Concurrent Kleene Algebras

Georg Struth

University of Sheffield

Joint work with T Hoare, B Möller and I Wehrman
Motivation

Kleene algebras: models for sequential programs, refinement, action systems

Process algebras: models for concurrency/communication

- axioms similar to KAs, but based on near-semirings
- $x(y + z) = xy + xz$ absent, hence no language models
- problems with axiomatisation of star
- concurrency (as interleaving) inductively defined on actions/processes

Separation logic: models for local reasoning (pointer structures on heap)

- seemingly unrelated
- but separating conjunction yields conditions for sequential/concurrent executions

Idea: add concurrency to Kleene algebra à la separating conjunction
Aggregation and Independency

aggregation algebra: structure $(A, +)$ with operation $+: A \to A$

- $p + q$ denotes system aggregated from parts p and q
- first, A absolutely free
- later it will be semigroup or monoid

independence relation: bilinear binary relation R on A

$$R(p + q, r) \iff R(p, r) \land R(q, r), \quad R(p, q + r) \iff R(p, q) \land R(p, r)$$

- p independent of q if $R(p, q)$
- aggregate doesn’t depend on system iff its parts don’t depend on it
- system doesn’t depend on aggregate iff it doesn’t depend on its parts
Examples

1. for aggregation algebra \((2^A, \cup)\) and \(X, Y \subseteq A\), the relation \(R(X, Y)\) iff \(X, Y\) disjoint is independence relation.

2. for digraphs \((G, \cup)\) under (disjoint) union, \(R(g_1, g_2)\) iff there is no arrow with source in \(g_1\) and target in \(g_2\) is independence relation.

3. for subspaces of some vector space with respect to span, orthogonality is an independence relation.

4. if subtrees \(t_1, t_2\) of tree \(t\) are in \(R\) if their roots are not on \(t\)-path and if \(t_1 + t_2\) is least \(t\)-subtrees with subtrees \(t_1, t_2\), then \(R\) is no dependence relation (subtree of \(t_1 + t_2\) needn’t be subtree of \(t_1, t_2\)).
Properties

Lemma: for aggregation algebra $(A, +)$ and independence relation R

1. $R((p + q) + r, s) \iff R(p + (q + r), s)$
2. $R(p, (q + r) + s) \iff R(p, q + (r + s))$
3. $R(p + q, r) \iff R(q + p, r)$
4. $R(p, q + r) \iff R(p, r + q)$
5. $R(p + p, q) \iff R(p, q)$
6. $R(p, q + q) \iff R(p, q)$
Properties

proposition: relations

\[p \approx_l q \iff \forall r. (R(p, r) \Leftrightarrow R(q, r)) \]

\[p \approx_r q \iff \forall r. (R(r, p) \Leftrightarrow R(r, q)) \]

induce same congruence as semilattice identities on \(A \)

consequence: aggregates behave like sets with respect to independency
Properties

Lemma: for aggregation algebra \((A, +)\) and independence relation \(R\)

\[
R(p + q, r) \land R(p, q) \iff R(q, r) \land R(p, q + r)
\]

Proof: diagrams

Consequence: write as \((p \rightarrow q) \rightarrow r = p \rightarrow (q \rightarrow r)\)
Properties

lemma: for aggregation algebra \((A, +)\) and independence relations \(R, S\) with \(R \subseteq S\),

1. \(R(p + q, r) \land S(p, q) \Rightarrow S(p, q + r) \land R(q, r)\)
2. \(R(p, q + r) \land S(q, r) \Rightarrow S(p + q, r) \land R(p, q)\)

proofs: use diagrams

consequence: write as

\[(p \to q) \sim r \leq p \to (q \sim r)\] and \(p \sim (q \to r) \leq (p \sim q) \to r\]
Properties

exchange law: for aggregation algebra \((A, +)\) and independence relations \(R, S\) with \(R \subseteq S\) and \(S\) symmetric

\[
R(p + q, r + s) \land S(p, q) \land S(r, s) \Rightarrow R(p, r) \land R(q, s) \land S(p + r, q + s)
\]

