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Abstract. Probabilistic model checkers typically provide a list of individual state
probabilities on the refutation of a temporal logic formula. For large state spaces,
this information is far too detailed to act as useful diagnostic feedback. For quan-
titative (constrained) reachability problems, sets of paths that carry enough prob-
ability mass are more adequate. We recently have shown that in the context of
discrete-time probabilistic processes, such sets of smallest size can be efficiently
computed by (hop-constrained)k-shortest path algorithms. This paper considers
the problem of generating counterexamples for continuous-time Markov chains.
The key contribution is a set of approximate algorithms for computing small sets
of paths that indicate the violation of time-bounded (constrained) reachability
probabilities.

1 Introduction

A major strength of model checking is the possibility to generate counterexamples in
case of a property violation. In fact, it is this facility that makes model checking an effec-
tive bug hunting technique. Even if only a fragment of the entire model can be searched,
such counterexamples provide useful diagnostic feedback.Efficient algorithms for gen-
erating (succinct) counterexamples therefore have received considerable attention by
the model checking community, cf. [5, 9, 18]. For probabilistic models, though, coun-
terexample generation is far less developed.

Model checking of probabilistic models is focused on verifying system models in
which transitions are equipped with random information. Popular models are discrete-
and continuous-time Markov chains (DTMCs and CTMCs, respectively), and variants
thereof which exhibit nondeterminism. Most probabilisticmodel checkers support vari-
ants of CTL [3, 4, 11]. For quantitative properties such as “the (maximal) probability to
reach a set of goal states by avoiding certain states is at most p”, alternative algorithms
have to be employed. In case such property is refuted, the idea is to provide a set of
paths—such path is called anevidence—that all together carry a probability mass that
exceedsp. As such sets could be huge, the interest is in generating small sets, possibly
the smallest possible. Preferably, the probability mass ofsuch sets deviates significantly
from the boundp.

Recently, we have shown [10] that for DTMCs wrt. the quantitative (hop-constrained)
until formulas, most probable evidences—thus contributing the most to the violation—
can be determined efficiently using either well-known (hop-constrained) shortest path



(SP or HSP) algorithms, or Viterbi’s algorithm. In addition, smallest counterexamples—
containing the least number of evidences while maximally deviating fromp among all
counterexamples containing the same number of evidences—can be determined using
k-SP (k-HSP) algorithms. Here,k is the size of the counterexample and is determined
on-the-fly. Similar results hold for properties wherep is a lower bound, where sets
of paths are considered that indicate the violation of the “dual” of the formula to be
checked; see [10] for details.

This paper considers the generation of evidences and counterexamples for model
checking CSL [3, 4] on CTMCs. For (hop-constrained) reachability properties expressed
in CSL, the algorithms of [10] can be exploited. Properties that involve time, however,
require other strategies. The continuous-time setting is unfortunately different and more
complicated than the discrete one. First, an evidence cannot be a single timed path (an
alternating sequence of states and time instants) as such paths have zero probability.
Instead, we considersymbolic evidencesfor ΦU

6tΨ , i.e., time-abstract paths—finite
state sequences—that satisfyΦU Ψ . A symbolic evidence induces a set of concrete ev-
idences, viz. the set of timed paths on the same state sequence whose duration does
not exceedt. Counterexamples are sets of symbolic evidences that exceed probability
p. The main contribution of the paper is a set of algorithms forcomputing informa-
tive (symbolic) evidences and counterexamples, i.e., evidences with large probability
and small counterexamples. We first indicate how the likelihood of symbolic evidences
can be computed, both numerically and analytically. The latter approach exploits the
fact that symbolic evidences are in fact acyclic CTMCs for which closed-form solu-
tions exist [15]. We then consider the problem of how to find symbolic evidences such
that small counterexamples result. First, we (naively) apply the strategy from [10], i.e.,
usek-SP algorithms on a discretized CTMC (obtained by uniformization [12]). This
yields a simple algorithm, though may result in large counterexamples. A first variant
exploits timing information and generates paths in the discretized CTMC that corre-
spond to symbolic evidences. The advantage of this approachis that one can guarantee
that counterexamples are obtained that contain the smallest number of evidences wrt.
to their probability contribution in the CTMC. As probable paths of this kind usually
correspond to probable symbolic evidences, this yields small counterexamples. Finally,
we present a heuristic to improve the time and memory efficiency of this algorithm.

Organization of the paper.Section 2 summarizes the main steps of counterexample
generation for DTMCs, and defines the main concepts of CTMCs needed for the rest
of the paper. Section 3 defines symbolic evidences and counterexamples. Computing
probabilities of symbolic evidences is treated in Section 4. Section 5 and 6 present the
algorithms for determining symbolic evidences. Section 7 concludes the paper.

2 Preliminaries

Counterexample generation in DTMCs. Let AP denote a fixed, finite set of atomic
propositions ranged over bya, b, c, . . . .

Definition 1 (DTMC). A (labelled)discrete-time Markov chain(DTMC)D is a triple
(S, P, L) with S a finite set of states,P : S × S → [0, 1] a stochastic matrix, and
L : S → 2AP a labelling function.



