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Abstract. Probabilistic model checkers typically provide a list ddividual state
probabilities on the refutation of a temporal logic formufar large state spaces,
this information is far too detailed to act as useful diagiedeedback. For quan-
titative (constrained) reachability problems, sets ohpahat carry enough prob-
ability mass are more adequate. We recently have shownrththeicontext of
discrete-time probabilistic processes, such sets of sstalze can be efficiently
computed by (hop-constrainekl)shortest path algorithms. This paper considers
the problem of generating counterexamples for continuons-Markov chains.
The key contribution is a set of approximate algorithms fanputing small sets
of paths that indicate the violation of time-bounded (coaised) reachability
probabilities.

1 Introduction

A major strength of model checking is the possibility to gete counterexamples in
case of a property violation. In fact, it is this facility trmakes model checking an effec-
tive bug hunting technique. Even if only a fragment of théremhodel can be searched,
such counterexamples provide useful diagnostic feedliHfikient algorithms for gen-
erating (succinct) counterexamples therefore have redeionsiderable attention by
the model checking community, cf. [5, 9, 18]. For probakisnodels, though, coun-
terexample generation is far less developed.

Model checking of probabilistic models is focused on verifysystem models in
which transitions are equipped with random informatiorpétar models are discrete-
and continuous-time Markov chains (DTMCs and CTMCs, rethpag), and variants
thereof which exhibit nondeterminism. Most probabilistiodel checkers support vari-
ants of CTL [3, 4, 11]. For quantitative properties such ag ‘tmaximal) probability to
reach a set of goal states by avoiding certain states is dtphadternative algorithms
have to be employed. In case such property is refuted, treigd® provide a set of
paths—such path is called awidence—that all together carry a probability mass that
exceedy. As such sets could be huge, the interest is in generatintj sets, possibly
the smallest possible. Preferably, the probability massiof sets deviates significantly
from the bound.

Recently, we have shown [10] that for DTMCs wrt. the quatitiea(hop-constrained)
until formulas, most probable evidences—thus contrilgutite most to the violation—
can be determined efficiently using either well-known (foammstrained) shortest path



(SP or HSP) algorithms, or Viterbi's algorithm. In additi@mallest counterexamples—
containing the least number of evidences while maximallyjiatang fromp among all
counterexamples containing the same number of evidencas-be determined using
k-SP (-HSP) algorithms. Herg; is the size of the counterexample and is determined
on-the-fly. Similar results hold for properties wherds a lower bound, where sets
of paths are considered that indicate the violation of theaftof the formula to be
checked; see [10] for details.

This paper considers the generation of evidences and gexataples for model
checking CSL [3, 4] on CTMCs. For (hop-constrained) readlpproperties expressed
in CSL, the algorithms of [10] can be exploited. Properties involve time, however,
require other strategies. The continuous-time settingfisntunately different and more
complicated than the discrete one. First, an evidence ¢drea single timed path (an
alternating sequence of states and time instants) as stich Ipave zero probability.
Instead, we considesymbolic evidencel®r & U S’y i.e., time-abstract paths—finite
state sequences—that satigfy) w. A symbolic evidence induces a set of concrete ev-
idences, viz. the set of timed paths on the same state segjuwérase duration does
not exceed. Counterexamples are sets of symbolic evidences that éxmebability
p. The main contribution of the paper is a set of algorithmsdomputing informa-
tive (symbolic) evidences and counterexamples, i.e.,endds with large probability
and small counterexamples. We first indicate how the likathof symbolic evidences
can be computed, both numerically and analytically. Thieetapproach exploits the
fact that symbolic evidences are in fact acyclic CTMCs forickihclosed-form solu-
tions exist [15]. We then consider the problem of how to finohbglic evidences such
that small counterexamples result. First, we (naively)lypye strategy from [10], i.e.,
usek-SP algorithms on a discretized CTMC (obtained by unifoation [12]). This
yields a simple algorithm, though may result in large cotexamples. A first variant
exploits timing information and generates paths in therdiswed CTMC that corre-
spond to symbolic evidences. The advantage of this appiiedlcht one can guarantee
that counterexamples are obtained that contain the srmallesber of evidences wrt.
to their probability contribution in the CTMC. As probablatps of this kind usually
correspond to probable symbolic evidences, this yielddlsmoanterexamples. Finally,
we present a heuristic to improve the time and memory effigiefi this algorithm.

Organization of the papefSection 2 summarizes the main steps of counterexample
generation for DTMCs, and defines the main concepts of CTMggsled for the rest

of the paper. Section 3 defines symbolic evidences and caxat@ples. Computing
probabilities of symbolic evidences is treated in SectioSéction 5 and 6 present the
algorithms for determining symbolic evidences. Sectiomfiatudes the paper.

2 Preliminaries

Counterexample generation in DTMCs. Let AP denote a fixed, finite set of atomic
propositions ranged over by b, ¢, . . ..

