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Abstract. We investigate the problem of verifying linear-time prdpes against
inhomogeneous continuous-time Markov chains (ICTMCsuidiamental ques-
tion we address is how to compute reachability probalsliti®e consider two
variants: time-bounded and unbounded reachability. istwut that both can be
characterized as the least solution of a system of integralténs. We show that
for the time-bounded case, the obtained integral equatiansbe transformed
into a system of ordinary differential equations; for thmeéiunbounded case, we
identify two sufficient conditions, namely tlewentually periodic assumpti@nd
the eventually uniform assumptipander which the problem can be reduced to
solving a time-bounded reachability problem for the ICTM&Bsl a reachability
problem for a DTMC. These results provide the basis for a mcuecking algo-
rithm for LTL. Under theeventually stable assumptione show how to compute
the probability of a set of ICTMC paths which satisfy a giveFLLformula. By
an automata-based approach, we reduce this problem todhieps established
results for reachability problems.

1 Introduction

Continuous-time Markov chains (CTMCs) are one of the mogtdrtant models in
performance and dependability analysis. They are exploitea broad range of ap-
plications, and constitute the underlying semantical rhofl@ plethora of modeling
formalisms for real-time probabilistic systems such askdaian queueing networks,
stochastic Petri nets, stochastic variants of proces®rdgeand, more recently, calculi
for system biology. These Markov chains are typicalbhmogeneouys.e., the rates that
determine the speed of changing state as well as the prab@hibture of mode transi-
tions are constant. However, in some situations constéeg o not adequately model
real behaviors. This applies, e.g., to failure rates of waré components [10] (that usu-
ally depend on the component’s age), battery depletiongip¢e the power extraction
rate non-linearly depends on the remaining amount of enegagg random phenomena
that are subject to environmental influences. In these wistances, Markov models
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with inhomogeneousates, i.e., rates that are time-varying functions, arehmore
appropriate [17].

Temporal logics and accompanying model-checking algmstihave been devel-
oped for discrete-time Markov chains (DTMCs for short),iagtlinear-time properties
[8, 9] and branching-time properties [11]; for CTMCs agabranching-time properties
[2,3] and linear real-time properties [6]. And some of theawdresulted in a number
of successful model checkers such as PRISM [12] and MRMC Hda\vever, the veri-
fication oftime-inhomogeneolGTMCs (ICTMCs) has — to the best of our knowledge
—not yet been investigated in depth, with the notable exae|pt5], which considered
model checking a simple stochastic variant of HennessyxiLogic (without fixed
points) forpiecewise-constah€TMCs. The main aim of the current paper is to fill this
gap by considering model checking ICTMCs wliriear-timeproperties.

One of the most fundamental linear-time properties arehaaitity problems. Here
we address two variants: time-bounded and unbounded reitithd he former asks,
given a set of goal states and a time bound, what is the priitgaidipaths of a given
ICTMC that reach the goal states within the time bound. Timbeunded reachability
is similar except that the time bound is infinity. To solvetbof them, we first provide
a characterization in terms of the least solution of a sysiémtegral equationsThis
can be regarded as a generalization of similar results faviCg [2, 3] to ICTMCs.
Furthermore, we show that for the time-bounded case, thearadat integral equations
can be transformed into a system of (homogeneous) ordinffgranhtial equations,
which often enjoys an efficient numerical solution; for thregé-unbounded case, gen-
erally this is not possible and one has to solve the systemtegial equations directly,
which is not so efficient and numerically unstable. To remidity deficiency, we iden-
tify two sufficient conditions, i.e., theventually periodicityandeventually uniformity
under which the problem can be reduced to the time-boundexthadbility problem for
ICTMCs and a (time-unbounded) reachability problem for DO®/and thus can be
solved efficiently. These classes subsume some interestidgmportant subclasses
of ICTMCs, such as, the piecewise-constant case studietiShgnd ICTMCs with
rates function representingeibull failure rates The latter distributions are important
to model hazards and failures, and are popular in, e.gakiéty engineering. We then
turn to model checking ICTMCs against LTL. Strictly speakime focus on comput-
ing the probability of the set of paths of a given ICTMC whigttisfy the LTL formula.
One of the main difficulties here compared to CTMCs is thaOmMC, rates between
states are functions over time instead of constants, argltiieutopological structure
of ICTMCs, when considered as a digraph, is not stable. Taunivent this problem,
we identify a condition, i.e., theventually stable assumptiovhich intuitively means
that after a (finite) time, the topological structure of tikfMC doesnot change any
more. Under this assumption, we can adapt the standard atddmsed approach. A
crucial ingredient is that we can construct a corresponsé@mgratediichi automaton
from an LTL formuld, based on which, one can build the product of the given ICTMC
and the separated Biichi automaton while obtaining a waflhdd stochastic process.

! Note that one can also use deterministic automata, but thalthvincur an extra (unnecessary)
exponential blowup.



