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Abstract

In this paper, we prove that any subreduct of the class of representable relation algebras
whose similarity type includes intersection, relation composition and converse is a non-finitely
axiomatizable quasivariety and that its equational theory is not finitely based. We show the
same result for subreducts of the class of representable cylindric algebras of dimension at
least three whose similarity types include intersection and cylindrifications. A similar result
is proved for subreducts of the class of representable sequential algebras.

1 [Introduction

The aim of this paper is to investigate algebras of relations from the finite axiomatizability point
of view. In algebraic logic, the most extensively investigated classes of algebras of relations are
the class of (representable) relation algebras and the class of (representable) cylindric algebras, cf.
[HMT]. These classes are Boolean algebras equipped with some extra-Boolean operations arising
from lthe nature of relations. In this paper we concentrate on subreducts of these classes, i.e., on
classes of algebras whose similarity types may not contain all the operations available in relation
and cylindric algebras. We will deal with algebras with lower semilattice reducts instead of the
whole Boolean structure, and show that the interaction of intersection (the representation of meet)
and some extra-Boolean operations is already complex enough to cause non-finite axiomatizability.

|Although our non-finite axiomatizability results in this paper do have a negative character, none
the less there is profit to be had in taking reducts of the classical algebras of relations to smaller
signatures. Andréka [And90] has shown that the equational theory of many positive reducts of
representable algebras is decidable. Perhaps the more limited expressive power of these algebras
is also reflected in simpler inference systems for these equational theories. Studying reducts may
also help to advance the currently active programme of research into the ‘dynamic paradigm’ in
computer science, one aim of which is to select only those operations that are relevant to the
intended applications. See [Ben96], for example.

Relation algebras: Monk showed in [Mon64] that the variety RRA of representable relation
algebras is not finitely axiomatizable. Several authors have investigated whether this negative
result holds for various subreducts of RRA (see the formal definition of subreduct in Definition 2.1
below).

[For instance, Andréka showed that any subreduct of RRA whose operations include union, inter-
section and composition is not finitely axiomatizable [And91], and that the {union, composition}-
subreduct is a non-finitely axiomatizable quasivariety [And88]. Bredikhin [Bre77] showed that the
{composition, converse}-subreduct is not finitely axiomatizable either.

On the other hand, some subreducts are finitely axiomatizable. For instance, Bredikhin and
Schein [BS78] showed that the {intersection, composition}-subreduct coincides with the class of
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semilattice-ordered semigroups. Another example is the generalized subreduct with the similarity
type of intersection, composition and its two residuals: see [AM94]. See also [Bre93] about the
axiomatizability of the equational theories of reducts of RRA.

In this paper, we give a relatively simple proof that any generalized subreduct of RRA in
which intersection, composition and converse are term definable is not finitely axiomatizable
(Theorem 2.3). We note that the non-finite axiomatizability of the {intersection, composition,
converse }-subreduct of RRA follows from [Hai91] (although this is not stated in that paper).

|[Another non-finitely axiomatizable version of algebras of binary relations is the class of repre-
sentable sequential algebras; see, e.g., [Kar94, JM97]. As a corollary, we obtain that the union-free
subreduct of representable sequential algebras is not finitely axiomatizable either (Corollary 2.5).

Cylindric algebras: Monk [Mon69] showed that the variety RCA, of a-dimensional repre-
sentable cylindric algebras is not finitely axiomatizable either, if o is at least three. Finite axiom-
atizability of subreducts of RCA,, has been investigated, cf. [Com91] and [Han95]. See also [Diin93]
for lattice-reducts of cylindric algebras and their connections to databases. The problem whether
intersection and cylindrifications are finitely axiomatizable remained open. Here we answer the
question negatively: see Corollary 2.8.

Techniques: We use games and colored graphs. Recently, Hirsch and Hodkinson have applied a
game-theoretic approach to various problems concerning relation algebras [HH97, HH97a, HH97D].
For instance, representability of algebras can be characterized by the existence of winning strategies
in certain two-player games. Representability can also be approximated in this way, allowing us to
prove non-finite axiomatizability. Note that games can also be used to obtain (infinite) recursive
axiomatizations of our classes of algebras, by describing the existence of a winning strategy in
first-order logic; we will not pursue this here, but see [HH97] for how it works. Similar techniques
were used in [Jén59] to axiomatize the {intersection, composition, converse, identity }-subreduct
of RRA. Using graph colorings to prove non-finite axiomatizability is a standard technique in
algebraic logic — see, e.g., [HMT].

In this paper, we will use colored graphs to define non-representable algebras and games to
prove the representability of their ultraproducts. Usually, graph-coloring techniques assume that
Boolean join is an available operation to ensure that every sequence in the representation has
a (unique) color. In our case, only Boolean meet is included into the similarity type, so the
construction is more delicate.

2 Basic definitions and main results

In this section we recall the basic definitions and formulate our main results. We will give short
proofs using some lemmas whose proofs are postponed to the subsequent sections.
First we define (generalized sub)reducts of (classes of) algebras.

Definition 2.1 Let A = (A,0),e- be an algebra of the similarity type 7. Let 7’ be a set of
operations whose elements are definable by fixed terms in 7. By the 7'-reduct of 2l we mean the
algebra R0 A = (A, 0)oerr. We call R0, a generalized reduct of 2, since 7' may not be a subset
of T.

If K is a class of algebras of the same similarity type, Rd. K denotes the class of 7’-reducts of
elements of K. The 7'-subreduct of K is defined as SRd . K: i.e., we close Rd. K under (isomorphic
copies of ) subalgebras. Again, we call SRd. K a generalized subreduct of K.

Next we recall the definition of (representable) relation algebras.
Definition 2.2 1. A relation algebra, an RA, is an algebra
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such that (A,0,1, -, +, —) is a Boolean algebra, and the following equations hold, for every

R5 (:Jc+y) —xv—|—yv
R6) (z;y)~ =y~
7 (*(w;y))ﬁfy-

We denote the class of all relation algebras by RA.

T,1y,2 € A:
(R1) z;(y:2) = (z3y); 2
R2) (w+y) =(z:2)+(y:2)
R3) ,1’
R4) z
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2. By a relation set algebra, an Rs, we mean an algebra 2 = (A,0,1, -, +, —,;,7,1) such
that A C P(W) (the powerset of W) for some set W of the form U x U, 0=0,1=W, - is
intersection, + is union, — is complement w.r.t. W, ; is relation composition, ~ is relation
converse, and 1’ is the identity relation on U. More formally, for all elements =,y € A,

z;y = {(u,v) €W: (u,w) € z and (w,v) € y for some w}
= = {(u,v) e W:(v,u) € z}
1" = {(u,v) e W:u=uv}

We denote the class of relation set algebras by Rs.! Given an % € Rs, W and U as above,
we call W the unit of 2 and U the base of 2.

The class RRA of representable relation algebras is defined as
RRA = SPRs
— l.e., we close the class Rs under products and isomorphic copies of subalgebras.

It is well known that RRA is a variety, and hence a quasivariety. It follows that any generalized
subreduct of RRA is a quasivariety:

SRd, RRA = SRd-PUpRRA = SPUpRd, RRA.

The same observations hold for RCA,, (see below) in place of RRA.
Our first main result concerns the finite axiomatizability of such quasivarieties.

Theorem 2.3 Let K be a generalized subreduct of RRA such that intersection, relation composi-
tion, and converse are term definable in K. Then

1. K is not axiomatizable by any finite set of first-order sentences and

2. the equational theory of K is not finitely based.

Proof: We will define finite, integral and symmetric relation algebras 2l,, (n € w) and show
that their {-, ;, = }-reducts are not representable (Lemma 3.1), while a non-trivial ultraproduct
of them is representable (Lemma 3.4). By Lo$’ theorem [Hod93, Theorem 9.5.1], this is enough
to show that K is not finitely axiomatizable in first-order logic. Further, we will show that, for all
finite n, there is a valid equation that fails in 2, (Lemma 3.1), establishing that the equational
theory is not finitely axiomatizable either. 1

Our next aim is to show a corollary about non-finite axiomatizability of representable sequential
algebras.