For a DTMC,
∑

s′∈S P(s, s′) = 1, i.e. it is stochastic. If
∑

s′∈S P(s, s′) ∈ [0, 1),
then we call the model afully probabilistic system (FPS)and it issub-stochastic. A
states is absorbing ifP(s, s) = 1, i.e., if s only has a self-loop. A pathσ in D is a
state sequences0 s1 s2... such thatP(si, si+1) > 0, for all i. The probability Pr{σ} for
finite σ = s0 s1 . . . sn is defined asP(s0, s1)·P(s1, s2)· . . . · P(sn−1, sn). For finite set
of pathsC, Pr(C) =

∑

σ∈C Pr{σ}. σ[i] denotes the(i + 1)-st state onσ.
For PCTL [11] formulaP6p(φ) whereφ is a path formula, we have:

s 2 P6p(φ) iff Pr{σ | σ[0] = s andσ |= φ} > p.

So,P6p(φ) is refuted by states whenever the total probability mass of allφ-paths that
start ins exceedsp. This indicates that a counterexample forP6p(φ) is asetof paths
starting ins and satisfyingφ. As φ is a path formula whose validity can be witnessed
by finite state sequences,finitepaths suffice.

Definition 2 (Evidence). An evidencefor P6p(φ) in states is a finite pathσ that
starts ins and minimally satisfiesφ. A strongest evidenceis an evidenceσ∗ such that
Pr{σ∗} > Pr{σ} for any evidenceσ.

A finite pathσ minimally satisfiesφ if it satisfiesφ, but no proper prefix ofσ does so.

Definition 3 (Counterexample).A counterexamplefor P6p(φ) in states is a setC of
evidences such thatPr(C) > p. C∗ is a smallest (most indicative) counterexampleif
|C∗| 6 |C| for all counterexamplesC andPr(C∗) > Pr(C′) for any counterexample
C′ with |C′| = |C∗|.

The intuition is that a smallest counterexample is mostly exceeding the required
probability bound given that it has the smallest number of paths. To compute the strongest
evidence and smallest counterexample, the DTMCD is transformed to a weighted di-
graphGD = (V, E, w), whereV andE are finite sets of vertices and edges, respectively.
V = S and(v, v′) ∈ E iff P(v, v′) > 0, andw(v, v′) = log(P(v, v′)−1). Multiplica-
tion of transition probabilities is thus turned into the addition of edge weights along
paths. Now:

Lemma 1. For any pathσ from s to t in DTMCD, k ∈ N>0, andh ∈ N ∪ {∞}: σ is
a k-th most probable path of at mosth hops inD iff σ is ak-th shortest path of at most
h hops inGD.

Considerφ = ΦU
6hΨ for PCTL state-formulasΦ, Ψ and hop boundh ∈ N ∪

{∞}. If s 6|= P6p(φ), then a strongest evidence can be found by a shortest path (SP)
algorithm once allΨ -states and all(¬Φ ∧ ¬Ψ)-states in DTMCD are made absorbing.
Similarly, a smallest counterexample can be determined byk-SP algorithms that allow
k to be determined on-the-fly. Ifh 6= ∞, hop-constrained SP andk-SP algorithms
need to be employed; they have pseudo-polynomial time complexity in O(hm) and
O(hm + hk log(m

n
)), respectively, wheren = |S| andm is the number of non-zero

entries inP.



CTMCs.

Definition 4 (CTMC). A (labelled) continuous-time Markov chain (CTMC)C is a
quadruple(S, P, E, L) with (S, P, L) a DTMC andE : S → R>0 a rate vector, assign-
ing exit rates to states.
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Fig. 1.CTMC C

(S, P, L) is the embeddedDTMC of
C. E(s) denotes the rate of firing a transi-
tion froms, which, in other words, speci-
fies the average delay of transitions. More
precisely, with probability(1− e−E(s)·t),
a transition is enabled within the nextt

time units provided that the current state
is s. If P(s, s′) >0 for more than one state
s′, aracebetween the outgoing transitions
froms exists. The probability of transition

s → s′ winning this race in time interval[0, t] is given by:

P(s, s′, t) = P(s, s′)·
(

1 − e−E(s)·t
)

.

The probability density function isp(s, s′, t) = P(s, s′)·E(s)·e−E(s)·t. Note that
P(s, s′, t) =

∫ t

0
p(s, s′, t1)·dt1. We sometimes useR(s, s′) = P(s, s′)·E(s) to denote

the rate of the transitions → s′.

Remark 1.Except for absorbing states, all states in a CTMC are assumedto have no
self-loops. The reason for this assumption will become clear later. Note that this is not
a severe restriction as self-loops can be removed without affecting the transient and the
steady-state probabilities of the CTMC.

Example 1.An example CTMCC is shown in Fig. 1.S = {si, t1, t2, u}; L(si) = {a},
L(t1) = L(t2) = {b} andL(u) = ∅ with 0 6 i 6 2; E(s0) = 10, E(s1) = 20, and so
on. Statesu, t1 andt2 are absorbing.

Paths and probability measure.

Definition 5 (Timed paths in CTMCs). LetC = (S, P, E, L) be a CTMC. Aninfinite

timed pathσ is a sequences0
t0→s1

t1→s2
t2→... with si ∈ S and ti ∈ R>0 such that

P(si, si+1) > 0 for i > 0. A finite timed pathσ is a finite prefix of an infinite path
ending in an absorbing state.