Definition 1 (DTMC). A (labelled)discrete-time Markov chaifDTMC) D is a triple
(S,P, L) with S a finite set of state®? : S x S — [0,1] a stochastic matrix, and
L : S — 247 alabelling function.



Fora DTMC,} . s P(s,s") = 1, i.e.itisstochasticlf 3", < P(s,s’) € [0,1),
then we call the model &lly probabilistic system (FPSnd it is sub-stochasticA
states is absorbing ifP(s,s) = 1, i.e., if s only has a self-loop. A path in D is a
state sequencs) s ss... such thaP(s;, s;+1) > 0, for all i. The probability Pfo} for
finite o = sg s1...s, is defined a®(so, s1)-P(s1,52) ... P(sn—1, sn). For finite set
of pathsC, Pr(C) = >~ .~ Pr{o}. o[i] denotes théi + 1)-st state om.

For PCTL [11] formulaP«,(¢$) where¢ is a path formula, we have:

sE Pp(e) iff Pr{c|o[0] =sando = ¢} > p.

So,P<,(¢) is refuted by state whenever the total probability mass of @Hpaths that
start ins exceed9. This indicates that a counterexample 1, (¢) is asetof paths
starting ins and satisfyingp. As ¢ is a path formula whose validity can be withessed
by finite state sequencds)ite paths suffice.

Definition 2 (Evidence). An evidencefor P¢,(¢) in states is a finite patho that
starts ins and minimally satisfieg. A strongest evidends an evidence* such that
Pr{c*} > Pr{c} for any evidence.

A finite patho minimally satisfiesy if it satisfies¢, but no proper prefix of does so.

Definition 3 (Counterexample).A counterexampléor P, (¢) in states is a setC' of
evidences such th&r(C) > p. C* is asmallest (most indicative) counterexamifle
|C*| < |C| for all counterexample§’ andPr(C*) > Pr(C") for any counterexample
C’ with |C'| = |C*|.

The intuition is that a smallest counterexample is mostlgeexiing the required
probability bound given that it has the smallest number ¢figalo compute the strongest
evidence and smallest counterexample, the DTME transformed to a weighted di-
graphGp = (V, E, w), whereV andF are finite sets of vertices and edges, respectively.
V = Sand(v,v') € Eiff P(v,v") > 0, andw(v,v") = log(P(v,v’)~1). Multiplica-
tion of transition probabilities is thus turned into the #ideh of edge weights along
paths. Now:

Lemma 1. For any patho fromstotin DTMCD, k € N5, andh € NU {oo}: o is
a k-th most probable path of at mosthops inD iff o is a k-th shortest path of at most
h hops inGp.

Considerp = @& U S"w for PCTL state-formulag, ¥ and hop boundv € N U
{oo}. If s = P<p(e), then a strongest evidence can be found by a shortest path (SP
algorithm once all-states and all—& A —¥)-states in DTMCD are made absorbing.
Similarly, a smallest counterexample can be determinekl8¥ algorithms that allow
k to be determined on-the-fly. B # oo, hop-constrained SP andSP algorithms
need to be employed; they have pseudo-polynomial time aexitplin O(hm) and
O(hm + hklog(™)), respectively, where = |S| andm is the number of non-zero
entries inP.



CTMCs.

Definition 4 (CTMC). A (labelled) continuous-time Markov chain (CTMC)is a
quadruple(S, P, E, L) with (S,P, L) aDTMC andE : S — R arate vector, assign-
ing exit rates to states.

(S,P, L) is theembeddedTMC of
C. E(s) denotes the rate of firing a transi-
1tion from s, which, in other words, speci-
fies the average delay of transitions. More
precisely, with probability1 — e~ #(5)t),
a transition is enabled within the nekt
p ) ltime units provided that the current state
E(u) =0 E(s2) =16 E(t;)=0 iss.If P(s,s’) >0for more than one state
- s', aracebetween the outgoing transitions
Fig-1.CTMCC from s exists. The probability of transition
s — s’ winning this race in time intervd0, t] is given by:

E(so) = 10 E(s1) =20 E(t) =0

P(s,s',t) = P(s,8")-(1 — e‘E(S)‘t),

The probability density function ig(s,s’,t) = P(s,s')-E(s)-e~P()*, Note that
P(s,s',t) fo s, 8’ t1)-dt1. We sometimes usR(s, s’) = P(s, s')-F(s) to denote
the rate of the transition — s'.

Remark 1.Except for absorbing states, all states in a CTMC are asstionedve no
self-loops. The reason for this assumption will becomerdkgar. Note that this is not
a severe restriction as self-loops can be removed withéerttaig the transient and the
steady-state probabilities of the CTMC.

Example 1.An example CTMQ is shown in Fig. 1.5 = {s;, t1,t2, u}; L(s;) = {a},
L(t1) = L(t2) = {b} andL(u) = fwith 0 < i < 2; E(so) = 10, E(s1) = 20, and so
on. States:, t; andt, are absorbing.

Paths and probability measure.