1We will also consider set algebras of relations in smaller signatures than this, but by default the signature will
be as above.



Definition 2.4 Analgebra?l = (4,0,1, -, +, —, ;,<, >, 1’) is arepresentable sequential algebra,
if

e (A,0,1,-, +, —) is a a Boolean set algebra with unit W for some transitive and reflexive
relation W on some set U,

e : is relation composition,
e 1’ is the identity relation on U,

e and for all x,y € A,

>y =
rdy =

t(w,u) € z, (w,v) €y for some w}
: (v,w) €y, (u,w) € x for some w}.

i
£
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m
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The class of representable sequential algebras is a variety, [JM97], but it is not finitely axioma-
tizable (a result of Andréka and van Karger, [Kar94]). We show that non-finite axiomatizability
holds already for a fragment of the language.

Corollary 2.5 The {-,;,1’,>}-subreduct of the class of representable sequential algebras is not
finitely axiomatizable.

Proof: We show that the {-,;,1’,i>}-reducts of the non-representable relation algebras 2,
(n € w) from the proof of Theorem 2.3 are not representable. Here, we define z > y as 2~ ;y and
<y as z;y~ . Note that forevery z € A,,, z =2~ =2";1' =z > 1.

Now assume that there is an isomorphism h from (A4,, -, ;,1’,>) into the {-, ;,1’, >}-reduct
of a representable sequential algebra with unit W (for some transitive and reflexive W). Since
x = x> 1 for every z, if (u,v) € h(z), then (v,u) € h(z). Now if we define 2~ as z > 1/, we get
a representation for (A4, -, ;, ™) as well — a contradiction.

On the other hand, the sequential-reduct of the ultraproduct of 2, (n € w) is representable,
since xz > y and = <y are definable as 2™~ ;y and x ;y™~, respectively. 1

Next we recall the definition of (representable) cylindric algebras.
Definition 2.6 Let a be a finite ordinal.?
1. A cylindric algebra of dimension «, a CA,, is an algebra
A=(4,0,1, -, +, —,¢i,dij)ij<a

such that (A,0,1, -, +, —) is a Boolean algebra, and the following equations hold, for every
z,y € Aandi,j k< a:

07) dij -Ci(dij .’L‘) S x.
We denote the class of all cylindric algebras of dimension o by CA,,.

2We will use the convention that o = {0,1,...,a — 1}.



2. By a cylindric set algebra of dimension «, a Cs,, we mean an algebra 2 = (4,0,1, -, +,
—,Ci,dij)ij<a such that A C P(*U) for some base set U, 0 =0, 1 = U, - is intersection,
+ is union, — is complement w.r.t. *U, c; is the ith cylindrification, and d;; is the diagonal
element identifying the ith and jth coordinates. That is, the unit *U of a Cs, is the set
of a-long sequences of elements of U, and the extra-Boolean operations have the following
interpretations. Let s =; t iff (Vj # i)s(j) = t(j). Then, for each element © € A and i,j < a,

cix = {s€*U:s=;t forsomet € x}
dij = {seU:s(i)=s()}
The class RCA,, of representable cylindric algebras of dimension a is defined as
RCA, = SPCs,,
i.e., we close the class Cs, under products and isomorphic copies of subalgebras.

We define the operation substitution sé as follows:
oo [ Clody) i
7 x if 4 = j.
Note that, in a cylindric set algebra with base U,
s;'.a: ={s €U :s=;tfor some t € z such that t(i) = t(j)}

for distinct ¢, .
Our main result about cylindric algebras is Corollary 2.8 below. First we state an apparently
weaker theorem.

Theorem 2.7 Let o > 3 be finite and let K be a generalized subreduct of RCA, such that
intersection, cylindrifications and substitutions are term definable in K. Then

1. K is not finitely axiomatizable by first-order sentences and

2. the equational theory of K is not finitely based.

Proof: Let the dimension set a > 3 be fixed. First we will define a class of colored graphs. Using
these graphs we will define finite cylindric algebras: roughly speaking, an atom will be a surjective
map from a to a graph. We will show in Lemma 4.3 that the {intersection, cylindrifications,
substitutions}-reducts of these algebras are not representable, and similarly to the RA-case, one
can construct valid equations witnessing the non-representability of these algebras. On the other
hand, using games will show in Lemma 4.6 that any non-trivial ultraproduct of the algebras is a
representable cylindric algebra. 1

Finally, we formulate the stronger result about cylindric algebras.

Corollary 2.8 The {intersection, cylindrifications}-subreduct of RCA, (for finite o > 3) is not
finitely axiomatizable.

We will show how to prove the above corollary at the end of Section 4.

3 Relation algebras

This section is devoted to making the proof of Theorem 2.3 complete.



3.1 The rainbow construction

First we define relation algebras 2, (n € w), and show that their {-, ;, = }-reduct is not repre-
sentable.

Let n be any natural number. We define 2l,, to be the finite relation algebra (in RA) with the
following atoms:

identity: 1,

e greens: g; (0<i<2m),

e whites: w,w;; (0 <i<j<2m"),
e yellow: vy,

e black: b,

ereds:r; (0<i<2m).

All the atoms are self-converse. Given this, a triple (z,y, z) of atoms is said to be an inconsistent
triangle if - (y;2) = y-(z;2) = z-(z;y) = 0. Conversely, using additivity, composition is
determined by the set of inconsistent triangles. We will define composition by specifying that the
inconsistent triangles are precisely the following:

(green,green,green)

(vellow,yellow,yellow)

(green,green,white)

(yellow,yellow,black)

(risrjory) unlessi+j=kori+k=jorj+k=1i
(8i,8i+1.rj) unless j =1

(gi,y,w;r) unless i€ {j,k},

where, e.g., (green,green,white) stands for: g;¢'-w =g;w-g' = w;g-¢g = 0 for all green atoms
g,¢' and any white atom w. We also require that (z,y,1’) is inconsistent for all distinct atoms
z,y.

It is not difficult to check that 2, is a relation algebra. In fact, all the axioms but (R1) are
straightforward to check. An easy way to prove that (R1) is satisfied as well is to show that the
existential player can survive one round in the game played using atomic networks on 2, (see
Definition 3.2, and cf. [Lyn50, pp. 711-712]), and Claim 3.5 below shows that she can do this.

Next we show that the { -, ;,~ }-reduct 9B,, of 2, is not representable as a set algebra of binary
relations.

Lemma 3.1 For any n € w, 9, is not in RRA. In fact, the {-,;,~}-reduct B,, of 2,, is not
representable either. Moreover, for every n € w, there is an equation valid in set algebras that
fails in B,,.

Proof: Towards a contradiction, let us assume that there is an isomorphism A from 93,, to a set
algebra of relations of similarity type {-, ;, ~}. We let 0 denote the zero element of 2,,; of course,
as 0 is not in the signature of 9B,,, we may have h(0) # 0.

Since w £ 0, there is (u,v) € h(w) such that (u,v) ¢ h(0). Because w < g; ;y, we see that, for
every 0 < 7 < 2", there exists u; such that (u,u;) € h(g;) and (u;,v) € h(y). Since g;~ = g; in
B, (ui,u) € h(g;), and similarly, (v,u;) € h(y).

