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Abstract

We show that the equational theory of representable lattice-ordered residuated semigroups
is not finitely axiomatizable. We apply this result to the problem of completeness of substruc-
tural logics.
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1 Introduction

Residuated algebras have been extensively investigated in the literature, partly because of their
connection to substructural logics. A residuated algebra is representable if it is isomorphic to a
family of binary relations and the operations are interpreted as “natural” operations on binary
relations — see the precise definition below. An important line of research is to determine pre-
cisely which classes of representable residuated algebras have finitely axiomatizable equational or
quasiequational theories, since such axiomatizability results yield weak or strong completeness
results for substructural logics. Indeed, families of binary relations as semantics for substructural
logics have been proposed by various researchers, e.g., for the Lambek calculus (LC) by van Ben-
them and for relevance logics by Dunn and Maddux. Completeness results of this kind include
the completeness of the LC [AM94] and the completeness of the relevance logic with mingle RM
[Ma]. We address a similar problem here by looking at the problem of expanding the similarity
type of LC with (static) disjunction.

In the remainder of this section we define representable algebras and recall a finite axiomati-
zation of representable lower semilattice-ordered residuated semigroups. In the next section, we
look at the possibility of extending the similarity type by including join as well. Finally, we will
look at the implication of the main result to substructural logics.

Definition 1.1 A representable relation algebra (an RRA) is A = (A,+, · ,−, ;, ^, 1′, 0, 1) such
that A consists of subsets of an equivalence relation W and + is union, · is intersection, − is set
difference, 0 = ∅, 1 = W and

x ; y = {(u, v) ∈ W : ∃w((u, w) ∈ x & (w, v) ∈ y)}
x^ = {(u, v) ∈ W : (v, u) ∈ x}
1′ = {(u, v) ∈ W : u = v}

Let τ be a set of operations definable in RRA. We denote the class of subreducts of RRA to the
signature τ as R(τ).

Note that RRAs are residuated: the following definition defines the right- and left residuals of ;

x \ y = −(x^ ;−y) and x / y = −(−x ; y^)
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and we can define converse negation as well: ∼ x = −(x^). The extension of these operations in
an RRA with unit W is as follows:

x \ y = {(u, v) ∈ W : ∀w((w, u) ∈ x ⇒ (w, v) ∈ y)} (1)
x / y = {(u, v) ∈ W : ∀w((v, w) ∈ y ⇒ (u, w) ∈ x)} (2)
∼ x = {(u, v) ∈ W : (v, u) /∈ x} (3)

We recall from [AM94] that representable lower semilattice-ordered residuated semigroups are
finitely axiomatizable.

Theorem 1.2 The equational and quasiequational theories of R(· , ;, \, /) are finitely axiomatiz-
able.

Indeed, we showed in [AM94] that the following set of quasiequations axiomatizes the class
R(· , ;, \, /):

• · is a (lower) semilattice

• ; is associative and monotone w.r.t. · :

(x · x′) ; (y · y′) ≤ x ; y (4)

• if x ≤ y, then x \ y behaves similarly to a unit element for ;:

z ≤ z ; ((x · y) \ y) and z ≤ ((x · y) \ y) ; z (5)

and similarly for /:
z ≤ z ; (y / (x · y)) and z ≤ (y / (x · y)) ; z (6)

• \ and / are the right and left residuals of ;:

x ; y ≤ z ⇐⇒ y ≤ x \ z ⇐⇒ x ≤ z / y (7)

Pratt [Pr90] observed that the quasiequations 7 can be replaced by the following equations:

x \ (y · y′) ≤ x \ y (8)
x ; (x \ y) ≤ y ≤ x \ (x ; y) (9)

and the corresponding equations for /. Indeed, assuming x;y ≤ z, we have x\(x;y) = x\(x;y · z) ≤
x\z by 8, and hence y ≤ x\z by the second part of 9. If we assume y ≤ x\z, then x ;y ≤ x ; (x\z)
by monotonicity, and hence x ; y ≤ z by the first part of 9. Since 8 and 9 are easily seen to be
valid in R(· , ;, \, /), we are done.

In the next section, we look at the possibility of extending the similarity type by including join
as well.

2 Main result

We observed in [AM94] that the quasiequational theory of representable distributive lattice-ordered
residuated semigroups is not finitely axiomatizable. We strengthen this result below.

Theorem 2.1 The equational and quasiequational theories of R(+, · , ;, \, /) are not finitely ax-
iomatizable. The same holds if we expand the similarity type by any set of operations definable
in RRA.
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Proof: Maddux defines non-representable, finite, integral, symmetric relation algebras An (for
n ∈ ω) whose ultraproduct is representable [Ma89]. Andréka shows that already the {+, · , ;}-
reduct of An is not representable, whence τ -subreducts of RRA such that {+, · , ;} ⊆ τ are not
finitely axiomatizable, cf. [An91]. Hence the quasivariety R(+, · , ;, \, /) is not finitely axiomatiz-
able. Here we show that the non-representability of the {+, · , ;, \, /}-reduct Bn of An is witnessed
by an equation.