Definition 5 (Timed paths in CTMCs). LetC = (S, P, E, L) be a CTMC. Arinfinite
timed patho is a sequence;-%s;5s,-3... with s; € S andt; € Rsq such that
P(si,si+1) > 0fori > 0. Afinite timed patho is a finite prefix of an infinite path
ending in an absorbing state.

Let |o| denote the length of the path i.e., |303812>...sl,1tt>181| =1 1s0] =0
and|o| = oo for infinite o. For (finite or infinite) pathr and: < |o|, leto[i] = s; be
the (i+1)-st state obr, andd(o, ) = t; be the time spentig;. Fort € R, andk the
smallest index with < E?:o t;, letc@t = o[k] denote the state in occupied at time
. For finite pathy andl = |01, §(c,1) = oo; and fort > Y-\_( t;, 0Ot = 5.

A time-abstract paths obtained by omitting all timing information from a timed
path. The functiom performs this, i.e q(so 5 s1 N ) = S0S1... Let Paths® denote



the set of all timed paths in CTMC and Paths<,, all time-abstract paths ié. The
superscript is omitted i€ is clear from the contexiPaths(s) and Paths .5s(s) denote
the set of timed and time-abstract paths starting fepnespectively. We usgto range
over time-abstract paths.

A o-algebra and probability measure of the timed paths of a CTsiCbe defined
using the standard cylinder set construction, cf. [4]. ltofes that time-convergent

paths, i.e., paths on which time does not diverge, have pitityeD.

CSL. Continuous Stochastic Logic (CSL) [4] is a variant of theitogriginally pro-
posed by Aziz et al. [3] and extends PCTL by path operatotsréfkect the real-time
nature of CTMCs: in particular, a time-bounded until operat

Syntax. The syntax of CSL state-formulae is defined as follows:
Pu=tt|a|P|PAD| Pap(d),

wherep € [0, 1] is a probability,< € {<, <, >, >}. Fort a non-negative real number
ort = oo, ¢ is a path-formula defined according to the following grammar

¢ =dUS'Y | o WS,

The path formulab US!'¥ asserts that is satisfied within time units and that at all

preceding time instant® holds.W<? is the weak counterpart which does not require

to eventually become true. For the sake of simplicity, thetHoperator and the steady-
state operator [4] are not considered here.

Semantics.CSL state-formulae are interpreted over the states of a CTIMCC =
(S,P, E, L) with labels inAP, andSat(®) = {s € S| s = @}. The semantics of CSL
state-formulae is defined for path-formulas:

skt iff true sEPAY iff skE=d&ands=v
skEa iff ae L(s) s = Pap(p) iff  Prob(s,¢) <p
sE - iff not (s P)

Prob(s, ¢) denotes the probability measure of all paths Paths starting in states
and satisfyingp, i.e., Prob(s, ¢) = P{o € Paths(s) | o = ¢}. For a timed patly in
C, the satisfaction relation for CSL path-formulae is defined

o= oUSty iff 0@ |= ¥ for somezr < t ando@y = ¢ forally < z,
o = WS iff either o = ®US'W oroQuz = @ forall z < t.

The until and weak until operators are closely related. Tdliews from the follow-
ing equations. For any CSL-formuldeand? we have:

Pop(@ WSW) =Py, (@ A W) USH (= A —T))
Psp(@USW) = Py, (@ A ~W)WSH (=D A =)

Counterexamples foP, (¢ US'¥) can be obtained by considering a formula of the
form P<,, (¢ US'¥’). This can be seen as follows. Extend the label§ wfith a new



atomic propositiongt 5, say, wheret g is a new atomic proposition such thak= at g

iff (i) either s = —-® A =¥ (ii) or s € B where B is a bottom strongly connected
component (BSCC) such th& C Sat(® A —¥), or shortlyBgp—w. ABSCCB is a
maximal strong component that has no transitions leanghen:

Psp(@UST) = Pey (8 A -T)WSH(=P A ) = Py (& A —0) UStatp)

Intuitively, to show that the set dfs U S'@)-paths has probability p, it is sufficient
to show that the paths violatingU<*¥ have probability< 1 — p.

Note that fort = oo, ® US'¥ denotes the standard-until operator. As this opera-
tor can be verified on the embedded DTMC, counterexampledearbtained as for
DTMCs. In the sequel, we therefore considet cc.

3 Evidences and counterexamples

Assumes = P¢,(¢) for CSL path-formulap. Unlike in DTMCs, a timed path could
not be an evidence since it always has probability 0. Inst@adtonsidesymbolicevi-
dences that represent a set of (concrete) finite timed patis§ygng¢. For time-abstract
pathp, let p|, denote the prefix of of lengthk, i.e.,(sps1...)l; = sos1 - - - Sk-

Definition 6 (Symbolic evidence).A symbolic evidencdor P¢,(¢) in states is a
finite time-abstract path that starts inand minimally satisfie®. Let Paths qs(s, ¢)
denote the set of symbolic evidences starting fedor ¢.