proof: see diagram or calculate

\[
\begin{align*}
& R(p + q, r + s) \land S(p, q) \land S(r, s) \\
\Leftrightarrow & R(p, r) \land R(q, r) \land R(p, s) \land R(q, s) \land S(p, q) \land S(r, s) \\
\Rightarrow & R(p, r) \land S(q, r) \land S(p, s) \land R(q, s) \land S(p, q) \land S(r, s) \\
\Rightarrow & R(p, r) \land R(q, s) \land S(r, q) \land S(p + r, s) \land S(p, q) \\
\Rightarrow & R(p, r) \land R(q, s) \land S(p + r, q) \land S(p + r, s) \\
\Leftrightarrow & R(p, r) \land R(q, s) \land S(p + r, q + s)
\end{align*}
\]

consequence: write as \((p \rightarrow q) \bowtie (r \rightarrow s) \leq (p \bowtie r) \rightarrow (q \bowtie s)\)
Algebraisation

idea:

- interpret dependency arrows as algebraic operations
- lift to powerset level

extension:

bistrict independence relations: $R(p, 0)$ and $R(0, p)$

complex product: for aggregation algebra $(A, +)$ and independence relation R

\[X \circ_R Y = \{ p + q : p \in X \land q \in Y \land R(p, q) \} \]

example: if X, Y are languages, $+$ is string concatenation and R is universal relation, then \circ_R is language product
Algebraisation

proposition:

1. if \((A, +)\) is semigroup and \(R\) bilinear, then \((2^A, \circ_R)\) is semigroup
2. if \((A, +, 0)\) is monoid and \(R\) bilinear bistrict, then \((2^A, \circ_R, \{0\})\) is monoid

proof: simple but tedious (using relation-level “associativity”). . .

proposition:

1. if \((A, +)\) is semigroup and \(R\) bilinear, then \((2^A, \cup, \circ_R, \emptyset)\) is dioid
2. if \((A, +, 0)\) is monoid and \(R\) bilinear bistrict, then \((2^A, \cup, \circ_R, \emptyset, \{0\})\) is dioid with 1

proof: set theory. . .

remark: even infinite distributivity laws hold
Algebraisation

theorem: if \((A, +, 0)\) is monoid and \(R\) bilinear bistrict, then \((2^A, \cup, \circ_R, \emptyset, \{0\}, *)\) is Kleene algebra, where

\[X^* = \bigcup_{i \geq 0} X^i \]

as in language theory

proof:

- \(X^*\) exists by completeness of semilattice reduct of dioid
- verifying KA star axioms is routine

discussion: KA deals with sequentiality in the sense that parts of a system can be aggregated “before” other parts only if the former don’t depend on the latter
Modelling Concurrency

Idea: make independency relation **symmetric**

- complex product \(X \circ_S Y = \{ p + q : p \in X \wedge q \in Y \wedge S(p, q) \} \)
 - only aggregates elements that are mutually independent
- in that case, \(p \) and \(q \) can be executed concurrently

Lemma: if \((A, +)\) is semigroup and \(S \) bilinear **symmetric**, then \((2^A, \circ_S)\) is **commutative** semigroup

Theorem: if \((A, +, 0)\) is monoid and \(S \) bilinear bistrict symmetric, then \((2^A, \cup, \circ_S, \emptyset, \{0\}, \star)\) is **commutative** Kleene algebra

Remark: commutative KAs have been studied by Conway/Pilling
Concurrent Kleene Algebras

idea: combine sequential and concurrent composition

definition:

- bisemigroup: \((S, \cdot, \circ)\) with \((S, \cdot)\) and \((S, \circ)\) semigroups
- bimonoid: \((S, \cdot, \circ, 1)\) with \((S, \cdot, 1)\) and \((S, \circ, 1)\) monoids
- trioid: \((S, +, \cdot, \circ, 0, 1)\) with \((S, +, \cdot, 0, 1)\) and \((S, +, \circ, 0)\) dioids
- bi-Kleene algebra: \((S, +, \cdot, \circ, *, *, 0, 1)\) with \((S, +, \cdot, *, 0, 1)\) and \((S, +, \circ, *, 0, 1)\) KAs

theorem: if \((A, +, 0)\) is monoid, \(R, S\) bilinear bistrict, then

- \((2^A, \cup, \circ_R, \circ_S, \emptyset, \{0\})\) is trioid
- \((2^A, \cup, \circ_R, \circ_S, *, *, \emptyset, \{0\})\) is bi-KA
Concurrent Kleene Algebras

but: structure of R, S not taken into account

- S symmetric, hence \circ_S commutative
- $R \subseteq S$, hence $X \circ_R Y \subseteq X \circ_S Y$