Let |σ| denote the length of the pathσ, i.e., |s0
t0→s1

t1→...sl−1
tl−1

→ sl| = l, |s0| = 0
and|σ| = ∞ for infinite σ. For (finite or infinite) pathσ andi < |σ|, let σ[i] = si be
the(i+1)-st state ofσ, andδ(σ, i) = ti be the time spent insi. For t ∈ R>0 andk the
smallest index witht <

∑k
j=0 tj , let σ@t = σ[k] denote the state inσ occupied at time

t. For finite pathσ andl = |σ|, δ(σ, l) = ∞; and fort >
∑l−1

j=0 tj , σ@t = sl.
A time-abstract pathis obtained by omitting all timing information from a timed

path. The functionα performs this, i.e.,α(s0
t0→ s1

t1→ ...) = s0s1.... LetPathsC denote



the set of all timed paths in CTMCC andPathsCabs all time-abstract paths inC. The
superscript is omitted ifC is clear from the context.Paths(s) andPathsabs(s) denote
the set of timed and time-abstract paths starting froms, respectively. We useρ to range
over time-abstract paths.

A σ-algebra and probability measure of the timed paths of a CTMCcan be defined
using the standard cylinder set construction, cf. [4]. It follows that time-convergent
paths, i.e., paths on which time does not diverge, have probability 0.

CSL. Continuous Stochastic Logic (CSL) [4] is a variant of the logic originally pro-
posed by Aziz et al. [3] and extends PCTL by path operators that reflect the real-time
nature of CTMCs: in particular, a time-bounded until operator.

Syntax.The syntax of CSL state-formulae is defined as follows:

Φ ::= tt | a | ¬Φ | Φ ∧ Φ | PEp(φ),

wherep ∈ [0, 1] is a probability,E ∈ {<, 6, >, >}. For t a non-negative real number
or t = ∞, φ is a path-formula defined according to the following grammar:

φ ::= ΦU
6t Ψ | Φ W

6t Ψ.

The path formulaΦU
6tΨ asserts thatΨ is satisfied withint time units and that at all

preceding time instantsΦ holds.W6t is the weak counterpart which does not requireΨ

to eventually become true. For the sake of simplicity, the next-operator and the steady-
state operator [4] are not considered here.

Semantics.CSL state-formulae are interpreted over the states of a CTMC. Let C =
(S, P, E, L) with labels inAP , andSat(Φ) = {s ∈ S | s |= Φ}. The semantics of CSL
state-formulae is defined for path-formulaφ as:

s |= tt iff true s |= Φ ∧ Ψ iff s |= Φ ands |= Ψ

s |= a iff a ∈ L(s) s |= PEp(φ) iff Prob(s, φ) E p

s |= ¬Φ iff not (s |= Φ)

Prob(s, φ) denotes the probability measure of all pathsσ ∈ Paths starting in states
and satisfyingφ, i.e.,Prob(s, φ) = Pr{σ ∈ Paths(s) | σ |= φ}. For a timed pathσ in
C, the satisfaction relation for CSL path-formulae is definedas:

σ |= ΦU
6tΨ iff σ@x |= Ψ for somex 6 t andσ@y |= Φ for all y < x,

σ |= ΦW
6tΨ iff either σ |= ΦU

6tΨ or σ@x |= Φ for all x 6 t.

The until and weak until operators are closely related. Thisfollows from the follow-
ing equations. For any CSL-formulaeΦ andΨ we have:

P>p(Φ W
6tΨ) ≡ P61−p

(

(Φ ∧ ¬Ψ)U
6t(¬Φ ∧ ¬Ψ)

)

P>p(ΦU
6tΨ) ≡ P61−p

(

(Φ ∧ ¬Ψ)W6t(¬Φ ∧ ¬Ψ)
)

Counterexamples forP>p(ΦU
6tΨ) can be obtained by considering a formula of the

form P6p′(Φ′
U

6t Ψ ′). This can be seen as follows. Extend the labels ofC with a new



atomic proposition,atB, say, whereatB is a new atomic proposition such thats |= atB
iff (i) either s |= ¬Φ ∧ ¬Ψ (ii) or s ∈ B whereB is a bottom strongly connected
component (BSCC) such thatB ⊆ Sat(Φ ∧ ¬Ψ), or shortlyBΦ∧¬Ψ . A BSCCB is a
maximal strong component that has no transitions leavingB. Then:

P>p(ΦU
6tΨ) ≡ P61−p((Φ ∧ ¬Ψ)W6t(¬Φ ∧ ¬Ψ)) ≡ P61−p((Φ ∧ ¬Ψ)U

6tatB)

Intuitively, to show that the set of(ΦU
6tΨ)-paths has probability> p, it is sufficient

to show that the paths violatingΦU
6tΨ have probability6 1 − p.

Note that fort = ∞, ΦU
6tΨ denotes the standard-until operator. As this opera-

tor can be verified on the embedded DTMC, counterexamples canbe obtained as for
DTMCs. In the sequel, we therefore considert 6= ∞.

3 Evidences and counterexamples

Assumes 6|= P6p(φ) for CSL path-formulaφ. Unlike in DTMCs, a timed path could
not be an evidence since it always has probability 0. Instead, we considersymbolicevi-
dences that represent a set of (concrete) finite timed paths satisfyingφ. For time-abstract
pathρ, let ρ↓k denote the prefix ofρ of lengthk, i.e.,(s0s1 . . .)↓k = s0s1 . . . sk.

Definition 6 (Symbolic evidence).A symbolic evidencefor P6p(φ) in states is a
finite time-abstract path that starts ins and minimally satisfiesφ. Let Pathsabs(s, φ)
denote the set of symbolic evidences starting froms for φ.