Actually, a symbolic evidence fap = ¢ US ¥ is a finite time-abstract path that
goes alongp-states and halts at the first encountepestate. A symbolic evidence for
¢ = & USt ¥ represents a set of (infinite) timed paths in the CTMC:

-1
Paths<i(p) = {o € Paths | p=a(0)|; A Z(S(a, i) <t} wherel = |p|.
i=0

The timed paths induced yhave a common initial state sequence, yizand the total
duration of this prefix is at most i.e., the last state gf is reached withirt. We define
the probability of a symbolic evidengeto bePr<;(p), and for the se€' of symbolic

evidences, the probability Br(C') = >_ - Pr<:(p). A strongestsymbolic evidence
is a symbolic evidence of maximal probability.

Lemma 2. For CTMCC and¢ = @ US' &: Prob(s, ¢) = 2 pe Paths s (5,6) LT<t(P)-

For states in CTMC C and formulaP«,,(¢) we now have:

s - Pep(0) ff Prob(s,¢) > p iff > Pralp) >p
pE Paths qps(s,0)
As Paths 415 (s, ¢) only contains finite time-abstract paths, counterexanmgresets

of symbolic evidences of sufficient probability mass.

Definition 7 (Symbolic counterexample).A symbolic counterexampléor P¢,(¢)
wherep = & US! ¥ is a setC of symbolic evidences fgrsuch thatPr(C) > p.



Example 2.For the CTMCC in Fig. 1 and CSL formul&P¢g.45(a U <1b) the sym-
bolic evidences ar@, = sgsaota, p2 = soS1Sate, p3 = Ssosit1, and so on. These
paths all satisfy: U b. For instanceso>s; "2 s, 2%ty € Paths<1(p2). Without spec-
ifying the details (see next section), the probabilitiedhe symbolic evidences are:
Pl"gl(pl) = (0.24998, Prgl(pg) = 0.24994 andegl(pg) = 0.16667. C = {pl,pz}

is a counterexample siné&(C') > 0.45, butC’ = {p1, ps} is not.

The remainder of the paper is concerned with determininmi®jic) counterex-
amples and symbolic evidences. As in conventional modetkihg, the intention is
to obtaincomprehensibleounterexamples. We interpret this as counterexamples of
minimal size, i.e., minimal cardinality. An algorithmicedleton to generate such coun-
terexamples iteratively is given below:

The termination of this algorithm is

8; \’fv ﬁel; f”;:é)é guaranteed as the violation of the prop-
) dg ter\mzi)ne symbolic evidengs: erty has been already established prior to
4) computePr, (p*); "| invokingit. Evidently, _the smaller the in-
(5) o= pr +\Pr@(pk); dexk, the more sucqnct the counterex-
(6) k=k+1; ample. The next section presents a way
(7)  od; to determinePr,(p), i.e., the probabil-
(8) return (p*,...,p" 1) ity of a symbolic evidence (cf. line (4)).

In subsequent sections, we present algo-
rithms that aim to finding probable symbolic evidences, iak (3) of the algorithm.
Stated differently, we aim to terminating with a small vabfe.

4 The likelihood of a symbolic evidence

Assume we have symbolic evidenee- sg s1 ss .. . s; at our disposal. The probability
Pr¢:(p) of this evidence—in fact, the probability of all concretédmnces of up to
time t—is given by:

l72t

/Ot (p(so,sl,tg)-(...(/ot_ - ip(sl_l,sl,tl_l)-dtl_l)...)> dto Q)

wherep(s, s1,to) denotes the probability density function &f — s; winning the
race at time instarit, in the interval0, ¢]. The corresponding probability is thus derived
by the outermost integral. Suppose the transitipn— s; takes place at time instant
to. Then the possible time instant for the second transitior- so to take place is
in [0,t—to]. This determines the range of the second outermost intetinal rest is
likewise. The innermost integral determines the residdinge in states;_, the one-
but-last state ip.

To avoid computing this (somewhat involved) integral dilby numerical tech-
nigues we resort to a simpler technique. The main idea isolatis the time-abstract
path p from the entire CTMC. This yields a simple acyclic CTMC, ,.an acyclic
phase-type distribution [16] which can be solved eithehaitally or numerically.



Transformation into an acyclic CTMC. As a first step, we transform the CTMC
as suggested in [4]. (The same strategy was applied in 8e2tfor DTMCs prior to
applying SP algorithms.) Consider CTMCand CSL path-formula = ¢ USt ¢, All
U-states as well as al-® A —)-states are made absorbingdni.e., their outgoing
transitions are replaced by a self-loop. It is not difficolestablish that the validity of
P<p(¢) remains invariant under this modification. In the rest ofgaper, CTMCs are
assumed to have been subject to this transformation.