lemma: if $(A, +)$ semigroup and R, S bilinear with $R \subseteq S$, then

1. $(x \circ_S y) \circ_R z \subseteq x \circ_S (y \circ_R z)$
2. $x \circ_R (y \circ_S z) \subseteq (x \circ_R y) \circ_S z$

proof: use $R(p + q, r) \land S(p, q) \Rightarrow S(p, q + r) \land R(q, r)$ and its dual
Concurrent Kleene Algebras

exchange law: if \((A, +)\) semigroup, \(R, S\) bilinear, \(R \subseteq S\) and \(S\) symmetric, then

\[
(w \circ_S x) \circ_R (y \circ_S z) \subseteq (w \circ_R y) \circ_S (x \circ_R z)
\]

proof: use \(R(p + q, r + s) \wedge S(p, q) \wedge S(r, s) \Rightarrow R(p, r) \wedge R(q, s) \wedge S(p + r, q + s)\)

remark: lifting of relational properties to algebraic properties
Concurrent Kleene Algebras

definition:

- **concurrent semigroup:** ordered bisemigroup \((S, \bullet, \circ)\) that satisfies

\[
\begin{align*}
 x \bullet y & \leq x \circ y, & x \circ y & = y \circ x, \\
 (x \circ y) \bullet z & \leq x \circ (y \bullet z), & x \bullet (y \circ z) & \leq (x \bullet y) \circ z, \\
 (w \circ x) \bullet (y \circ z) & \leq (w \bullet y) \circ (x \bullet z)
\end{align*}
\]

- **concurrent monoid:** ordered bimonoid \((S, \bullet, \circ, 1)\) that satisfies

\[
\begin{align*}
 x \bullet y & \leq x \circ y, & x \circ y & = y \circ x, & (w \circ x) \bullet (y \circ z) & \leq (w \bullet y) \circ (x \bullet z)
\end{align*}
\]

lemma: \((x \circ y) \bullet z \leq x \circ (y \bullet z)\) and \(x \bullet (y \circ z) \leq (x \bullet y) \circ z\) hold in concurrent monoids
Concurrent Kleene Algebras

concurrent Kleene algebra: bi-KA \((S, +, \bullet, \circ, *, *, 0, 1)\) over concurrent monoid

therefore: CKAs consist of KA and commutative KA that interact as follows:

- sequential composition includes concurrent composition
- exchange law holds

theorem: if \((A, +, 0)\) monoid, \(R, S\) bilinear bistrict, \(R \subseteq S\) and \(S\) symmetric, then \((2^A, \cup, \circ_R, \circ_S, *, *, \emptyset, \{0\})\) is concurrent Kleene algebra

proof:

- again only monoid case is interesting (see above lemmas)
- stars exist/defined due to infinite distributivity laws
Sequential and Concurrent Compositions

aggregation algebra: distributive lattice \((A, +, \cdot, 0)\) with operator \(f : A \rightarrow A\)

distributive lattice with operator \(f : A \rightarrow A\)

equation: \(f\) (pre)image operator on relational structure

composition operations:

- fine-grain concurrent composition \(X \star Y\) with \(R_\star(p, q) \iff p \cdot q = 0\)
 (dependencies between \(X\) and \(Y\) ignored)

- weak sequential composition \(X; Y\) with \(R;(p, q) \iff R_\star(p, q) \land f(p) \cdot q = 0\)
 (no dependency of \(X\) on \(Y\))

- disjoint parallel composition \(X||Y\) with \(R||_\star(p, q) \iff R;(p, q) \land p \cdot f(q) = 0\)
 (no dependency in either direction)

- alternation \(X \oplus Y\) with \(R_{\oplus}(p, q) \iff p = 0 \lor q = 0\)
 (at most one of \(X, Y\) executed)
Sequential and Concurrent Compositions

Lemma:

1. \(R_{\oplus} \subseteq R_{\parallel} \subseteq R; \subseteq R_* \)
2. all compositions are bilinear bistrict
3. all except \(R; \) are symmetric

Consequence: for \((A, +, \cdot, 0, f)\) and any concurrent composition relation \(R_C \), \((2^A, \cup, ;, \circ_C, *, C, \emptyset, \{0\})\) is CKA