Actually, a symbolic evidence forφ = ΦU
6t Ψ is a finite time-abstract path that

goes alongΦ-states and halts at the first encounteredΨ -state. A symbolic evidence for
φ = ΦU

6t Ψ represents a set of (infinite) timed paths in the CTMC:

Paths6t(ρ) = {σ ∈ Paths | ρ = α(σ)↓l ∧
l−1
∑

i=0

δ(σ, i) 6 t} wherel = |ρ|.

The timed paths induced byρ have a common initial state sequence, viz.ρ, and the total
duration of this prefix is at mostt, i.e., the last state ofρ is reached withint. We define
the probability of a symbolic evidenceρ to bePr6t(ρ), and for the setC of symbolic
evidences, the probability isPr(C) =

∑

ρ∈C Pr6t(ρ). A strongestsymbolic evidence
is a symbolic evidence of maximal probability.

Lemma 2. For CTMCC andφ = ΦU
6t Ψ : Prob(s, φ) =

∑

ρ∈Pathsabs(s,φ) Pr6t(ρ).

For states in CTMC C and formulaP6p(φ) we now have:

s 6|= P6p(φ) iff Prob(s, φ) > p iff
∑

ρ∈Pathsabs (s,φ)

Pr6t(ρ) > p.

AsPathsabs(s, φ) only contains finite time-abstract paths, counterexamplesare sets
of symbolic evidences of sufficient probability mass.

Definition 7 (Symbolic counterexample).A symbolic counterexamplefor P6p(φ)
whereφ = ΦU

6t Ψ is a setC of symbolic evidences forφ such thatPr(C) > p.



Example 2.For the CTMCC in Fig. 1 and CSL formulaP60.45(a U
61b) the sym-

bolic evidences areρ1 = s0s2t2, ρ2 = s0s1s2t2, ρ3 = s0s1t1, and so on. These

paths all satisfya U b. For instance,s0
0.5
→s1

0.25
→ s2

0.05
→ t2 ∈ Paths61(ρ2). Without spec-

ifying the details (see next section), the probabilities ofthe symbolic evidences are:
Pr61(ρ1) = 0.24998, Pr61(ρ2) = 0.24994 andPr61(ρ3) = 0.16667. C = {ρ1, ρ2}
is a counterexample sincePr(C) > 0.45, butC′ = {ρ1, ρ3} is not.

The remainder of the paper is concerned with determining (symbolic) counterex-
amples and symbolic evidences. As in conventional model checking, the intention is
to obtaincomprehensiblecounterexamples. We interpret this as counterexamples of
minimal size, i.e., minimal cardinality. An algorithmic skeleton to generate such coun-
terexamples iteratively is given below:

(1) k := 1; pr := 0;
(2) while pr 6 p do
(3) determine symbolic evidenceρk;
(4) computePr6t(ρ

k);
(5) pr := pr + Pr6t(ρ

k);
(6) k := k + 1;
(7) od;
(8) return (ρ1, . . . , ρk−1)

The termination of this algorithm is
guaranteed as the violation of the prop-
erty has been already established prior to
invoking it. Evidently, the smaller the in-
dexk, the more succinct the counterex-
ample. The next section presents a way
to determinePr6t(ρ), i.e., the probabil-
ity of a symbolic evidence (cf. line (4)).
In subsequent sections, we present algo-

rithms that aim to finding probable symbolic evidences, cf. line (3) of the algorithm.
Stated differently, we aim to terminating with a small valueof k.

4 The likelihood of a symbolic evidence

Assume we have symbolic evidenceρ = s0 s1 s2 . . . sl at our disposal. The probability
Pr6t(ρ) of this evidence—in fact, the probability of all concrete evidences ofρ up to
time t—is given by:

∫ t

0

(

p(s0, s1, t0)·
(

...(

∫ t−
� l−2

i=0
ti

0

p(sl−1, sl, tl−1)·dtl−1)...
)

)

dt0 (1)

wherep(s0, s1, t0) denotes the probability density function ofs0 → s1 winning the
race at time instantt0 in the interval[0, t]. The corresponding probability is thus derived
by the outermost integral. Suppose the transitions0 → s1 takes place at time instant
t0. Then the possible time instant for the second transitions1 → s2 to take place is
in [0, t−t0]. This determines the range of the second outermost integral. The rest is
likewise. The innermost integral determines the residencetime in statesl−1, the one-
but-last state inρ.

To avoid computing this (somewhat involved) integral directly by numerical tech-
niques we resort to a simpler technique. The main idea is to isolate the time-abstract
path ρ from the entire CTMC. This yields a simple acyclic CTMC, i.e., an acyclic
phase-type distribution [16] which can be solved either analytically or numerically.



Transformation into an acyclic CTMC. As a first step, we transform the CTMC
as suggested in [4]. (The same strategy was applied in Section 2 for DTMCs prior to
applying SP algorithms.) Consider CTMCC and CSL path-formulaφ = ΦU

6t Ψ . All
Ψ -states as well as all(¬Φ ∧ ¬Ψ)-states are made absorbing inC, i.e., their outgoing
transitions are replaced by a self-loop. It is not difficult to establish that the validity of
P6p(φ) remains invariant under this modification. In the rest of thepaper, CTMCs are
assumed to have been subject to this transformation.