We then reduce the LTL model checking problem to the prevéstablished results for
reachability problems.

2 Preliminaries

Given a sefS, let Distr(S) denote the set of probability distributions over

Definition 1 (ICTMC). A (labeled)inhomogeneous continuous-time Markov chain
(ICTMC) is atupleC = (S, AP, L,a,R(t)), whereS is afinite set ofstates AP is

a finite set ofatomic propositions L : S — 2P is alabeling function a € Distr(S)

is aninitial distributiory R(t) : S x S x Rx9 — Ry is a rate matrix.

Let diagonal matrixE(t) = diag [E,(t)] € RL5", wheren = [S| and Ey(t) : S x
R0 — R3¢ be defined adl, (t) = >, g Rs o (t) forall s € S, i.e., E(t) is theexit
rate of states at timet. We require that all rates and exit rates, as functions oé tim
are integrable. If all rates (and thus exit rates) are comstae obtain a CTMC. A state
s isabsorbingf R ¢ (t) = 0, for s’ # s.

SemanticsAn ICTMC induces a stochastic process. The probabilityke tatransition
from s to s” at timet within At time units is given by:
At t+ At

Prob{s—s',t, At} = [ Ry g (t+7)e” Jg Bs(t+v)dv g _ R (T)e” J7 Bs(v)dv g
0 t

Definition 2 (Timed paths). LetC be anICTMC. An infinite path starting at time
is a sequence, = sy -2 s; 15 s5--- such that for eaci € N, s; € S, t; € Ry
andRg, s, ., (t) > 0 wheret = z + Y77 ;. Afinite path is a prefix of an infinite path

ending in a state.

We will sometimes omit the subscript of, if the starting timex is irrelevant. Let
Paths® and Paths® (s, z) denote the set of (finite and infinite) pathsdnand those
starting from states at time x, respectively. The superscrigtis omitted whenever
convenient. Lep[n| := s,, be then-th state ofp (if it exists) andp(n) := t,, the time
spent in states,,. Let p, @t be the state occupied jmat timet € Rxg, i.e. p,Qt :=
pz[n] wheren is the smallest index such that+- >~  p, (i) > t. We assume w.l.0.g.
that the time to stay in any state is strictly greater than 0.

Let Z denote the set of all nonempty intervalsC R, and letl & ¢ (resp.
Iot)denote{z +t¢ | = € I} (resp.{x —t | « € I Az > t}). The definition
of a Borel spaceover paths through ICTMCs follows [3]. An ICTMC with initial
statesy and initial timex yields a probability measuﬂérgoym on paths as follows: Let
C.(s0, lo, - . ., Ix—1, s ) denote theylinder setonsisting of all paths € Paths(s, x)
such that[i] = s; (¢ < k) andp(i) € I; (i < k). F(Paths(so,x)) is the smallest-
algebra onPaths (s, x) which contains all cylinder sets’. (s, lo, - - ., [x—1, sk ) for
all state sequencesy, . .., s;) € S**tandly, ..., Ix_1 € Z. The probability measure
Pr¢ _ onF(Paths(so,x)) is the unique measure recursively defined by:

S0,T
Prgo,m (Ca(s0,10s - - Tu—1, 81))

= Riy,s, (10)-e J2* B prC (O (51,1, Ti—n, 51,))dro

81,70
10691



Example 1.An example ICTMC is illustrated in Fig.2(a) (page 10), wh&B =
{a, b, c} and the rate functions arg(¢t) (1 < ¢ < 6). In particular, the exit rate function
of s1 isr2(t) 4+ r3(t). The initial distribution isw(sg) = 1 anda(s) = 0 for s # so. A
possible rate function can be the ones depicted in Fig. 1&(ppg

Linear temporal logic. The set of linear temporal logic (LTL) formulae over a set of
atomic propositions AP is defined as follows:

Definition 3 (LTL syntax). Given a set of atomic propositio#sP which is ranged
over bya,b,. . ., the syntax oL TL formulae is defined by:
pu=ttla|l-¢wlpAe|Xe|pUep.

The semantics of LTL for ICTMQ is defined in a standard way by a satisfaction
relation, denoted=, which is the least relatiof= C Paths® x R x LTL (here we
useLTL to denote the set of LTL formulae) satisfying:

(p,t) =t (p:t) E o1 Npa iff - (p,1) |= o1 @and(p,t) |= o
(p;t) Ea it ac L(pQt) (pt) E—p it (pt)FEe
(p,t) EXp iff  3At > 0. (p,t+AL) | ¢ andp[l] = pQ(t+At)

(p,t) E o1 Ups iff  FAE > 0. (p, t+AL) | @2 andVt! < t+ At (p,t') E 1

We useut ;AP as an atomic proposition which holds solely at stateor ' C S,
we write at for \/ _p ats. Let Paths(s,z,p) = {p € Paths(s,x) | (p,z) F ¢}.
Note that a timed path = sq -2 s, 4 ... satisfies a formulay iff the “dis-
crete part” ofp, namely,sgs1s2 - - - (= p[0]p[1]p[2] - - ) satisfiesp. It thus can be eas-
ily shown that the sePaths(s, z,¢) is measurableWe denote the probability mea-
sure of Paths(s, x, ) as Prob(s, z, p) = Pr,.,. (Paths(s,z, )) and letProb®(p) =
D a(se)>0 @(50)-Prob(so, 0, ¢) be the probability that ICTMC satisfiesp.