Definition 8 (CTMC induced by symbolic evidence)Let CTMCC = (S,P,E, L)
andp = sp s1...s; a symbolic evidence in CTMC in which all states are pairwise
distinct!. The CTMCC,, induced byp onC is defined byC, = (S,,P,, E,, L,) with:
— S, ={50,---,51,Saps f With s4ps & S U {s0,..., 81}
— Py(si,8i+1) = P(ss,8i41), Po(8i,Saps) = 1 — Py(s4,841) for0 < ¢ < ! and
P,(s,5) =1fors=s;0rs=sgus
— E,(s;) = E(s;) and E,(sqps) = 0a@ndL,(s;) = L(s;) andL,(sqs) = {abs}.
Stated in words(, is the CTMC obtained fron® by incorporating all states in
p, and deleting all outgoing transitions from these stateepts; — s;+1. The total
probability mass of these omitted transitions becomes thbability to move to the
trap states,;,. It follows directly thatC,, is acyclic when ignoring the self-loops of the
absorbing states.

Example 3.Consider CTMCC

in Fig. 1 and symbolic evidence
p1 = Sosa2ta. The induced
CTMCsC,, is shown on the left.

The following result states that computing the probabiitgymbolic evidence boils
down to a (standard) transient analysis of the induced CTW@. b

Lemma 3. For CTMCC and symbolic evidengefor ¢ = @ US! ¥
Pré,(p) = (s, 51,t)

wherexCr (s, s1,t) is the transient probability of state, the last state op, at timet
under the condition that,, started ins.

This result enables us to exploit well-known algorithms tlog transient analysis of
CTMCs to determine the likelihood of a symbolic evidencefdaot, as CSL model
checking of time-bounded until-formulas is reduced to srant analysis (see [4]), the
desired likelihood can be determined by verifying the propé<‘ at,, on the CTMC
C,. (Here,at,, is an atomic proposition that only holds in state) This yields an ap-
proximate solution up to an a priori user-defined accuradyisupart of the standard
machinery in model checkers such as PRISM [14] and MRMC [ABgrnatively, we
can exploit the fact that, is acyclic (ignoring the self-loops at the absorbing sfates
and use the closed-form expression for transient distabatin acyclic CTMCs as pro-
posed by Mariest al.[15]. This yields an exact solution.

! This is not a restriction since it is always possible to reaanstate along while keeping e.g.
its exit rate and its labeling the same.



5 Afirst attempt to find probable symbolic evidences

It remains to clarify how symbolic evidences can be obtaiaed how to obtain them
in such a way that small counterexamples result. As symigoiidences are just state
sequences, the first idea is to adapt the strategy for DTMQs ¢l Section 2. That is,
the CTMC under consideration is discretized. This is doregusniformization [12], a
technique to transform a CTMC into a DTMC whose transiengbeiur is equal (up
to some accuracy) 2. k-SP algorithms are then exploited to obtain symbolic evigsn
in ascending order of likelihood (in the obtained DTME&)s determined on-the-fly as
the minimal natural number such th@f:1 Pr<;(p*) > p wherep is the lower bound
of the property that is refuted. Let us first briefly preserfarmization.

Uniformization (also known as Jensen’s method or randomization) [12] is l& we
known method for computing the transient probabilities GEMC at specific time.

Its formulation involves construction of a DTMC and Poisgwacess from an original
CTMC. Uniformization is attractive because of its excefleamerical stability and the
fact that the computational error is well-controlled and ba specified in advance.

For CTMCC = (S, P, E, L), the uniformized DTMC ig/ = unif (C) = (S,U, L),
whereU is defined byJ = | +% with ¢ > max;{E(s;)} andQ = R—diag(E). For the
special case = 0, U(s, s) = 1 foranys € S. In the rest of the paper, we always @se
to denoteunif (C). The uniformization ratg can be chosen to be any value exceeding
the shortest mean residence time. All rates in the CTMC ammalized with respect to
q. For each state with E(s) = ¢, one epoch in the uniformized DTMC corresponds
to a single exponentially distributed delay with rateafter which one of its successor
states is selected probabilistically. As a result, suctesthave no additional self-loop
in the DTMC. If E(s) < ¢, i.e., states has, on average, a longer state residence time
than%, one epoch in the DTMC might not be “long enough”; hence, ertext epoch,
these states might be revisited with some positive prolablihis is represented by

E(s) R(s,s)

equipping these states with a self-loop with probability - T

Remark 2 (Self-loopshs a CTMC is assumed to have no self-loops on non-absorbing
states, all self-loops in the uniformized DTMC are causedtijormization.

After uniformization, the vector of state probabilitie§(¢) at timet, namely the
transient probabilityvector, is computed as:

ﬂc(t) = Qp- i PP(Z7 qt)Ui = i PP(Za qt)ﬂu(i)’ (2
=0 1=0

where PP (i, qt) = e*qt% is theith Poisson probability thatepochs occur if0, ¢]
when the average rate ;11§ andz¥ (i) is the state probability distribution vector after
epochs in/ with transition matrixU determined recursively by" (i) = 7 (i—1)-U
with the initial distributionz® (0) = ay.

2 An alternative discretization is to use the embedded DTME ais this does not involve any
timing aspects, this is senseless.