Definition 8 (CTMC induced by symbolic evidence).Let CTMCC = (S, P, E, L)
andρ = s0 s1 . . . sl a symbolic evidence in CTMCC in which all states are pairwise
distinct1. The CTMCCρ induced byρ onC is defined by:Cρ = (Sρ, Pρ, Eρ, Lρ) with:

– Sρ = {s0, . . . , sl, sabs} with sabs 6∈ S ∪ {s0, . . . , sl},
– Pρ(si, si+1) = P(si, si+1), Pρ(si, sabs) = 1 − Pρ(si, si+1) for 0 6 i < l and

Pρ(s, s) = 1 for s = sl or s = sabs

– Eρ(si) = E(si) andEρ(sabs) = 0 andLρ(si) = L(si) andLρ(sabs) = {abs}.

Stated in words,Cρ is the CTMC obtained fromC by incorporating all states in
ρ, and deleting all outgoing transitions from these states exceptsi → si+1. The total
probability mass of these omitted transitions becomes the probability to move to the
trap statesabs . It follows directly thatCρ is acyclic when ignoring the self-loops of the
absorbing states.

s0 s2 t2
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0.375

1
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Example 3.Consider CTMCC
in Fig. 1 and symbolic evidence
ρ1 = s0 s2 t2. The induced
CTMCsCρ1

is shown on the left.

The following result states that computing the probabilityof symbolic evidenceρ boils
down to a (standard) transient analysis of the induced CTMC by ρ.

Lemma 3. For CTMCC and symbolic evidenceρ for φ = ΦU
6t Ψ :

PrC6t(ρ) = πCρ(s, sl, t)

whereπCρ(s, sl, t) is the transient probability of statesl, the last state ofρ, at timet

under the condition thatCρ started ins.

This result enables us to exploit well-known algorithms forthe transient analysis of
CTMCs to determine the likelihood of a symbolic evidence. Infact, as CSL model
checking of time-bounded until-formulas is reduced to transient analysis (see [4]), the
desired likelihood can be determined by verifying the property ♦6t atsl

on the CTMC
Cρ. (Here,atsl

is an atomic proposition that only holds in statesl.) This yields an ap-
proximate solution up to an a priori user-defined accuracy and is part of the standard
machinery in model checkers such as PRISM [14] and MRMC [13].Alternatively, we
can exploit the fact thatCρ is acyclic (ignoring the self-loops at the absorbing states)
and use the closed-form expression for transient distributions in acyclic CTMCs as pro-
posed by Marieet al. [15]. This yields an exact solution.

1 This is not a restriction since it is always possible to rename a state alongρ while keeping e.g.
its exit rate and its labeling the same.



5 A first attempt to find probable symbolic evidences

It remains to clarify how symbolic evidences can be obtainedand how to obtain them
in such a way that small counterexamples result. As symbolicevidences are just state
sequences, the first idea is to adapt the strategy for DTMCs [10], cf. Section 2. That is,
the CTMC under consideration is discretized. This is done using uniformization [12], a
technique to transform a CTMC into a DTMC whose transient behaviour is equal (up
to some accuracyε) 2. k-SP algorithms are then exploited to obtain symbolic evidences
in ascending order of likelihood (in the obtained DTMC).k is determined on-the-fly as
the minimal natural number such that

∑k

i=1 Pr6t(ρ
i) > p wherep is the lower bound

of the property that is refuted. Let us first briefly present uniformization.

Uniformization (also known as Jensen’s method or randomization) [12] is a well-
known method for computing the transient probabilities of aCTMC at specific timet.
Its formulation involves construction of a DTMC and Poissonprocess from an original
CTMC. Uniformization is attractive because of its excellent numerical stability and the
fact that the computational error is well-controlled and can be specified in advance.

For CTMCC = (S, P, E, L), the uniformized DTMC isU = unif (C) = (S, U, L),
whereU is defined byU = I + Q

q
with q > maxi{E(si)} andQ = R−diag(E ). For the

special caseq = 0, U(s, s) = 1 for anys ∈ S. In the rest of the paper, we always useU
to denoteunif (C). The uniformization rateq can be chosen to be any value exceeding
the shortest mean residence time. All rates in the CTMC are normalized with respect to
q. For each states with E(s) = q, one epoch in the uniformized DTMC corresponds
to a single exponentially distributed delay with rateq, after which one of its successor
states is selected probabilistically. As a result, such states have no additional self-loop
in the DTMC. If E(s) < q, i.e., states has, on average, a longer state residence time
than 1

q
, one epoch in the DTMC might not be “long enough”; hence, in the next epoch,

these states might be revisited with some positive probability. This is represented by
equipping these states with a self-loop with probability1 − E(s)

q
+ R(s,s)

q
.

Remark 2 (Self-loops).As a CTMC is assumed to have no self-loops on non-absorbing
states, all self-loops in the uniformized DTMC are caused byuniformization.

After uniformization, the vector of state probabilitiesπC(t) at timet, namely the
transient probabilityvector, is computed as:

πC(t) = α0·
∞
∑

i=0

PP(i, qt)Ui =

∞
∑

i=0

PP(i, qt)πU (i), (2)

wherePP(i, qt) = e−qt (qt)i

i! is theith Poisson probability thati epochs occur in[0, t]
when the average rate is1

qt
andπU(i) is the state probability distribution vector afteri

epochs inU with transition matrixU determined recursively byπU (i) = πU (i−1)·U
with the initial distributionπU (0) = α0.

2 An alternative discretization is to use the embedded DTMC, but as this does not involve any
timing aspects, this is senseless.