Now (u;,uit1) € h(gi;gi+1-Y:;y) = h(r1) for every 0 < i < 2™. By g;;8it2-Y;Y - r1;r = ra,
for every i < 2™ — 1, (us,us42) € h(r2). In particular, (ug,us) € h(rz) and (ugn_s,usn) € h(rs).
By induction, we get that (ug,ugn-1) € h(rgn—1) and (ugn-1,ugn) € h(rgn-1). Then we have
(uo,uan) € h(go;gan -y ;Y- ran—1;ran—1) = h(0). Since (u,up) € h(go) and (uzn,v) € h(y), we get
that (u,v) € h(go;0;y) = h(0). But we assumed that (u,v) ¢ h(0). We have our contradiction.
See Figure 1 for a sketch of the argument.
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Figure 1: The reason for non-representability

The non-representability of 95,, is witnessed by the following equation. For 0 < i < j < 2™, let
pi,; stand for g;:g;-y;y. We define p(k, k + 2!), for each 0 < k < k + 2! < 2", by induction on I:

plkk+1) = prrs1
plk,k+2%1) = p(k, k+2Y5p(k + 2k 4+ 270 - pp g

Let 0, bew- [[{(gi-g:7);(y-y™):0<i<2"} and 7, equal w-gg;p(0,2");y. The equation e,
is ldefined as the result of replacing atoms by distinct variables in o, = o, - 7,,. It is easy to check
that e, is valid in set algebras. On the other hand, the argument we used above to prove that 9B,
is not representable shows that e,, fails in B,,. 1

It remains to show that any non-trivial ultraproduct of the 2(,, (n € w) is representable.

3.2 The game

We recall from [HH97b] the definition of a game connected to representability.
Definition 3.2 Let 2 be a relation-type algebra.

1. A pre-network is a complete directed finite graph with edges labeled by elements of : i.e.,
N = (En,¥fN), where En = Uy x Uy for some finite non-empty set Uy, the base of N, and
I{n : En — A is a map assigning an element of 2 to each edge.

A pre-network is a network if it also satisfies, for every x,y,z € Uy,

(a) In(z.y) <1 iffz =y,

(b) In(z,y) i dn(y. 2) - In (2, 2) # 0.
A pre-network is called atomic if all the edges are labeled by atoms of 2. If no confusion is
likely, we will omit the subscript N.
Given two pre-networks N, N', we write N C N’ if every edge of N is an edge of N’ and,
for every edge (z,y) of N, {ni(z,y) < In(z,y).

2. Let n € w. We define a game G, () between two players, V (male), and 3 (female). They
build a finite chain Ngo C Ny C ... C N, of pre-networks in the following way. Nq is any
consistent triangle, i.e., a network such that |Uy,| < 3. We regard Ny as being chosen by V
before the game starts. In each round i (0 < i < n),

e V chooses an edge (z,y) from N; and elements r,s € A,



e 3 responds with a pre-network N; 1 2 N; such that one of the following holds:
— d rejects: N;11 is the same as N; except that
eNiJrl ($7 y) = eNi ('T’ y) T (T ; 8),
— 3 accepts: the nodes of N;y1 are those of N;, plus a possibly new one, z, and the
labels on edges of N; 11 satisfy the following:

- gNi-(»l (x’ Z) =T,
- éNi«{»l (Z', y) =S,
- ENH»I (.’E, y) = gNi (37, y) Ty

3 wins a match of the game G, (2) if every N; (0 < i < n) is a network. We say that 3 has
a winning strategy if she can win all matches.

The atomic game G%(2l) is defined by requiring that all the elements r,s chosen by V are
atoms, and that each Nj; is an atomic pre-network.

The following proposition [HH97b, Proposition 15] provides us with a sufficient condition for
representability of atomic relation algebras.

Proposition 3.3 Let 2 be an atomic relation algebra. Then 3 has a winning strategy in G%(2)
for all n € w iff A is elementarily equivalent to a completely representable relation algebra.’
Hence, because RRA is elementary, if 3 has a winning strategy in G%(21) for all n € w, then 2 is
representable.

3.3 The ultraproduct
We will now show that an ultraproduct of the 2, (n € w) is representable.

Lemma 3.4 Any non-trivial ultraproduct 2 of A, (n € w) over w is in RRA. Hence the ultra-
product of the { -, ;,~ }-reducts of 2,, (n € w) is representable as well.

Proof: First we show that 3 can survive arbitrarily long games on a “large” set (occurring in the
ultrafilter) of algebras. The “ultraproduct” of these strategies will enable her to win arbitrarily
long (in fact, w-long) games on the ultraproduct. Thus, by Proposition 3.3, the ultraproduct will
be representable.

Claim 3.5 Let | € w. 3 has a winning strategy for G¢(2,) for cofinitely many algebras 2,
(n € w).

Proof: Let n be large enough — say, n > . We show that 3 can win G§(2,).

The idea is very roughly that V’s best strategy leads to what is in effect a new game, played
on two irreflexive linear orders. One consists of the indices of green atoms and is of length 2! + 1;
the other is of length 2!, and the intervals in it correspond to indices of red atoms. In each round,
V chooses an element of the first, longer order, and 3 must respond by choosing an element of the
other. For her to win, the choices made during the game must induce a partial isomorphism (an
order-preserving partial map) between the orders. As V’s linear order is longer than 3’s, he can
certainly win if he is given enough time. However, the game here is of length at most I — 1, and
this does not quite leave him sufficient time to expose the difference in length of the orders.

We now proceed to the formal proof. Let us assume that we are in the pth (0 < p <) round
and fthat an atomic network N, = (U N, X UNP,E Np) is already constructed.

We define the important notion of a red block. Suppose that u,v are distinct nodes of N, and
that £ (u,v) # w;; for any i, j. Let

W = {w : w anode of Ny, {n, (u,w) is green, and ¢y, (v, w) = y}.

3 A complete representation of a relation algebra 9B is an isomorphism from 9B to a representable relation algebra
that preserves arbitrary meets and joins whenever they exist in 8. However, we will not need this notion in this
paper.
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Figure 2: A red block (u,v, w1, wa, ..., w,)

Assume that |W| > 2. Also assume that W can be linearly ordered (w; < ... < wy) in the
following way: the map f from {1,...,q} into the set 2" + 1 of indices of green atoms given by
In, (u,w;) = gy for every 1 < i < g, satisfies f(i) < f(j) for every 1 <1i < j < q. Note that the
color of every (w;,w;) in N, must be red.

In such a situation, we will call the subnetwork N’ of N, with base {u,v} UW a red block
with center (u,v). See Figure 2. Usually we will denote this red block by the ordered tuple
(u,v,w1,...,wy). We will say that w; and w;1+1 are neighbors, and that the distance of w; from
w; is 1) - 1)

We now state the following induction hypothesis (with p, the round number, as a parameter)
that 3 will maintain in each round of the game.

Induction hypothesis: For every red block (u,v,ws,...,w,) of N, in the above notation, and
forevery 1 <i< j<k<g,

1IN, (wi,wy) = rpi)—py if F(G) — f(i) <20,
2. Uy, (w;,w;) =r, for some t <2071 4 . 4 ol=(G—1)
3. In, (wi,w;) = ry and £y, (wj, wy) = re imply £y, (wi, wi) = reys.

Note that ¢ < p+ 1, since |Uy,| < 3 and, in each round, at most one new point is created. The
induction hypothesis now implies that the largest index on a red atom (to label (wy,w,)) is at
most 2/~ 4 ... 4+ 2/=P_ Clearly Ny satisfies the induction hypothesis.

Let us assume that in the pth round player V plays (u, v, y, ) for some edge (u,v) of N, and atoms
y, z of A, and that {y, (u,v) = z.

If x-y;2z =0, then 3 rejects V’s proposal — i.e., she defines N,11 = N,,. If z < y ;2 and there
is m point w in N, such that ¢y, (u,w) =y and £y, (w,v) = z, then again 3 lets N1 = N,,. Note
that this covers the case when either y or z is the identity 1’.

Otherwise 3 extends IV, by a new point w and lets £y, , (u, w) = {n, ., (w,u) =y, {n, ., (w,v) =
In,. (v,w) = z and {y,,, (w,w) = 1" — note that this is well defined, since v = v implies that
x = 1', whence y = z. She defines the labels for the remaining edges (w,w’), for w' € Un, \ {u, v},
as follows (she will label an edge with the same atom as the atom labelling its converse edge; we
will not bother to mention this from now on).

F's strategy is to choose a white w;; whenever it is possible: i.e., if labelling (w,w’) by w;;
ensures that the triangles (w,w’,u) and (w,w’,v), or strictly, the triples consisting of the labels
on the edges of these triangles, are consistent in 2(,,. If this fails, she tries to use black, b. If this
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Figure 3: Extending the network

is impossible, too, then she uses a red color r;. She chooses the index i carefully to maintain the
induction hypothesis so that V will not be able to create a contradiction during the I rounds of
the game. Note that she never chooses a yellow or green label. We have the following cases.