The Poisson probabilities can be computed in a stable way thi# Fox-Glynn
algorithm [8], thus avoiding numerical instability. Thefimte summation problem is
solved by introducing a required accuragyso that||z€(t) — z°(t)|| < e, where
76(t) = ZNE“) PP(i,qt)-7%(4) is the approximation of€ (t) and N_(t) is the num-
ber of terms to be taken in Equation (2) for timevhich is the smallest value satisfying:

Ns(f)

t)? 1—5

eqt

=(1—¢)-e. 3)

=0

If gt is larger,N.(t) tends to be of the ord&P(qt).
Letd denote a path itt, Paths" denote the set of all pathsdnand Paths" (s) the
paths in/ starting ins.

Model transformation. Given a CTMCC and a CSL formula = & USt &, we take
the uniformized DTMCU/ of C and remove all its self-loops. The resulting DTMC is
referred to a$/®, which is an FPS instead of a DTMC.U® would be normalized,
we obtain the embedded DTMC ¢f The probability in the embedded DTMC only
considers the race of transitions after the delay, whilgtogability inZ(® takes delays
into consideration. We remove self-loopstihas many paths it¥ correspond to the
same time-abstract pathdh Every path iri/® is a time-abstract path ihand satisfies
¢. Besides, the information of the self-loops (viz., delayah be recovered easily by
taking the difference between the total probability of destnd one.

Algorithm by pure graph analysis. Fors = P«,(¢), a counterexample can be com-
puted as follows: Thé& most probable paths i#® are computed, each corresponding
to a symbolic evidence id, i.e., symbolic evidences are computed in such an order
Pt p%, .., pF that PEp'y > Pr{p?} > ... > Pr{pF}. k is determined on the fly, as the
smallest number such th{tjf:1 Pr<:(p') > p. Thek most probable paths problem
can be reduced te-SP problem by the standard transformation in Section 2 lnliso
applies to FP%(®. The resulting algorithm becomes:

1) k=1 pr:=0; The time complexity for computing
@) while pr < p do thek most probable paths is as theSP
(3) determine symbolic evidengé | problem, cf. [7]O(m~+nlogn+k). The
as thek-th most probable path i1®; transformation fromp to C,, takesO(|p|)
4) computePre;(p*); time. It takesO(|p|qt) to compute the
Q) pr = pr+ Pre.(p"); probability of a symbolic evidence,
®) _ ki=k+1; whereO(qt) is the number of terms be-
g; (r)eci’um ' 1) fore truncation (i.e.N.(t), cf. [4]) and
O(|p|) time is needed for vector-vector

multiplication. There aré symbolic evidences, which gives rise to the total time com-
plexity O(m + nlogn + k|p|qt).

In most of the cases, probable pathg4f correspond to probable symbolic evi-
dences irC. However, this is not always the case, since the time boutttkiproperty
is not considered. In particular, this approach does nategueePr <. (p*) > Pre:(p?)
for i < j. An example is given as follows:



Example 4.Consider our running example. The uniformized DTNACs illustrated
on the left. The uniformization rate is chosenggs= E(s1) = 20, sinces; has the
largest exit rate. For symbolic evidenges= sgs1s2t2 andps = sgsot; of Example
3, the probabilities ii/® are P{p2} = 0.100 and P{p3} = 0.045, respectively. For
CSL path formulap = a US'h, Pre;(p2) = 0.24994 and P (p3) = 0.16362. For

¢ = aUS%b, Preg1(pe) = 0.04478 and Prg 1 (p3) = 0.06838. Thus, fort = 1,

Paths<i1(p2) is more probable tha®aths<1(ps), whereas fott = 0.1, the reverse

holds.
05 1 This implies that for symbolic evidences

() ) pandp’ and arbitrary time bountd Pr{p} > Pr{p'}
cannot guarantee that £xp) > Prg.(p’). A
direct consequence is that the algorithm might
terminate with a large value df. The coun-
terexamples may thus be less comprehensive,

(v} because evidences with large probability might
not be included. The algorithm in the next sec-
tion attempts to overcome this problem by tak-
ing the time bound into account.

1

0.2
Fig. 2. unif (C) =

6 Involving time bounds

The previous algorithm ignores the time bourid determining the order of generating
the symbolic evidences', p?, .... By definition, however, every transition in the uni-
formized DTMCU/ takes! time units. In fact, using the Poisson probabilities we can
determine the probability of pathin I/ to have a duration of at most

Definition 9 ([17]). Given a CTMQC, for § € Paths" with [0 = [ andt € R+, the
probability off occurring in[0, ¢] with rateq is defined as:

Pr<:(0, qt) = PP(l,qt) - PH{6}.

Intuitively, given that|d| transitions occur in the intervd, ¢], the likelihood off oc-
curring it/ is Pr*{0}. As U is a DTMC, Pr¥* {0} is simply [T.?'s" U(s;, s41) for
0= S$0S8152..