The Poisson probabilities can be computed in a stable way with the Fox-Glynn
algorithm [8], thus avoiding numerical instability. The infinite summation problem is
solved by introducing a required accuracyε, so that‖πC(t) − π̃C(t)‖ 6 ε, where
π̃C(t) =

∑Nε(t)
i=0 PP(i, qt)·πU(i) is the approximation ofπC(t) andNε(t) is the num-

ber of terms to be taken in Equation (2) for timet, which is the smallest value satisfying:

Nε(t)
∑

i=0

(qt)i

i!
>

1 − ε

e−qt
= (1 − ε)·eqt. (3)

If qt is larger,Nε(t) tends to be of the orderO(qt).
Let θ denote a path inU , PathsU denote the set of all paths inU andPathsU (s) the

paths inU starting ins.

Model transformation. Given a CTMCC and a CSL formulaφ = ΦU
6t Ψ , we take

the uniformized DTMCU of C and remove all its self-loops. The resulting DTMC is
referred to asU⊗, which is an FPS instead of a DTMC. IfU⊗ would be normalized,
we obtain the embedded DTMC ofC. The probability in the embedded DTMC only
considers the race of transitions after the delay, while theprobability inU⊗ takes delays
into consideration. We remove self-loops inU as many paths inU correspond to the
same time-abstract path inC. Every path inU⊗ is a time-abstract path inC and satisfies
φ. Besides, the information of the self-loops (viz., delays)can be recovered easily by
taking the difference between the total probability of a state and one.

Algorithm by pure graph analysis. For s 6|= P6p(φ), a counterexample can be com-
puted as follows: Thek most probable paths inU⊗ are computed, each corresponding
to a symbolic evidence inC, i.e., symbolic evidences are computed in such an order
ρ1, ρ2, ..., ρk that Pr{ρ1} > Pr{ρ2} > ... > Pr{ρk}. k is determined on the fly, as the
smallest number such that

∑k

i=1 Pr6t(ρ
i) > p. Thek most probable paths problem

can be reduced tok-SP problem by the standard transformation in Section 2 which also
applies to FPSU⊗. The resulting algorithm becomes:

(1) k := 1; pr := 0;
(2) while pr 6 p do
(3) determine symbolic evidenceρk

as thek-th most probable path inU⊗;
(4) computePr6t(ρ

k);
(5) pr := pr + Pr6t(ρ

k);
(6) k := k + 1;
(7) od;
(8) return (ρ1, . . . , ρk−1)

The time complexity for computing
thek most probable paths is as thek-SP
problem, cf. [7],O(m+n log n+k). The
transformation fromρ toCρ takesO(|ρ|)
time. It takesO(|ρ|qt) to compute the
probability of a symbolic evidenceρ,
whereO(qt) is the number of terms be-
fore truncation (i.e.,Nε(t), cf. [4]) and
O(|ρ|) time is needed for vector-vector

multiplication. There arek symbolic evidences, which gives rise to the total time com-
plexityO(m + n log n + k|ρ|qt).

In most of the cases, probable paths inU⊗ correspond to probable symbolic evi-
dences inC. However, this is not always the case, since the time bound inthe property
is not considered. In particular, this approach does not guaranteePr6t(ρ

i) > Pr6t(ρ
j)

for i < j. An example is given as follows:



Example 4.Consider our running example. The uniformized DTMCU is illustrated
on the left. The uniformization rate is chosen asq = E(s1) = 20, sinces1 has the
largest exit rate. For symbolic evidencesρ2 = s0s1s2t2 andρ3 = s0s2t1 of Example
3, the probabilities inU⊗ are Pr{ρ2} = 0.100 and Pr{ρ3} = 0.045, respectively. For
CSL path formulaφ = a U

61b, Pr61(ρ2) = 0.24994 and Pr61(ρ3) = 0.16362. For
φ′ = a U

60.1b, Pr60.1(ρ2) = 0.04478 and Pr60.1(ρ3) = 0.06838. Thus, fort = 1,
Paths61(ρ2) is more probable thanPaths61(ρ3), whereas fort = 0.1, the reverse
holds.
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This implies that for symbolic evidences
ρ andρ′ and arbitrary time boundt, Pr{ρ} > Pr{ρ′}
cannot guarantee that Pr6t(ρ) > Pr6t(ρ

′). A
direct consequence is that the algorithm might
terminate with a large value ofk. The coun-
terexamples may thus be less comprehensive,
because evidences with large probability might
not be included. The algorithm in the next sec-
tion attempts to overcome this problem by tak-
ing the time bound into account.

6 Involving time bounds

The previous algorithm ignores the time boundt in determining the order of generating
the symbolic evidencesρ1, ρ2, .... By definition, however, every transition in the uni-
formized DTMCU takes1

q
time units. In fact, using the Poisson probabilities we can

determine the probability of pathθ in U to have a duration of at mostt:

Definition 9 ([17]). Given a CTMCC, for θ ∈ PathsU with |θ| = l andt ∈ R>0, the
probability ofθ occurring in[0, t] with rateq is defined as:

Pr6t(θ, qt) = PP(l, qt) · PrU{θ}.