Case 1: {y,z} # {gi,y} for any i. An easy argument using case distinction shows that, for any
w’, 3 can choose ¢y (w',w) to be either w;;; or, if this creates an inconsistent triangle among
(w,w',u) and (w,w’,v), wji for some distinct j, k; or if this creates an inconsistent triangle too,
b. It is easy to check that this yields an atomic network, since no triangle that involves either two
white edges, or two black edges, or a white and a black edge, can be inconsistent. Further, no new
red block has been created. For, any new red block must contain w and one other point w’ # u, v;
since the label on (w,w’) is white or black, (w,w’) is the center of the new block; because 3 did
not use green or yellow labels, the other points of the block are u,v; hence, y and z are both green
and /y, (u,w') and £y, (v, w") are both yellow, or vice versa; but then, 3 would use a w;; to label
(w,w'), contradicting the definition of red block. Because a red block has only one edge labeled
other than yellow, green, or red, and 3 used only white or black here, it follows that no point has
been hdded to any red block. So the red blocks of N,;; are precisely those of V,. It can be seen
that any red block in IV, that satisfied the inductive hypothesis for p still satisfies it in N4 for
p+ 1. Bo Np4 satisfies the induction hypothesis.

Case 2: y=gjandz=y. Ifw € Uy, \{u,v} and (u,w’) is not green, she can let £, (w', w) =
w;; provided (w’,v) is not green, or {y, ., (w',w) = wy; in case (w’,v) has color g;. Otherwise, if
(w',v) is not yellow, she plays £y, (w',w) = b.

The hard case is for those w' such that ¢y (w',v) =y and ly, (u,w’) = g; for some j. (We
can assume that i # j, otherwise 3 did not extend N,.) 3 will label all such edges (w,w’) in a

co-ordinated fashion. Let
W = {w': w' a node of N, (u,w’) is green, and (w', v) is yellow}.

Note that |W| < p+ 1. Let W be enumerated in an order w; < wy < ... < w, so that the map f
defined by {n, (u, w;) = g¢(;) satisfies f(j) < f(k) whenever j < k (cf. the definition of red block).

We claim that if [IW| > 2, the subnetwork with base W U {u, v} forms a red block with center
(u,v). We have to show that f is one-one and that {y (u,v) is not any wj.

So let j,k < ¢ be distinct; we require f(j) # f(k). As the game starts with a three-point
network and at most one point is added in any round, one of the four points u,v,w;, w; was
added after the other three. We will show that it was w; or wy. Assume for a contradiction
that, say, u was added after w;, wy, and v. (The case where v was added after w;, wg, u is
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similar.) Since 3 never chooses a green atom, {y,(u,w;) and £y, (u,wy) were chosen by V. Thus,
in the round when u was created, he played (w;,wg,g¢(;),8fk)) (or possibly its mirror image
(W, w5, 8 k), 8f(5))) Since {y, (v,w;) and Ly, (v, wy) are yellow, Wy k) (0T We(kyf(j)) was a
possible choice for 3 as a color for (u,v). Then, according to her strategy, she chose wy;ysx) (or
Wy (k)£(j))- Now consider the current, pth round again. We assumed that the green g; played by V
in this round is distinct from the greens gy (;y, g¢(x) on (u, w;) and (u,wy) (otherwise 3 did not have
to extend N,). But (u,v,g;,y) would have been rejected by 3 (since the triangle (g, y, W¢(j)f(x))
is inconsistent), which is a contradiction.

So without loss of generality we may assume that w, was added to the network after u, v, w;.
Now let us consider again the round, say round ¢, when wj, was created. Since 3 never plays green
or yellow, the reason for adding wy to the network was that in round ¢, V played (u,v, g k). y)
or its mirror image, and that, in N;, there was no point s such that (u,s) has color gy and
(s,v) is yellow (otherwise 3 would not have extended N;). In particular, taking s = w;, we obtain
f(4) # f(k), so that f is one-one as required.

Thus, the green colors on (u,w;) (1 < j < q) are all different. We assumed they are also
different from y = g;. So there are least three consistent triangles of the form (green,y, Np(u,v)),

and it follows that N,(u,v) is not any wj;. Hence, (u,v,w1,...,w,) is indeed a red block, as
claimed. Clearly, (w;, wy) must be red for every distinct 7,k < g.
So the network {u,v,ws,...,w,} must satisfy the induction hypothesis. We claim next that

3 can find appropriate red colors for each (w,w;) (1 < j < q) such that conditions 1-3 of the
induction hypothesis hold (when we replace p by p + 1).

Indeed, let w; € W be such that |[i — f(j)| is minimal. If |i — f(j)| < 2!"P~1, then she lets
Uy, (Wi w) = v (- I i — f(§)] > 207P71, then she lets y,,, (wj, w) = ry—p-1. 3 labels the
other edges (wg,w) by using a red atom indexed by the sum (if wy < w; and f(j) < 4, or w; < wg
and 7 < f(j)) or the difference (if w; < wy and f(j) < 4, or wy < w; and i < f(j)) of the indices
of the rreds on (wg, w;) and (w;,w). It can be checked that these red colors exist, and conditions
1-3 above hold for the red block (u,v,ws,...,w,...,w,). This ends our proof of the claim.

It remains to show that the induction hypothesis holds for any red block N’ of Np4,. First,
note that if a red block satisfied the induction hypothesis for p (in the previous round) then it
satisfies the induction hypothesis for p+1 as well. We make the following observation about “new”
red blocks that are not red blocks of N, (cf. above): 3 plays a red color on an edge (w,w’) only if
there is an edge (u,v) such that (u,w') is green, (w',v) is yellow, and V plays (u,v,g;,y) so that
3 is forced to extend the network with w and label (u,w) with g; and (w,v) with y. This implies
that if we have a new red block, then its center must be the edge (u,v) played by V. Thus, the
only possible new red block has one of the following forms:

o (u,v,Wy,...,W,...,wg),if (u,v,w1,...,w,) was ared block in N, and if V played (u,v, g;,y),

o (u,v,w,w') or (u,v,w',w), if {y,(u,v) # wj, for any j, k, W = {w'}, and if V played
(U,’U,gi,y)-

By the coloring defined in the previous paragraph, both types of red block satisfy the induction
hypothesis.

It is immediate now that all triangles in Np4; are consistent, so that Npy; is a network. All
triangles of N, are known to be consistent. The remaining triangles are of the form (w,u,w’),
(w,v,w"), and (w,w’,w"), for w',w" € Un, \ {u,v}. The first two kinds were all made consistent
by I’s choice of either white, black, or red to label (w,w’). For the third kind, since two sides
(w,w"), (w,w") were labeled by 3 as above, the only danger is when both of them are red. But
in this case, w, w’, and w” are part of a red block with center (u,v), and the strategy above
guarantees that (w,w’,w") is consistent.

Case 3: y =y and z = g;. This case is completely analogous to case 2, and we omit the details.