Remark: sometimes dual order needs to be taken

Question: is independency model canonical?
Shuffle Dioids

shuffle dioid: dioid \((S, +, \cdot, 0, 1)\) finitely generated by finite \(\Sigma\) and with shuffle operation \(\otimes : S \rightarrow S\) satisfying

\[
1 \otimes x = x = x \otimes 1, \quad ax \otimes by = a(x \otimes by) + b(ax \otimes y),
\]

\[
x \otimes (y + z) = x \otimes y + x \otimes z
\]

analogy: process algebras such as ACP, CCS

related model: regular languages under regular operations plus shuffle

\[
\epsilon \otimes w = \{w\} = w \otimes \epsilon, \quad av \otimes bw = \{a(v \otimes bw), b(av \otimes w)\},
\]

\[
X \otimes Y = \bigcup \{v \otimes w : v \in X \land w \in Y\}
\]
Shuffle Dioids

lemma: \((S, +, \otimes, 0, 1)\) is commutative dioid.

proof: by induction, e.g.,

\[
ax \otimes by = a(x \otimes by) + b(ax \otimes y) = b(y \otimes ax) + a(by \otimes x) = by \otimes ax
\]

lemma: \(xy \leq x \otimes y\)

proof: e.g. \(axy \leq a(x \otimes by) \leq a(x \otimes by) + b(ax \otimes y) = ax \otimes by\)
Shuffle Dioids

Lemma: exchange law

\[(w \otimes x)(y \otimes z) \leq wy \otimes xz\]

Proof: e.g.

\[(aw \otimes bx)(y \otimes z) = a(w \otimes bx)(y \otimes z) + b(aw \otimes x)(y \otimes z) \leq a(wy \otimes bxz) + b(awy \otimes xz) = awy \otimes bxz\]

Theorem: shuffle dioids (regular languages with shuffle) are concurrent semirings
Free Concurrent Semirings

question: are regular languages with shuffle the free CKAs?

fact: in language model, exchange law is essentially inequation:

\[(a \otimes a)(b \otimes b) = \{aabb\} < \{aabb, abab\} = ab \otimes ab\]

lemma: in every CKA, \(v(x \otimes wy) + w(vx \otimes y) \leq vx \otimes wy\)

proof: by ATP

intuition: algebraic version of shuffle induction
Free Concurrent Semirings

but: converse inequality fails in CKA

proof: In CKA $S = \{a\}$ with $0 \leq a \leq 1$, $aa = a$ and $a \otimes a = 1$,

$$a1 \otimes a1 = a \otimes a = 1 > a = aa + aa = a(1 \otimes a1) + a(a1 \otimes 1)$$

consequence: CKA is strict superclass of shuffle dioids

question: how can we eliminate \otimes in CKA?
Free Concurrent Semirings

lemma: following equation doesn’t hold in CKA, but it holds in shuffle semirings:

\[xy \otimes xy \leq x \otimes x(y \otimes y) \]

proof: consider CKA over \(\{a, b\} \) defined by \(0 < a < b < 1 \) and tables

\[
\begin{array}{c|cccc}
. & 0 & a & b & 1 \\
\hline
0 & 0 & 0 & 0 & 0 \\
a & 0 & a & a & a \\
b & 0 & a & a & b \\
1 & 0 & a & b & 1 \\
\end{array}
\quad
\begin{array}{c|cccc}
\otimes & 0 & a & b & 1 \\
\hline
0 & 0 & 0 & 0 & 0 \\
a & 0 & 1 & b & a \\
b & 0 & b & b & b \\
1 & 0 & a & b & 1 \\
\end{array}
\]

then \(bb \otimes bb = a \otimes a = 1 > b = b \otimes a = b \otimes bb = b \otimes b(b \otimes b) \)
Free Concurrent Semirings

proof continued: but in regular languages with shuffle, in

\[xy \otimes xy \leq x \otimes x(y \otimes y) \]

• at least one \(x \) must first be eaten before consuming \(y \) in lhs
• this can be simulated by rhs

consequence: regular languages with shuffle are not free CKAs!

questions:
• what are free CKAs?
• can CKA be extended to characterize shuffle languages?
Conclusion

CKA: extension of KA to concurrent setting

- two models (independency/aggregation, shuffle languages)
- formalisms like Hoare logic and rely/guarantee calculus can be modelled

Interesting questions:

- free algebras
- decidability
- expressivity