It remains to establish a connection betw®er,(p) and the probabilities obtained
in the uniformized DTMQA, i.e., Pr<.(9, qt), whered relates top. This can be done
as follows. Consider symbolic evidenpgesay of length. Paths in/ that correspond
to p = sps1...s; Visit the same state sequengg; ...s; but may take the self-loop is;
zero or more times. Recall that the purpose of this self-isdp mimic the probability
for the CTMC to reside longer ig;. The set of paths it¥ that correspond to (or can
mimic) p is defined by:

mimic(p) = {sg°s7"...s7" € Paths | n; > 0for0 <i <1},

wherel = |p| andsg® is short for thezo-time replication ofsg. Then:

Prcgt(p) = Z Pr<t 0, qt) = Z PP(i, qt)- Z PH {6}

0emimic(p) i=|p| 0emimic(p)Ni=|0|



Note the similarity to Equation (2). The intuition is alsondiar: given a symbolic
evidencep of C, there are paths it that can mimicp. These paths can have= |p|)
hops,i+1 hops, and so forth. The extra hops are self-loop& iwhich simulate the
longer residence time in a statedn

To truncate the infinite summation, which lengthdo we need to consider? A
natural criterion for this is fortunately provided by theif@nmization process. As the
probability of any path longer thaN.(¢) is negligible — given an accuraey- this sug-
gests to only consider paths up to lengih(¢). By taking this approach, itis guaranteed
that the total probability mass of the not considered patlhesis than.

An algorithm involving time. In the following, we give an algorithm that determines
paths in a decreasing order with respedPta. (9, ¢t). Since we are interested in paths
without self-loops, we consider pathsli? . , ,

Letcoy, denote thg-th most probable path #® of 7 hops, i.e. Pfwy, } > F{r{w{fl}.
Since the Poisson probability is fixed for a givenPr; (w7, gt) > Pre:(wi ™, qt).
Let 7% denote the path itY® with k-th largest probabilitfPr<, (7%, qt). Then:

= arg max {Prgt(G, qt) |0 € Qk}, 4)

whereQ” is the candidate path set defined as:

o w;|o<h<NE(t)} if k=1
; QF 1 — {Tk’l}) U {wfrl} if k> 1andr*! =)

wherej andh are the index and path lengthdf—!, the previous path computed.

The algorithm starts with a “candidate” path 2t which contains alkz;. paths,
the most probable path of length for 0 < h < N.(t). 7! is picked out as the one
with the maximal probability inQ!, according to Equation (4). To compute the next
evidencer?, Q% is computed on the basis ¢f'. As /. has been removed fro@!,
wherel* = |r!|, another path of exactly hops replaces it. This new pathds’., i.e.,
the second most probable path with the same lefigis7!. Then7? can be picked
from Q2. Since each path if® is an evidence i, the algorithm will terminate when
the probability of the first: evidences exceedgs '

Candidate paths are stored in a priority qupgeorted by the keyBr<;(cwwj,, qt).
Theenqueudunction inserts a new path to its proper position anditbgueudunction
returns the pai(h, j) of the corresponding path with the highest probabilitypin
Functionzw(h, j, gt) computes the-th h-hop most probable patty;, which can be
reduced to computing-th shortest:-hop path inG;,¢ and can be solved by adapted
REA, see [10] for more details.

1) k:=0;, pr:=0; h:=0; PriorityQueuepg;

(2) for h:=0to N.(t)do pq. enqueue(w(h,1,qt)); od; \* Q' *\
(3) while pr<p do \* Q% to QF x\
4) (h,5') := pq. dequeue(); k:=k+1, pF:= wfll,;

(5) w:=w(h',j' +1,qt); pq. enqueve(w); pr:=pr+ Pr¢;(w); od;

(6) return (p,...,p"7Y);

Note that the resulting evidence sequeptg?, ... coincides withr!, 72, ...



Time complexity.The time complexity for computin@' is O(¢*t?>m), since there are
N.(t)+ 1 most probable paths to compute and the time to compute obhalpl®path is
O(gtm). Note thatN. () is linear inO(qt) [4]. To computep®, there are at mosy. ()
paths inQ*, so it takesO(qt log(qt)) time [10]. There aré — 1 such paths/? through
p*) to be computed. This yields a total time complexiyq®t?m + kqt log(qt)).

A refined algorithm. The above algorithm will generate a sequence of evidences
p',...o" by the decreasing order of their probability prodiet, (o', qt). However,
N.(t) is usually large (typically, a few hundred or thousand) giieg) a large seg)’.

As a result, the above algorithm is costly. We now suggestgiste to improve this
strategy. The basic idea is to use the Poisson probabilitgtion to obtain smaller
counterexamples.