Intuitively, given that|θ| transitions occur in the interval[0, t], the likelihood ofθ oc-
curring inU is PrU{θ}. As U is a DTMC,PrU{θ} is simply

∏|θ|−1
i=0 U(si, si+1) for

θ = s0s1s2....
It remains to establish a connection betweenPr6t(ρ) and the probabilities obtained

in the uniformized DTMCU , i.e.,Pr6t(θ, qt), whereθ relates toρ. This can be done
as follows. Consider symbolic evidenceρ, say of lengthl. Paths inU that correspond
to ρ = s0s1...sl visit the same state sequences0s1...sl but may take the self-loop insi

zero or more times. Recall that the purpose of this self-loopis to mimic the probability
for the CTMC to reside longer insi. The set of paths inU that correspond to (or can
mimic) ρ is defined by:

mimic(ρ) = {sn0

0 sn1

1 ...snl

l ∈ PathsU | ni > 0 for 0 6 i 6 l},

wherel = |ρ| andsn0

0 is short for then0-time replication ofs0. Then:

PrC6t(ρ) =
∑

θ∈mimic(ρ)

PrU6t(θ, qt) =

∞
∑

i=|ρ|

PP(i, qt)·
∑

θ∈mimic(ρ)∧i=|θ|

PrU{θ}



Note the similarity to Equation (2). The intuition is also similar: given a symbolic
evidenceρ of C, there are paths inU that can mimicρ. These paths can havei(= |ρ|)
hops,i+1 hops, and so forth. The extra hops are self-loops inU which simulate the
longer residence time in a state inC.

To truncate the infinite summation, which lengthsi do we need to consider? A
natural criterion for this is fortunately provided by the uniformization process. As the
probability of any path longer thanNε(t) is negligible – given an accuracyε – this sug-
gests to only consider paths up to lengthNε(t). By taking this approach, it is guaranteed
that the total probability mass of the not considered paths is less thanε.

An algorithm involving time. In the following, we give an algorithm that determines
paths in a decreasing order with respect toPr6t(θ, qt). Since we are interested in paths
without self-loops, we consider paths inU⊗.

Let$j
h denote thej-th most probable path inU⊗ of h hops, i.e. Pr{$j

h} > Pr{$j+1
h }.

Since the Poisson probability is fixed for a givenh, Pr6t($
j
h, qt) > Pr6t($

j+1
h , qt).

Let τk denote the path inU⊗ with k-th largest probabilityPr6t(τ
k, qt). Then:

τk = argmax
θ

{

Pr6t(θ, qt) | θ ∈ Qk
}

, (4)

whereQk is the candidate path set defined as:

Qk =







{

$1
h | 0 6 h 6 Nε(t)

}

if k = 1
(

Qk−1 − {τk−1}
)

∪
{

$
j+1
h

}

if k > 1 andτk−1 = $
j
h

wherej andh are the index and path length ofτk−1, the previous path computed.
The algorithm starts with a “candidate” path setQ1 which contains all$1

h paths,
the most probable path of lengthh, for 0 6 h 6 Nε(t). τ1 is picked out as the one
with the maximal probability inQ1, according to Equation (4). To compute the next
evidenceτ2, Q2 is computed on the basis ofQ1. As $1

l∗ has been removed fromQ1,
wherel∗ = |τ1|, another path of exactlyl∗ hops replaces it. This new path is$2

l∗ , i.e.,
the second most probable path with the same lengthl∗ asτ1. Thenτ2 can be picked
from Q2. Since each path inU⊗ is an evidence inC, the algorithm will terminate when
the probability of the firstk evidences exceedsp.

Candidate paths are stored in a priority queuepq sorted by the keysPr6t($
j
h, qt).

Theenqueuefunction inserts a new path to its proper position and thedequeuefunction
returns the pair(h, j) of the corresponding path with the highest probability inpq.
Function$(h, j, qt) computes thej-th h-hop most probable path$j

h, which can be
reduced to computingj-th shortesth-hop path inGU⊗ and can be solved by adapted
REA, see [10] for more details.

(1) k := 0; pr := 0; h := 0; PriorityQueuepq;
(2) for h := 0 to Nε(t) do pq. enqueue($(h, 1, qt)); od; \∗ Q1 ∗\
(3) while pr 6 p do \∗ Q2 to Qk ∗\

(4) (h′, j′) := pq. dequeue(); k := k + 1; ρk := $
j′

h′ ;
(5) $ := $(h′, j′ + 1, qt); pq. enqueue($); pr := pr + Pr6t($); od;
(6) return (ρ1, . . . , ρk−1);

Note that the resulting evidence sequenceρ1, ρ2, ... coincides withτ1, τ2, ....



Time complexity.The time complexity for computingQ1 is O(q2t2m), since there are
Nε(t)+1 most probable paths to compute and the time to compute one probable path is
O(qtm). Note thatNε(t) is linear inO(qt) [4]. To computeρk, there are at mostNε(t)
paths inQk, so it takesO(qt log(qt)) time [10]. There arek− 1 such paths (ρ2 through
ρk) to be computed. This yields a total time complexityO(q2t2m + kqt log(qt)).

A refined algorithm. The above algorithm will generate a sequence of evidences
ρ1, ...ρk by the decreasing order of their probability productPr6t(ρ

i, qt). However,
Nε(t) is usually large (typically, a few hundred or thousand) yielding a large setQ1.
As a result, the above algorithm is costly. We now suggest a heuristic to improve this
strategy. The basic idea is to use the Poisson probability function to obtain smaller
counterexamples.