The largest index on red colors used by 3 so far is at most 2!=1 4+ 20=2 4 4 2l=p=1 < 9l
since, in the kth round, she labeled an edge (w,w’) of neighboring points w,w’ with r; such that
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j < 2=F=1 Thus, in the remaining rounds of the game, V¥ cannot force her to use a non-existing
red r; (¢ > 2™). In any red block, if the distance |f(j) — f(k)| between two points w; and wy
is “small”, i.e., smaller than 2/~P~!, then she used rsG)—f(ky to label (wj,wy). Thus, in the
remaining rounds, she has enough indices between 1 and |f(j) — f(k)| to label any edge (w;, w)
and (w,wy) “inserted” into (w;,wy). This shows that she can survive ! rounds without arriving
at the impossible task of using a non-existing red color. Claim 3.5 is proved. 1

We now finish the proof of the lemma. Since 3 can survive arbitrarily long games on a large set
(i.e., included in the non-principal ultrafilter) of algebras, she can achieve this in the ultraproduct
A as well. Indeed, the winning strategies in G¢(2,,) provide her with a winning strategy in G¢ (),
as follows. We give an outline only; see [HH97b, Lemma 16] for more details.

|Assume that a finite atomic 2-network N is already defined and V plays an edge (z,y) with
color a (for some atom a € A) and atoms b, ¢ of 2. Note that every atom d of the ultraproduct
2 is an equivalence class of an w-sequence (d; : i € w), with each d; an atom of ;. For every
i € w, one can define a pre-network N in the following way. The base of N() is that of N, and
the color of every edge of N is an atom d; of 2; such that the color d of this edge in N is the
equivalence class of (d; : i € w). It is easy to check that

{i € w: N is a network}

is contained in the ultrafilter.
Now 3 considers those particular matches in the games G¢(2;) (i € w) where V plays (z,y) €
NG and b;,¢; € A; such that b, ¢ are the equivalence classes of (b; : i € w), (¢; : i € w). If the set

So = {i € w:  rejects V’s proposal}

is in the ultrafilter, then she rejects in the game G{(2() as well. If the complement w \ Sy of this
set is in the ultrafilter, then she considers two of its subsets: S; is the set of those indices where
she is not forced to extend the network, and S; is the set of those indices where she is forced to
extend the network. If Sy is in the ultrafilter, then she does not have to extend the network IV,
as in N, there are (z,2) and (z,y) such that b = ¢n(z,2) and ¢ = ln(z,y). If Sy is contained
in the ultrafilter, then she can extend the network by using the atoms of 2 determined by the
equivalence classes of the elements she uses in the games G§(2(,). This completes her move in
response to V in this round. Her move in the next round (and in subsequent rounds) is decided
in much the same way, but note that she will be continuing with her winning strategy already in
progress in the games G{(2,,) for a large set (in the ultrafilter) of indices n: either Sy, S1, or Ss.
The (finitely many) algebras with indices not in this set can be discarded. 1

4 Cylindric algebras

In this section we prove the necessary lemmas for Theorem 2.7. These lemmas are the cylindric
counterparts of the lemmas for the RA-case. The proofs also use similar ideas, though usually they
require more computation. If the transition from RA to CA is obvious, we will omit the technical
details.

[First we recall that the operation substitution sé- is defined as follows: for every distinct ¢, j < a,
séw = ¢;(z-d;;), while siz = z. The operation of composition ; is defined as

Ty = CoShCat - S9Co).

4.1 Rainbows and graphs

Let a > 3 be a fixed natural number. First, for every natural number n, we define a class of
colored graphs, from which we will later define the algebras &, € CA,. The colors will have a
similar role to that in the case of relation algebras. White had two roles, and this is reflected here
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by introducing a new shade of white: ivory. An n-colored graph is an undirected irreflexive graph
T (i.e., if (u,v) is an edge of T then (i) so is (v,u), and (ii) u # v), such that every edge of T
is colored by a unique edge color and some («a — 1)-tuples have a unique color, too. (In the case
where o = 3, this means that (u,v) can carry both an edge color and a 2-tuple color.) The edge
colors are:

e greens: g; (0 <i<2m),

vellows: y; (1 <i<a-—2),

e blacks: b, (1<i<a-—2)
o reds: r; (1<i<2m),
e ivory: i.

The colors for (o — 1)-tuples are:
e whites: wg (S C 2" +1).

We will write I'(z,y) and T'(ay,...,an—1) for the colors of the edge (z,y) and of the (a — 1)-
tuple (ai,...,aq—1), respectively. This will not cause confusion in the case a = 3, since we will
always write I'(aq,...,aq—1) for the tuple color, with « explicitly mentioned. We usually identify
a colored graph with its base (set of nodes), but sometimes we write ‘nodes(I')’ for the underlying
base.

We define colored graph embedding in the obvious way: an injective map from a colored graph
into another that preserves all edges and colors, where defined, in both directions.

Definition 4.1 Let 0 < i < 2" and let T be an n-colored graph consisting of « nodes, xg, 1, ..., Ta_2
and y. We call T an i-cone if I'(z9,y) = g, and for every 1 < j < a — 2, I'(z;,y) =y, and no
other edge of T' is colored green or yellow. The apex of the cone is y, its center is the ordered
(a—1)-tuple (zg,. .., Ta—2) and the tint of the cone isi. We will use the notation (xg, ..., Ta—2,Y)
for a cone. See Figure 4.

We will consider special n-colored graphs.

Definition 4.2 The class G, consists of all n-colored graphs T" with the following properties.
1. T is a complete graph.
2. T contains no triangles of the following types (called inconsistent triangles):

e (green,green,green)

yellow,yellow,yellow)

(
e (green,green,ivory)
(Vivi-bi) (1<i<a-—2)

13
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3. For every i-cone (0 < i < 2™) in T with center (xzg,...,Tq—2), the tuple (zg,...,Tq—_2) is
colored by a unique shade wg of white such that i € S.

Clearly, G,, is closed under isomorphism (denoted as =) and under induced subgraphs.
We are ready to define the cylindric algebras &, for every n € w. Let

K,, = {a: a is a surjective map from « onto some I' € G,, with nodes(T") C w}.

Given a € K,, we will denote by I', that element of G,, for which a : « — I';. We define an
equivalence relation ~ on surjective maps to identify maps with isomorphic ranges. Let a.b € K,:
say, a :a — 'y and b: a — I'y. Then

a~b <= a(i)=a(j) iff b(i) = b( ).
and T'y(a(%),a(j)) = Tp(b(7),b(j)), if defined,
and Ty (a(ko), ..., a(ka—2)) = Tp(b(ko), ...,b(k?a_g))7 if defined,

for all i, 7, ko, . - ., ka_o € a. It is straightforward to check that ~ is indeed an equivalence relation.
Write [a] for the ~-equivalence class of a:

[a] = {b€ K, : a ~ b}.

We define C), = {[a] : a € K, }. For every i,j € a and [a], [b] € C),, we define E;; C C], and
T; C 2C!, by:
[a] € E;; iff  a(i) = a(y)

and
[a]Ti[b] iff  a(a\{i}) ~b[(a\ {i}),

that is, if the maps a and b restricted to '\ {i} are equivalent in the sense defined above. We note
that
[a]T;[b] <= for some ¢ € [a],b(j) = c(j) for all j # i.

It is not hard to check that the structure (C), E;;,T;)i jea is a cylindric atom structure,
cf. [HMT, 2.7.38, 2.7.40]. We define the cylindric algebra €, as the full complex algebra of
(Ch. B, T;)i jeat Cx is the full Boolean set algebra with unit C], and extra-Boolean operations

dij = Eij = {[a] : a(i) = a(j)}

and
ciz = {[b] : for some [a] € x, [b]T;[a]}.

We note that an atom of €, is any {[a]} for some map a € K,. We will call €, the cylindric
algebra associated with the class G,, of graphs.

Next we show that the {intersection, cylindrifications, substitutions}-reduct B,, of &, is not
representable. The idea of the proof is the same as in the RA-case (Lemma 3.1), though the details
are more complicated.

Lemma 4.3 For any n € w, €, is not in RCA,. Further, its { -, ci,sj- t1,j < a}-reduct B, is not
representable either.
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Proof: To derive a contradiction assume that there is an isomorphism A from B,, onto a set
algebra of a-ary relations.

Let I'; be the following element of G, for each ¢ < 2™ T,(0,1) = g;, I';(0,j) = y;—1 (for
2<j<a-1),T;gk)=i(for1<j<k<a-1)and T;(1,2,...,a0—1) = wany1. Let a; be the
map o — I'; such that a;(j) = j for each 0 < j < «, and let A; = {[a;]}. See Figure 5.

Let Fj- be the following element of G, for each 0 < i < 5 < 2™ such that j — 7 < 2™:
1"3(0, 1) =rj_, [5(0,2) = g;, [%(1,2) = gj, r;(k,l) =vy;—1 (for 0 S'k <1land3 < I <a-1),and
[(k0) =i (for 2 <k <1< a-—1). Let a} be the map o — I'} such that aj(k) = k for each
0 < k < a. See Figure 6.