Observation 1\We first notice that for fixedt, the Poisson probability’P (h, gt)
is maximal whem, = [qt] or h = |q¢t], which is the expectation df. If h < [qt],
PP(h, gt) is monotonically increasing andiif > |qt|, PP (h, qt) is monotonically de-
creasing, cf. the figure below where the horizontal axiséstbp count.. The function
is only non-zero at integer values bf The connecting lines do not indicate continu-
ity. This observation justifies the heuristics that we sfiann the crest of the function
(h = [qt]) and proceed in two directions, in which way the hop countsldager
Poisson probabilities are explored first, as a consequémeg@robability product will
usually be large. This bidirectional increments will stopem the bound8 and V. (¢)
have been reached.

s ' ' : Observation 2:.When the valueyt is
" small, the Poisson probability is almost
4 E monotonically decreasing, cf. cade=1
in the figure. Therh = [qt] is not suit-
o2b | j  able as the starting point any more.
Let /. be the most probable path in
| U®. It means that paths with # [* have
less or equal probability thas.. There-
fore,h = [* is also considered as a start-
; 5 = o %  Ing point. Due to Observation 1 and 2, our
algorithm starts from exploring paths wifffi, = max{[qt],*}.

We use the priority queugy to keep track of the paths which have been explored
but not yet expanded. A path is “explored” when its probapi computed and added
to the total counterexample probability. Note that evemhhat is explored is already
taken as an evidence. This is different from the previousrittyn where we might
explore many more paths (the huge basia@8tthan actually needed. That also partly
explains why this algorithm is more efficient. A path is cdllexpanded” when it is
dequeued frompq and its successor is computed. When a path is dequeued, ismea
that it has the largest probability product among all thdap#t the queue; and this fact
makes the expansion reasonable.

New path(s) or evidence(s) will be added to the countereyampeach iteration.
The increments are in two dimensions. In one dimension, we twaincrease the index
of some most probable path. More specifically, we dequeuesties; with the highest
probability Pr< (), gt) from pg, and add its successar] "', namely the(j + 1)-st




most probable path with the same hop count. This happensimieaation. In the other
dimension, the minimal and maximal number of hops of patasraaremented. We use
Hpin and Hy,, to denote the minimal and maximal hop counts explored sdlfeo.
more new paths wittH ,;;, — 1 and H,,,.« + 1 hops are added, name}y,}ﬂmrl and
wy. 1 When the bound8 and N, () have not yet been reached. The more iterations
the algorithm proceeds, the farther awHy,;, and H,,,.x are from Hy and the less
Poisson probability the path will have.

The sketch of the improved algorithm is shown as follows:

(1) Compute most probable patty. in 4% \* Initialization: x\
2) pr:=Prei(wi); PriorityQueue pq.enqueue(wis);

(3)  Hmin := Hmax := max{[qt],l"}; k:=1; pk = Wi}

(4) while pr<p do \* Main body:x\
(5) (W',3") == pq. dequeue(); w1 = w(h',j +1,qt); \* Increments ory *\
(6) pg.enqueve(w); pr:=pr+Pre(ws); pfi=w1; ki=k4+1;

@ if Hmin >0 then \* Decrease of hop coumt
(8) Huin := Hmin — 1; @2 := @(Hmin, 1,qt); pg.enqueue(ws);

9) pri=pr+ Prei(ma); pF i=wo; k:=k+1;

(10) if Hmax < Ne(t) then \* Increase of hop count\
(11) Hpmax := Hmax + 1; @3 := @w(Hmax, 1,qt); pg.enqueue(ws);

(12) pr=pr+Pre(ws); pfi=ws; k:=k+1; od;
(13) return (p', ..., p*7Y);

Note that). in Line (1) can be computed by SP algorithms, say Dijkst®lsif G, .

7 Conclusion

Comparison of algorithms. This paper presented a set of approximate algorithms for
computing small sets of paths that indicate the violatiotiraé-bounded constrained
reachability probabilities. The algorithm involving tin®unds for computing infor-
mative evidences considers Poisson probability besideprbbability of paths them-
selves, which characterizes the significance of the pattistimus provides a clue of the
significance of the corresponding evidence€.il\s we mentioned, the first algorithm
of pure graph analysisannotguarantee that for the sequence of paths that computed
by our algorithmin orderp?, ..., p¥, it holds thatPr;(p') > ... > Pr<;(p*). Unfortu-
nately, the one involving time also cannot guarantee tlwa/dver, itcanguarantee that
Pr<i(pt, qt) > ... = Pr<i(p¥, qt) which is usually very close to the target sequence.
The refined algorithm exploits the monotonicity of the Porsgrobability function to
obtain small counterexamples. Experimental researcheoptbposed algorithms is to
be carried out as the future work.

Related work. Aljazzar et al. [1][2] applied directed explicit-state se@aalgorithms
to determine a set of diagnostic traces which carry largeueninof probability. Their
algorithms are guided by heuristics which exploit stoddeformation on the traces.
In contrast, we have proposed several algorithms accotdidiferent levels of knowl-
edge about the CTMCs, which to some extent shows the sigmifioée of probabil-
ity and time. The uniformization technique discretizes¢batinuous-time setting and



makes the efficient algorithms for DTMC counterexampleegation [10] adaptable
here. Moreover, the analysis and utilization of Poissorbabdlity distribution gives

rise to an almost decreasing order of the evidence probabjlivhich enables the in-
cremental exploration of the candidate evidence set.
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