Observation 1:We first notice that for fixedqt, the Poisson probabilityPP (h, qt)
is maximal whenh = dqte or h = bqtc, which is the expectation ofh. If h < dqte,
PP(h, qt) is monotonically increasing and ifh > bqtc, PP (h, qt) is monotonically de-
creasing, cf. the figure below where the horizontal axis is the hop counth. The function
is only non-zero at integer values ofh. The connecting lines do not indicate continu-
ity. This observation justifies the heuristics that we startfrom the crest of the function
(h = dqte) and proceed in two directions, in which way the hop counts forlarger
Poisson probabilities are explored first, as a consequence,the probability product will
usually be large. This bidirectional increments will stop when the bounds0 andNε(t)
have been reached.

Observation 2:When the valueqt is
small, the Poisson probability is almost
monotonically decreasing, cf. caseλ = 1
in the figure. Thenh = dqte is not suit-
able as the starting point any more.

Let $1
l∗ be the most probable path in

U⊗. It means that paths withh 6= l∗ have
less or equal probability than$1

l∗ . There-
fore,h = l∗ is also considered as a start-
ing point. Due to Observation 1 and 2, our

algorithm starts from exploring paths withH0 = max{dqte, l∗}.
We use the priority queuepq to keep track of the paths which have been explored

but not yet expanded. A path is “explored” when its probability is computed and added
to the total counterexample probability. Note that every path that is explored is already
taken as an evidence. This is different from the previous algorithm where we might
explore many more paths (the huge basic setQ1) than actually needed. That also partly
explains why this algorithm is more efficient. A path is called “expanded” when it is
dequeued frompq and its successor is computed. When a path is dequeued, it means
that it has the largest probability product among all the paths in the queue; and this fact
makes the expansion reasonable.

New path(s) or evidence(s) will be added to the counterexample in each iteration.
The increments are in two dimensions. In one dimension, we have to increase the index
of some most probable path. More specifically, we dequeue thepath$

j
h with the highest

probabilityPr6t($
j
h, qt) from pq, and add its successor$

j+1
h , namely the(j + 1)-st



most probable path with the same hop count. This happens in each iteration. In the other
dimension, the minimal and maximal number of hops of paths are incremented. We use
Hmin andHmax to denote the minimal and maximal hop counts explored so far.Two
more new paths withHmin − 1 andHmax + 1 hops are added, namely,$1

Hmin−1 and
$1

Hmax+1 when the bounds0 andNε(t) have not yet been reached. The more iterations
the algorithm proceeds, the farther awayHmin andHmax are fromH0 and the less
Poisson probability the path will have.

The sketch of the improved algorithm is shown as follows:

(1) Compute most probable path$1

l∗ in U⊗; \∗ Initialization:∗\
(2) pr := Pr6t($

1

l∗); PriorityQueue pq.enqueue($1

l∗);
(3) Hmin := Hmax := max{dqte, l∗}; k := 1; ρk = $1

l∗ ;
(4) while pr 6 p do \∗ Main body:∗\
(5) (h′, j′) := pq. dequeue(); $1 := $(h′, j′ + 1, qt); \∗ Increments onj ∗\
(6) pq.enqueue($1); pr := pr + Pr6t($3); ρk := $1; k := k + 1;
(7) if Hmin > 0 then \∗ Decrease of hop count∗\
(8) Hmin := Hmin − 1; $2 := $(Hmin, 1, qt); pq.enqueue($2);
(9) pr := pr + Pr6t($2); ρk := $2; k := k + 1;
(10) if Hmax < Nε(t) then \∗ Increase of hop count:∗\
(11) Hmax := Hmax + 1; $3 := $(Hmax, 1, qt); pq.enqueue($3);
(12) pr := pr + Pr6t($3); ρk := $3; k := k + 1; od;
(13) return (ρ1, ..., ρk−1);

Note that$1
l∗ in Line (1) can be computed by SP algorithms, say Dijkstra’s [6], in GU⊗ .

7 Conclusion

Comparison of algorithms. This paper presented a set of approximate algorithms for
computing small sets of paths that indicate the violation oftime-bounded constrained
reachability probabilities. The algorithm involving timebounds for computing infor-
mative evidences considers Poisson probability besides the probability of paths them-
selves, which characterizes the significance of the paths inU , thus provides a clue of the
significance of the corresponding evidences inC. As we mentioned, the first algorithm
of pure graph analysiscannotguarantee that for the sequence of paths that computed
by our algorithm in order:ρ1, ..., ρk, it holds thatPr6t(ρ

1) > ... > Pr6t(ρ
k). Unfortu-

nately, the one involving time also cannot guarantee this, however, itcanguarantee that
Pr6t(ρ

1, qt) > ... > Pr6t(ρ
k, qt) which is usually very close to the target sequence.

The refined algorithm exploits the monotonicity of the Poisson probability function to
obtain small counterexamples. Experimental research of the proposed algorithms is to
be carried out as the future work.

Related work. Aljazzar et al. [1][2] applied directed explicit-state search algorithms
to determine a set of diagnostic traces which carry large amount of probability. Their
algorithms are guided by heuristics which exploit stochastic information on the traces.
In contrast, we have proposed several algorithms accordingto different levels of knowl-
edge about the CTMCs, which to some extent shows the significant role of probabil-
ity and time. The uniformization technique discretizes thecontinuous-time setting and



makes the efficient algorithms for DTMC counterexample-generation [10] adaptable
here. Moreover, the analysis and utilization of Poisson probability distribution gives
rise to an almost decreasing order of the evidence probabilities, which enables the in-
cremental exploration of the candidate evidence set.
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