Since Ag # 0 in €, there is (vo,u1,...,ua—1) € h(Ag) \ h(0). For every i < 2", Ay < cod;,
hence we have elements v; (i < 2") such that (v;,u1,...,uq—1) € h(4;). For any 0 <i < j <27
such that j — 7 is a power of 2, we define A; by recursion on j — i:

A§+1 = shcoA;-sUshcoAiyy - Ca(ci Ay -shci Ay)
and for I < n,
A§+2H1 = sicoA; - s?s§c2Ai+21+1 co(c1 Ay sVt Ay) -A§+2l ;Af+21.
Claim 4.4 For any i, j such that 0 <i < j < 2" and j —i = 2! for some | < n,
1. A% < {[ai]}

2. (vi,Vj,u1, U3, . . -, Ua—1) € h<A§)

Proof: The proof is by induction on j—i. First, let j = i+1. Let a : @« — T be a map such that
a(k) =k for each k < o and assume that [a] € AL, . By Al | <sjcyA;, we get that I'(0,2) = g;
and T'(0,k) = yg—1 (for 3 <k < a—1). By A}, < slsicod;;1, we have that I'(1,2) = g;41 and
I(1,k) = yg—1 (for 3 < k < a —1). Thus I'(0,1) cannot be green, ivory, yellow or by (for any
2<k<a-2). AlsoT(p,q) =i (for2<p<q<a-1). Since Al ; < ca(c14;-sc14;), T'(0,1)
cannot be by either. We have already seen that I'(0,2) = g; and that I'(1,2) = g;4+1. Thus the
only possible (red) color for (0,1) is r;. Hence a must be al_;.

Note that (v;, u1,...,uq—1) € h(A;) and (viy1,u1,...,uq—1) € h(A;j41). Then, by the defini-
tion of the operations in set algebras, we get that
(Viy Vig1, U1, Us, - .., Ua—1) € h(ALL).

Now assume the claim for all i, j such that j —i = 2% for some k < 1. Let a : « — I be such

that a(p) = p for each p < « and [a] € AZ+21+1. By

i 1 0.1 0
A;+2l+1 < SQCQA,' 'SIS2C2Ai+2l+1 - Co (ClAi . slclAi),

we get that I'(0,2) = g;, I'(1,2) = gipoi+1, I'(p,q) = yg-1 (for 0 < p<land3<¢q<a-1),
I'(p,q) =i (for2<p<g<a-1)andI'(0,1) must be red (cf. the argument above). For any map
b:a — A such that b(p) = p for every p < a and [b] € sjca A, -s9ca Al ), we have inductively
that A(0,2) = A(1,2) = ry:. Hence the only possible red color for (0,1) in A is ryi+1. By [b]T3]al,
A(0,1) = T(0,1), i.e., T(0,1) = ryre1. Thus a = ai ..
Finally, (2) for j = i+ 2! follows from (1) and the definition of the operations in set algebras.

1

Then (vo, van—1,u1, U3, . .., Ua—1) € h(AJ_1), Ay < {[ad.1]}, (Van-1,v2n,u1,u3, ..., Ua1) €
h(AZ. "), and AZ" < {[a2 ']} by the claim above. By the proof of the above claim, we get
that (vo,van,ur, uz, ..., Ua_1) € h(AJ.) and that the color of (vg,v2n ) should be ron. But there is
no red color rj, for k > 2", hence A3, = 0 in €,,. Thus (vg,van,u1,us3, - .-, Us—1) € h(0), whence
(vo, u1, U2, U3, - .., Ug—1) € c1€2h(0) = h(cic0) = h(0) — contradiction. Lemma 4.3 has been
proved. 1§

We note that one can define valid equations witnessing the non-representability of the €, (n € w)
as in the RA-case — we omit the details.
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4.2 Games and ultraproduct

It remains to show that any non-trivial ultraproduct of the &,, (n € w) is representable.

In [HH97b], two kinds of games are defined. The first type of game is formulated using colored
graphs (see Definition 4.5 below), and the second is played on (networks for) cylindric algebras
(the obvious modification of the game on relation algebras for cylindric algebras). The two games
are equivalent in the sense that the existential player 3 has a winning strategy in the n-colored
graph game iff she has a winning strategy in the network game played on the associated cylindric
algebra ¢,. Further, it is stated that an atomic cylindric algebra has a complete representation
iff the existential player has a winning strategy in the w-long game (on networks).

We will show representability of the ultraproduct by proving that the existential player can
survive longer and longer games on G, as n increases. By the equivalence of the two types of
games, she can achieve this in the network games as well. Then the combination of these winning
strategies provide her with a winning strategy in the network game played on the ultraproduct.
Hence the ultraproduct is a representable algebra.

Next we recall the definition of the n-colored graph game from [HH97b].

Definition 4.5 Let G, be the class of n-colored graphs defined above.

The game G} (I < w) is defined as follows. The two players, V and 3, build a chain of elements
of G,: To CT'y C...CTIyiflis finite, or To C Ty C ... ifl = w.

o € Gy, is arbitrary with |Tg| = a. In each subsequent round i (0 <i <),

e YV chooses a graph ® from G, with |®| = «, a single node 8 € ® and a colored graph
embedding X : @\ {f} — T..

e 1 responds, if she can, with a finite colored graph I'; 11 € G,, and embeddings p : I'; — T';41
and v: ® — T';14 such that po A and v agree on @ \ {G}.

3 wins a match of the game G} if she survives each round. We say that 3 has a winning
strategy if she can win all matches.

If X is an embedding, we denote the A-image of ® by A\* ().

Lemma 4.6 Any non-trivial ultraproduct € of the €, (n € w) over w is in RCA,. Hence its
{intersection, cylindrifications, substitutions}-reduct is representable as well.

Proof: First we prove that 3 can survive arbitrarily long matches in cofinitely many n-colored
graph games.

Claim 4.7 Let ] < n be arbitrary fixed elements of w. 3 has a winning strategy in G}'.

Proof: The proof below is a modification of the proof of the corresponding claim for the RA-case.
Let us assume that we are in the pth round (p < ) and that '), € G,, has been already constructed.

|Again we define the notion of a red block. Suppose that u;,...,us—1 are distinct nodes of I,
and that I'(u;,u;) is not green or yellow for any 4, j. Let

W ={weT, :Tp(w,u) is green, and I',(w, u;) = y;_1 for each 2 < i < a}.
Suppose that
1. i Tp(ug,- .., uq—1) =ws then S O {i <27 : (Jw e W)T'y(u1,w) = g;},

2. W can be linearly ordered (w; < ... < wg) in the following way: the map f from {1,...,q}
into the set 2" 4- 1 of indices of green atoms given by I',(w;, u1) = g ;) for every 1 <i < g,
satisfies f(i) < f(j) whenever 1 <i < j <gq.
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Figure 7: A red block

Note that the color of every (w;,w;) must be red (since (w;,w;) occurs in triangles with two green
edges and two y; (1 <1 < a — 2) edges). In such a situation, we will call the subgraph I' of T,
with base {uy,...,ua—1} UW a red block with center (uy,...,uq—1). We will say that w; and
w41 are neighbors, and that the distance of w; from w; is |f(j) — f(i)|- We use the notation
(Uty. .oy Ua—1,W1,...,w,) for such a red block. See Figure 7.

We note that a red block is a union of cones with the same center and pairwise distinct tints
such that the edges between the apexes are colored with reds.

We now state the following induction hypothesis.

Induction hypothesis: For every red block I', with base set {u1,...,uq—1,w1,..., w4} and
center (uj,...,uq—1) in the above notation, and for every 1 <i < j <k <gq,

L Tp(wi,wj) = regy—py if £(5) — f(i) <277,
2. Tp(w;,w;) = r; for some ¢ < 201 .. 4 21=G=0),
3. T'p(ws, wj) =ry and T'p(wj, wr) = rs imply T'p(w;, wg) = rits.