We recall that An has the following atoms: identity 1′, qi for 1 ≤ i ≤ m, and pj for 1 ≤
j ≤ n with m = 3 · n!. Composition is defined such that qi+1 ≤ p1 ; qi for every i < m and
0 = qi · 1′ ; qj = qr · qs ; qt = pl · pl ; pl for every 1 ≤ i 6= j ≤ m, 1 ≤ r, s, t ≤ m, and 1 ≤ l ≤ n.
Furthermore, qm \ qm = 1′. It follows that a representation of the {+, · , ;}-reduct of An would
require a coloring of the edges of a graph U with |U | ≥ 3 ·n! using the colors pi (for 1 ≤ i ≤ n) but
without monochromatic triangles — an impossible task. See Figure 1, where U = {u1, . . . , um}
and every dotted arrow should have a color pi for some 1 ≤ i ≤ n.
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Figure 1: The reason for non-representability

Below we use the abbreviation xi+1 that is recursively defined by xi+1 = x ; xi with the
convention that x0 ; y = y for every term y. Let xi, yj and z0 be distinct variables for 1 ≤ i ≤ n
and 1 ≤ j ≤ m and let Z stand for

∑
{xi : 1 ≤ i ≤ n} +

∑
{yj : 1 ≤ i ≤ m} + (ym \ ym). We

define the equation en for n ∈ ω as

σn ; (αn · βn · γn · δn) ≤ z0

where

σn =ym · (x1 ; (ym−1 · ((x1 · x1 \ Z) ; (ym−2 · (x1 · x1 \ Z · (x1 ; x1) \ Z) ; (. . . )))))

αn =
∏

{(xm−i
1 ; (yi · yj)) \ z0 : 1 ≤ i 6= j ≤ m}

βn =
∏

{(xi
1 ; (xl · xl ; xl) ; yj) \ z0 : 1 ≤ i, j ≤ m, 1 ≤ l ≤ n}

γn =
∏

{(xi
1 ; (ym−i · ym \ ym ; ym−j)) \ z0 : 0 < i < j < m}

δn =
∏

{(xi
1 ; (ym−i · yk ; yj)) \ z0 : 1 ≤ i < m, 1 ≤ j, k ≤ m}
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We claim that en

1. fails in Bn

2. is valid in representable algebras.

For item 1, let ι be the evaluation of the variables

ι(xi) = pi ι(yj) = qj ι(z0) = 0

Then ι(RHS(en)) = ι(z0) = 0. On the other hand, ι(LHS(en)) 6= 0 because of the following.
First note that ι(Z) = 1, since ι(ym \ ym) = qm \ qm = 1′. Then we have ι(τ \Z) = 1 for any term
τ . In Bn, qi+1 ≤ p1 ; qi for every 1 ≤ i < m, whence ι(σn) 6= 0. Furthermore, the terms on the
left of \ in αn, βn, γn and δn evaluate to 0, since the meet of distinct atoms is 0 (for αn), there
are no monochromatic triangles for pi (for βn), qm \ qm ≤ 1′ (for γn) and there are no q-triangles
(for δn). Hence ι(αn) = ι(βn) = ι(γn) = ι(δn) = 1. Thus ι(LHS(en)) 6= 0.

For item 2, let C = (C,+, · , ;, \, /) be a representable algebra and ι be an arbitrary valuation
of the variables. Assume that (um, u) ∈ ι(LHS(en)). Then there is v such that (um, v) ∈ ι(σn)
and (v, u) ∈ ι(αn · βn · γn · δn). By (um, v) ∈ ι(σn), we have (ui+1, ui) ∈ ι(x1) and (ui, v) ∈ ι(yi)
for every 1 ≤ i < m. See Figure 2.
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Figure 2: The validity of en

First we consider the case where there are i 6= j such that ui = uj . In this case, we have
(ui, v) ∈ ι(yi) · ι(yj) and thus (um, v) ∈ ι(xm−i

1 ; (yi · yj)). Since (v, u) ∈ ι(αn), we get (um, u) ∈
ι(z0) = ι(RHS(en)).

Now let us assume that all the uis are different. Note that

(ui, uj) ∈ ι(Z) = ι(
∑

{xk : 1 ≤ k ≤ n}+
∑

{yl : 1 ≤ l ≤ m}+ (ym \ ym))
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for every 1 ≤ i 6= j ≤ m, by (um, v) ∈ ι(σn). If there are i < j and k such that (ui, uj) ∈ ι(yk), then
(um, v) ∈ ι(xi

1 ; (ym−i · yk ;yj)). Hence (um, u) ∈ ι(z0) by (v, u) ∈ ι(δn), i.e., (um, u) ∈ ι(RHS(en)).
If there are i < j such that (ui, uj) ∈ ι(ym \ ym), then (um, v) ∈ ι((xi

1 ; (ym−i · ym \ ym ; ym−j))).
Hence (um, u) ∈ ι(z0) by (v, u) ∈ ι(γn), i.e., (um, u) ∈ ι(RHS(en)). It remains to consider the
case where, for all i < j, there is l such that (ui, uj) ∈ ι(xl). By m = 3 · n!, we have that for some
1 ≤ i < j < k ≤ m, (ui, uj , uk) is a monochromatic triangle the edges of which are colored with
some ι(xl). Hence (um, v) ∈ ι(xm−i

1 ; (xl · xl ; xl) ; yk). Then (um, v) ∈ ι(z0) for some 1 ≤ i ≤ m,
by (v, u) ∈ ι(βn). Hence (um, u) ∈ ι(RHS(en)) in this case as well. Thus en is indeed valid in
representable algebras.

