		I 4	$\mathrm{I} 1, \mathrm{I} 2$	r1,r2 not ready
3	$\mathrm{I} 6, \mathrm{I} 7, \mathrm{I} 8$	I 3	I 5		r2 in use, r1,r2,r3 not ready
4	$\mathrm{I} 6, \mathrm{I} 7, \mathrm{I} 9, \mathrm{I} 10$		$\mathrm{I} 3, \mathrm{I} 8$	$\mathrm{I} 4, \mathrm{I} 5$	
5	$\mathrm{I} 6, \mathrm{I} 7, \mathrm{I} 10, \mathrm{I} 11$	I 6	I 9	I 3	r2 not ready
6	$\mathrm{I} 7, \mathrm{I} 10, \mathrm{I} 11$		I 6	I 9	r3 in use
7	$\mathrm{I} 7, \mathrm{I} 10, \mathrm{I} 11$			I 6	
8	$\mathrm{I} 10, \mathrm{I} 11$	I 7			
9	$\mathrm{I} 10, \mathrm{I} 11$		I 7	I 8	
10	I 11	I 10		I 7	
11	I 11		I 10		
12	I 11			I 10	
13		I 11			
14			I 11		
15				I 11	

3. Write-read (or true data) dependency: all the pairs of occurrences of a register ri where instruction $I j$ writes to $r i$ and instruction $I k$ reads from $r i$ with $j<k$. For instance, $I 1-I 3$ on $r 1$. Also $I 2-I 3(r 2), I 4-I 6(r 2)$, $I 5-I 6(r 3), I 3-I 7(r 1)$, $I 6-I 7(r 2), I 8-I 10(r 2), I 9-I 10(r 3), I 7-I 11(r 1), I 10-I 11(r 2)$.

Write-write (false or fake) dependency: all the pairs of occurrences of a register ri where instruction $I j$ writes to $r i$ and instruction $I k$ also writes to $r i$ with $j<k$. For instance, $I 2-I 4$ on $r 2$. Also $I 1-I 3 / I 7 / I 11(r 1), I 2-I 4 / I 6 / I 8 / I 10(r 2)$, $I 3-I 7 / I 11(r 1), I 4-I 6 / I 8 / I 10(r 2), I 5-I 9(r 3), I 6-I 8 / I 10(r 2), I 7-I 11(r 1)$, I8-I10(r2).
Read-write (false or fake) dependency: all the pairs of occurrences of a register ri where instruction $I j$ reads from $r i$ and instruction $I k$ writes to $r i$ with $j<k$. For instance, $I 3-I 4$ on $r 2$. Also $I 3-I 7 / I 11(r 1), I 3-I 4 / I 6 / I 8 / I 10(r 2), I 6-I 8 / I 10(r 2)$, $I 6-I 9(r 3), I 7-I 11(r 1), I 7-I 8 / I 10(r 2)$.
4. We can rename $r 2$ in $I 4, I 6, I 7$ to $r 2 a$ and in $I 8, I 10, I 11$ to $r 2 b$ (thus removing the write-write and read-write dependencies on $r 2$) and also $r 3$ in $I 9, I 10$ to $r 3 a$.

```
    I1: LOAD r1, M1
    I2: LOAD r2, M2
    I3: MUL r1, r2
I4': LOAD r2a, M3
I5': LOAD r3, M4
I6': MUL r2a, r3
I7': ADD r1, r2a
I8': LOAD r2b, M5
I9': LOAD r3a, M6
I10': ADD r2b, r3a
I11': DIV r1, r2b
```

5. Here is the diagram after register renaming.

	IW	RR	EX	WB	Comments
0	I1,I2				
1	I3,I4'		I1,I2		
2	I3,I5',16'		I4'	I1,I2	r1,r2 not ready
3	I6',I7',I8'	I3	I5'	I4'	r2a,r3 not ready
4	I6', ${ }^{\prime} 7^{\prime}, \mathrm{I} 9^{\prime}, \mathrm{I} 10{ }^{\prime}$		I3,18'	I5'	r1,r2a not ready
5	I7', $110{ }^{\prime}, \mathrm{I11}{ }^{\prime}$	I6'	I9'	I3,18'	r2b,r3a not ready
6	I7',110',I11'		I6'	I9'	r1,r2b not ready
7	I7',I11'	I10'		I6'	
8	I11'	I7'	I10'		
9	I11'		I7'	I10'	
10	I11'			I7'	
11		I11'			
12			I11'		
13				I11'	