Note that ¢ < p + 1, since, in each round of the game, at most one new point is created. The
induction hypothesis implies that the largest index on a red atom (to label (wy,w,)) is at most
2!=1 4 .. 4 2!=P_ The initial graph I'q trivially satisfies the induction hypothesis.

Assume that in this round, V plays ® € G,, with |®| = «, a single node 8 € ®, and a colored graph
embedding A : @\ {8} — T',. As G, is closed under isomorphism, we may assume that the base
of ®isa=1{0,1,...,a — 1} and that 8 = 0. We may also assume that if ® is a cone with apex
0, then its center is (1,2,...,a — 1). We note that, for any y1,...,y4—1 € @, if ® is a cone with
apex 0 and center (y1,...,%a—1), then (y1,...,¥a—1) = (1,2,....,a —1).

3 has to respond with a finite I'y,11 € G, and embeddings 4 : 'y — I'pyyand v : @ — T'p g
such that u(A(i)) = v(i) foreach 1 <i < a —1.

We can assume that

(%) there is no node 7 € I', such that the colored graph induced by I';, on nodes {y}Urng(A) is
isomorphic to ® by an isomorphism extending A,

because otherwise 3 can respond with I', = T'pyq, p the identity, and v(0) = ~, v(i) = A(3)
(1<i<a-1).

3 defines I', 41 by extending I',, with a single new node w, and letting i be the identity map on
Ty, v(i) = A(3) (1 <i<a-1), and v(0) = w. She then colors the new edges of the graph (those
edges (w, u) for u € 'y \ rng(A)); she also colors some (o — 1)-tuples. Her strategy in the coloring
is as follows: 7 tries to color the edges first using ivory; then, if this fails, black; and finally, if all
else fails, red with a carefully chosen index. She colors “new” (a — 1)-tuples — those including w
and at least one node of T', \ rng()\), and not involving green or yellow edges — by whites whose
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indices are minimal (in the sense that she uses wg only if there is an i-cone in the graph with the
above (o — 1)-tuple as its center and i € S).

Let A(7) = v; (1 <4 < a—1). The colors of (w,v;) are defined as ®(0,7), i.e., these colors are
determined by V’s choice of ® and . Similarly, any (a — 1)-tuple of points from rng(v) is colored
by the same white color (if any) as its pre-image under v.

We show how 3 chooses the remaining edge colors (w', w) with w' € T', \ rng()\). First, she
colors those edges (w’, w) such that either (w,vy,...,vq4—1) or (W', v1,...,v4_1) is nOt a cone. She
colors (w,w") using ivory if there is no ¢ such that (w,v;) and (w',v;) are both green. Otherwise
she lets (w,w’) have b; for the smallest 1 < [ < o — 1 such that there is no 7 for which both
(w,v;) and (w',v;) have color y;. It is easy to check that one of the above cases holds, and that
no inconsistent triangle is created involving the nodes w, w’, v1, ..., v4_1. Further, no inconsistent

triangle is created on w, w’, w” (w’,w"” with the above property), since all triangles with two sides
ivory and/or black are consistent.

Now 3 colors those edges (w', w) (if any) such that both (w, v1,...,v4—1) and (W', v1,...,V4_1)
are cones. Assume there are some. Then w is the apex of an m-cone (say) with center (vq,...,vq-1).
As & € G,, there are no green or yellow edges in the graph induced on {vy,...,v4_1}; so

Tp(v1,.--,00-1) = ®(1,...,a —1) = wg for some S C 2" + 1 with m € S. Let
W = {u €T}, : uis the apex of a cone with center (v1,...,v4-1)} # 0.

We claim that WU{vy,...,v4_1} is the base of a red block in I';,. Suppose that W = {wy,..., w4}
Let the tint of the cone (w;, v1,...,vq—1) be denoted by f(i): i.e., (w;,v1) has color gsq;y (1 < <
q). By enumerating W appropriately, we may assume that if ¢ < j then f(i) < f(j).

We first show that S O {f(1),...,f(¢)}. Certainly, S O {f(1),...,f(q)}, since I', € G,.
Since T'p,® € G,, the only (o — 1)-tuples of elements of {vi,...,va—1,w;} (any i), and of
{v1,...,v4—1,w}, with a white color are permutations of (vy,...,v4—1). Thus, if m = f(i) for
some i, the colored graphs induced on {vy,...,v4_1,w} (& ®) and {vy,...,v4—_1,w;} are isomor-
phic. So by (%), we can assume that the tint m of the cone with apex w is different from f(i) for
any 1 <i<gq. Asm € S, we are done.

Now we show that f is one-one. Suppose not. Let w;,w; € W be distinct such that f(i) = f(j),
and let X = {w;,wj,v1,...,va—1}. Now |X| = o+ 1. Hence, not all of the nodes in this set were
built in a single round. Since only one node is added in each non-initial round, some node z (say)
in this set was constructed most recently in the game. Clearly, when x was added, 3 must have
chosen the color of some edge (z,y) for some y € X \ {z}. Choose such a y.

Suppose that z = v, for some k. Now T'j(vg,w;), I'p(vg, w;) are both yellow or green,
and 3 mever uses these colors. So y € {v1,...,v4—1}. It follows that 3 chose the white color
Tp(v1s...,0a—1) = Wg. Since there was evidently no m-cone at that stage with center (v1,...,vq4-1),
she would have chosen S with m ¢ S — a contradiction, since we know m € S.

Suppose alternatively that z = w; (the case x = w; is symmetrical). The graph induced
on {w;,v1,...,0a_1} involves a — 1 distinct edges containing w; and labeled green or yellow;
because 3 never chooses these colors, we see that in the round when w; was added, V chose as
his move a colored graph in G,, with nodes {z,v},...,v/,_;}, say, isomorphic to that induced on
{w;,v1,...,vq—1}, the distinguished node z, and the embedding N\ : v}, — v (1 <k < «). But as
f(@) = f(j) and only («a — 1)-tuples without yellow or green edges are labeled with white colors,
the cones on the bases {w;, v1,...,v4—1} and {wj, v1,...,v4—1} are isomorphic. So the extension
of X’ that maps z to w; is a colored graph embedding. Hence, 3 would not have needed to extend
the graph by adding x. By her strategy, she would not have done so — another contradiction.

Therefore, f is indeed one-one, and the claim is proved: W U {vy,...,v4_1} is a red block. So
it must satisfy the induction hypothesis.

We claim next that 3 can find appropriate red colors for each (w,w;) (1 < j < ¢) such that
conditions 1-3 of the induction hypothesis hold (when we replace p by p + 1).

Indeed, the same construction as in the RA-case works. Let w; € W be such that |m — f(j)]
is minimal. If |m — f(j)| < 2'=P=1, then she lets Tpi1(w;, w) = rimy(jy- If [m — f(4)] > 2!7P71,
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then she lets I'p11(w;, w) = ryu-p-1. 3 labels the other edges (wy, w) by using a red atom indexed
by the sum (if wr < w; and f(j) < m, or w; < wg and m < f(j)) or the difference (if w; < wg
and f(j) < m, or wy < w; and m < f(j)) of the indices of the reds on (wg,w;) and (w;,w). It
can be checked that these red colors exist, and conditions 1-3 of the induction hypothesis hold for
(V15 Va1, W, e ey Wy e, W)

Finally, 3 colors those (new) (a — 1)-tuples which do not include green or yellow edges. Let

(u1,-..,uq—1) be such a sequence. She colors it by wg, where
S = {i<2":(FveTlpi)(u,..., Ua1,v) is an i-cone
with center (u1,...,uq—1)}

It remains to show that the induction hypothesis holds for any red block I' of I',,41. First, note
that if a red block satisfied the induction hypothesis for p (in the previous round) and it is still a
red block in I'p 4 1, then it satisfies the induction hypothesis for p+1 as well. We make the following
observation about “new” red blocks that are not red blocks of I',, (cf. above): any new red block
must contain the new node, w; w cannot be in the center of such a block, since in that case 3
would have labeled the center in this round (round p) with a white wg for “minimal” S, and the
minimality violates the first condition defining ‘red block’; so w is the apez of the new red block;
and its center must be (v1,...,v4—1) because all apex-base edges must be yellow or green and 3
never uses these colors. Thus, the only possible new red block is (v1,. .., Va1, W1, -, W, ..., W),
where (v1,...,Uq—1,W1,...,w,) was a red block. We have already seen that this red block satisfies
the induction hypothesis.