3 Substructural logics

In this section, we explain the connection of the main result to substructural logics.

Lambek calculus In [AM94], we showed that the Lambek calculus with static conjunction is
complete w.r.t. relational semantics Rel(LC) consisting of binary relations, where fusion (• in the
original formulation and ; in our notation) is interpreted as relation composition, conjunction (∧
or · ) as intersection and \ and / as the two residuals of composition. There is one subtle difference
between this semantics Rel(LC) and the subreduct R(· , ;, \, /) of RRA. Namely, in Rel(LC), we do
not require that the union W of all relations is an equivalence relation. In fact, in the completeness
proof, W is irreflexive ((x, x) /∈ W ) and antisymmetric (for x 6= y, (x, y) ∈ W implies (y, x) /∈ W ),
and the residuals are defined as in 1 and 2 with W as a parameter. Since W is antisymmetric, so
are x \ y and x / y, hence 5 and 6 fail in accordance with the absence of the corresponding rules
in the original LC [La58]. Thus Theorem 2.1 does not seem to answer the problem of the weak
completeness of the LC extended with disjunction. But we claim that essentially the same proof
yields the following.

Corollary 3.1 No extension with finitely many axioms of the Lambek calculus with disjunction
is weakly complete w.r.t. relational semantics Rel.

Proof: In this case a representable algebra has the form D = (D,+, · , ;, \, /) where D is a
collection of binary relations, + is union, · is intersection, ; is relation composition as before and

x \ y = {(u, v) ∈ W : ∀w((w, u) ∈ x ⇒ (w, v) ∈ y)}
x / y = {(u, v) ∈ W : ∀w((v, w) ∈ y ⇒ (u, w) ∈ x)}

where W =
⋃
{d : d ∈ D}, i.e., W is not necessarily an equivalence relation. An inspection of the

proof of Theorem 2.1 reveals that we did not use anywhere that the unit of the representable algebra
would be an equivalence relation, and that, in particular, ι(ym \ ym) would be reflexive1. Hence
the same argument as above shows that Bn is not representable while a non-trivial ultraproduct
of Bn is representable2, and that the equation en fails in Bn while it is valid in representable
algebras.

Relevance logic Finally, let us mention an open problem related to relevance logic [AB75,
ABD92]. Recall that relevance logics can be soundly interpreted over families of binary relations.
Let Rcd(;, · ,+, \,∼) be that subclass of R(;, · ,+, \,∼) where each algebra is commutative x;y = y;x
and dense (or square-increasing) x ≤ x ; x. Let A ∈ Rcd(;, · ,+, \,∼) with unit W and v be a
valuation of the propositional atoms into A. We extend v to compound formulas by interpreting

1We used transitivity of the unit, but that holds for W in this case as well because of composition, and x \ x
always contains the reflexive edges from W .

2Hence strong completeness fails as well [AM94].
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conjunction as intersection, disjunction as union, implication as the residual operation (right and
left residuals coincide by commutativity) and relevant negation as converse negation. We define

A |= ϕ ⇐⇒ Id ⊆ v(ϕ)

where Id = {(u, v) ∈ W : u = v}. Then relevance logic R is sound w.r.t. Rcd(;, · ,+, \,∼), and
relevance logic RM with the mingle axiom is complete w.r.t. the semantics Rcdt(;, · ,+, \,∼), that
subclass of Rcd(;, · ,+, \,∼) where each algebra is transitive (or square-decreasing) x ; x ≤ x, see
[Ma]. On the other hand, completeness fails without the mingle axiom: the logic of Rcd(;, · ,+, \,∼)
is not finitely axiomatizable [Mi09].

The question is whether we could achieve more in the absence of relevant negation. Let Rp

denote the fragment of the relevance logic R to the language of fusion, conjunction, disjunction
and implication axiomatized by the axioms A1–A11, A14 and A15 and derivation rules R1, R2
of [RM73]. Obviously, Rp is sound w.r.t. the semantics defined by the commutative and dense
algebras Rcd(;, · ,+, \).

The algebras An in the proof of Theorem 2.1 are commutative, but they are not dense, since
there are no monochromatic triangles. And this latter fact seems to be crucial in the non-finite
axiomatizability proof. Hence we ask the following.

Problem 3.2 Is Rp complete w.r.t. the semantics Rcd(;, · ,+, \)? Is the equational theory of
Rcd(;, · ,+, \) finitely axiomatizable?

We note that the quasiequational theory of Rcd(;, · ,+, \) is not finitely axiomatizable, since the
{;, · ,+, \}-reduct of the algebras An from [Mi09] are not representable (while their ultraproduct
is).
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