Similarly to the RA-case, one can easily check that the coloring is consistent, i.e., that I',1; €
Gn.

We can finish the proof as in the RA-case. The largest index on red colors used by 3 so far
is at most 2/71 + 212 4 . 4 2l=P=1 < 9l since, in the kth round, she labeled an edge (w,w’)
of neighboring points w,w’ with r; such that j < 2!=k=1" Thus, in the remaining rounds of the
game, V cannot force her to use a non-existing red r; (i > 2™). In any red block, if the distance
|£(i) — f(4)| between two points w; and w; is “small”, i.e., smaller than 2!=P~1  then she used
rs@i)—7(;) to label (w;,w;). Thus, in the remaining rounds, she has enough indices between 1
and |f(i) — f(j)| to label any edge (w;,w) and (w,w;) “inserted” into (w;,w;). This shows that
she can survive [ rounds without arriving at the impossible task of using a non-existing red color.
This finishes the proof of Claim 4.7. 1

By the equivalence of network and graph games, the above claim ensures that 3 has winning
strategies for the I-round games on cofinitely many algebras. These winning strategies provide her
with a winning strategy in the game played on the ultraproduct. The argument here is much the
same as in the RA-case; we omit the details. 1

4.3 Diagonal-free reducts

In this section we strengthen Theorem 2.7 by showing that the {intersection, cylindrifications}-
subreduct of representable cylindric algebras of dimension at least three is not finitely axiomatiz-
able.

We already mentioned that RCA, is not finitely axiomatizable whenever o > 3. Non-finite
axiomatizability holds for the diagonal-free fragment of RCA,, as well, a result of Johnson [Joh69].
We will give a similar proof below.

Let 2 be an a-dimensional cylindric algebra and a be an element of . The dimension set Aa
of a is defined as

Aa={i<a:ca#a}.

[HMT, Theorem 5.1.51] states that an a-dimensional cylindric algebra is representable iff its
diagonal-free reduct is representable, provided that the algebra is generated by (a—1)-dimensional
elements. Below we will show that a similar theorem holds for the appropriate reducts.
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Let a > 3 be fixed. First we define the algebras B, € SRdy. (, q,,:,j<a}RCAs (n € w) as
follows. Let us recall that we defined atomic cylindric algebras €, in Section 4, and that 9B,
is the {-,ci,s§ 1 4,j < a}-reduct of €,. Now let B! be that subalgebra (of similarity type
{-.ci,dij : 1,j < a}) of the {-,¢;,d;; : 4,5 < a}reduct of &, that is generated by the atoms of
[

Claim 4.8 The algebras B, (n € w) have the following properties:
1. they are generated by (o — 1)-dimensional elements,
2. they are not representable as set algebras and

3. any non-trivial ultraproduct of B} (n € w) is representable as a set algebra.

Proof: 1: It suffices to show that
{lal} = [ [{ci{lal} : i < a}

for any a € K,,. Say, a:a — T with T € G,.

Clearly, < holds. For the other direction assume that b: o — A and [a] # [b]. We show that
[b] cannot be an element of the right hand side. Since a and b are not equivalent, we can assume
that

L (3i, 5 < a)A(b(i), b(4)) # T'(ali), al4)) or
2. (Jir,..riacr < Q)AD(ir), ... blia_1)) £ T(alir). ..., alia_1)).

In the first case, let k ¢ {i,5}. We claim that [b] ¢ cx{[a]}. Assume to the contrary that
(Vi,j € a\ {k})A(b(%),b(3)) = I'(a(i),a(j)). But, by the choice of k and the assumption, (3i,j €
a\ {k})AD(),b(5)) # T'(a(i),a(j)), contradiction. In the second case, choose k ¢ {i1,... 901}
and derive a contradiction in the same way.

2: Recall that the substitutions s;'- are defined using -, ¢; and d;; (4,5 < «). Thus all the
elements of 9B, that we defined and used in the non-representability proof of 98, are in fact
elements of B!, cf. the proof of Lemma 4.3. Hence the same argument works for the non-
representability of B/,.

3: The ultraproduct of the B/ (n € w) is clearly representable, since it is a subalgebra of a
reduct of the ultraproduct of the €, (n € w), which is representable by Lemma 4.6. 1

Now we claim the following variant of [HMT, Theorem 5.1.51].

Theorem 4.9 Let A € CA,. Let B C RO(. (, d,;:i,j<a)? and assume that B is generated by
(a — 1)-dimensional elements. Let € be the diagonal-free reduct of B and suppose that € is
representable as a set algebra. Then B is representable as well.

Proof: The easiest way to prove the above theorem is to repeat the proof of [HMT, Theorem
5.1.51] with minimal and straightforward modifications. Since this proof is rather technical and
long, we just give a sketch (and give the numbers of the corresponding lemmas from [HMT] in
brackets).

|Assume that € is representable, via the isomorphism h, as a set algebra ® C (P([[{U; : i <
a}), -, C)ica- We can assume that Uy = ... = U,—1 = U and that h(d;;) D {s € “U : s(i) = s(j)}
(cf. 5.1.48).

We define the relation R on U as follows: let i, j < a be distinct indices, then

R ={(u,v) € U x U :s(i) =u and s(j) = v for some s € h(d;;)}.

It can be shown that the definition of R is independent of the choice of 7 and j and that R is an
equivalence relation on U (see 5.1.49).
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Next we let
E={zeC:(Vs,teU)[(Vi<a)(s(i),t(i)) € R— (s € h(z) <t € h(x))]},

that is, FE consists of those elements of € which cannot “distinguish” between equivalent sequences
s and ¢. It can be shown that {z € C' : Az # a} C E, and that F is a subuniverse of 9B (cf.
5.1.50). Thus F contains the generators of B, whence E = B = C'. Then we can factorize U by
R so that € can be embedded into (P(*“(U/R)), -,¢;i)i<q via the isomorphism f given by

F(z) = {(s())/R:i < a) € “(U/R) : s € h(z)}

(see 5.1.39). Moreover, the diagonals are preserved:

fdij) = {s € “(U/R) : 5() = s(4)}

because of the definition of R and f.
Hence B can be embedded into (P(*(U/R)), -,¢i,dij)ij<a as desired. 1

Finally we prove Corollary 2.8.

Proof of Corollary 2.8: By Claim 4.8, the algebras B/ (n € w) are not representable and
are generated by (o — 1)-dimensional elements. Then by Theorem 4.9, their diagonal-free reducts
¢! (n € w) are not representable either. On the other hand, the ultraproduct of €, (n € w) is
representable, since it is the diagonal-free reduct of the ultraproduct of 8] (n € w) which is a
representable algebra by Claim 4.8. 1

5 Conclusions
Let us mention some open problems.

1. Is the {-, ;, 1’}-subreduct of RRA finitely axiomatizable?

2. Bredikhin [Bre77] showed that the {;,~}-subreduct of RRA is not finitely axiomatizable. Is
it true for any generalized subreduct of RRA in which composition and converse are definable?

3. Find (quasi)equations witnessing the non-finitizability of
SRdy. c,:i<a}RCA, (for a > 3).

4. Investigate (non-)finite axiomatizability of subreducts of the classes RA,, and SRa*CA,,.
These classes can be viewed as n-dimensional analogues of RRA. See, e.g., [Mad83, Mad89].
For example, we conjecture that the argument for subreducts of RRA in the current paper
can be generalized to prove that for all finite n > 5, if K is a generalized subreduct of RA,,
or of SRa*CA,, in which intersection, relation composition, and converse are term definable,
then K is not axiomatizable by any finite set of first-order sentences, and the equational
theory of K is not finitely based. It would suffice to show that 2, ¢ RA5, for each finite n,
where 2, is the relation algebra constructed in Section 3.
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