3 Reachability Analysis

In this section, we tackle reachability problems for ICTM@¢e distinguish two vari-
ants:time-boundedeachability andime-unboundeteachability. To solve both of them,
we first give a characterization éfrob(s, x, {’at ), namely, the probability of the set
of paths which reach a set of goal statés_ S within time intervall starting from state
s at time pointz. This is done by resorting to a system of integral equatishgsh is a
generalization of a similar characterization for CTMCs [3]

Proposition 1. LetC = (S,AP, L,a,R(t)) be anICTMC with s € S, x € Ry,
F C Sandintervall C Ry withT} = inf I andT, = sup /. The functionS x R>¢ x
T —[0,1], (s,z, ) — Prob(s,z, latr) is the least fixed point of the operator

QZ(SXR>0 XI—>[0,1])—>(SXR>O XI—>[0,1]) s
where2(f)(s,z,I) =

Ty .
/ Z R, o (z+ r)e JoBsletvdv (o 0t 1 TS T)dr, if s¢ F (1)
0 s'eS
T T -
o= s 1Es(z+v)dv+/ Z Rs,s’ (:17—|—T)67‘f0 Es(z+v)dv'f(8l,$+T, Io T)dT, ifseF (2)
0 s'esS



3.1 Time-Bounded Reachability

We now solve théime-bounded reachabilitproblem, i.e., given ICTMQ, a set of
goal states C S and a time bound” € R, to computeProb(s, z, $STatg), the
probability of Paths(s, , &S"at ) which is the set of paths that reagtwithin 7" time
units given the initial time:. To accomplish this, we first compuRob (s, =, = Laty),
where the slightly different propertyp=Zatr, in contrast tod><Tat, requires that
states inF' are reached aixactlytime 7'. Note that®<T at and(>="at can also be
written as¢ % lat - and o7 Tlat -, respectively, wheré = [0, 7] or I = [T, T] is a
time interval. By instantiating (1), (2) in Prop. 1, we oltéhatProb (s, z, &~ atp) =

T
/ Z R, (x+71)e” Jo EBs(@tv)dv, Prob(s',z + 71,0~ " atr)dr, if s¢ F'(3)
0

s'esS

T
eif“TES(””)d“—i—/ ZRS,SI(CE+T)67 f“E‘“(H’”)d"-Pmb(s'723—&—7'7<>:T77atp)d7'7 if s€F'(4)
70 s'eS

Intuitively, (3) and (4) are justified as follows: ¢ I, the probability of reaching an
F-state froms after exactlyl” time units given the starting timeequals the probability
of reaching some direct success6pf s in 7 time units, multiplied by the probability
of reaching anF’-state froms’ in the remainingl’ — 7 time units. Ifs € F at timez,
then it can either stay in (i.e., delay) forT" time units (the first summand in (4)), or
regards as a nonF state and take a transition (the second summand in (4)).

We now address the problem of solving (3) and (4), read sgstem of integral
equationsWe definell(x, T') as the matrix with entrieHl; ;(x,T") denoting the prob-
ability of the set of paths starting from statet timex and reaching statg at time
x + T. For any ICTMC, the following equation holds:

T
(x,T) = / M(z, 7)II(x + 7,7 — 7)dT + D(2,T) (5)
2 del
elay

Markovian jump

M(z, T) is the probability density matrixwhebe, ; (z, T) = R, j (z+T)-e~ Jo Bilz+v)dv
is the density to move from staido j at exactly timel’ andD(z, T') is the diagonal
delay probability matrix wittD, ; (z, T') = e~ Jo Zi(ztv)dv,

We note thaflI(z, T) is actually the (equivalent) matrix form of (3) and (4). For
(4), it follows directly that each of its summands has a cerpsrt in (5). For (3), note
thatD(z, T') is a diagonal matrix where all the off-diagonal elementslaaed that (3)
does not allow a delay transition from a néhstate. This correspondence builds a half-
bridge betweerProb(s, z, $~ L atr) andII(z, T'), whereas the following proposition
completes the other half bridge betweHdiix, 7') and thetransient probability vector
7(t) of ICTMCs:

Proposition 2. GivenICTMC C with initial distribution o and rate matrixR (). We
have thaflI(0, ¢) and7(¢) satisfy the following two equations:

7(t) = o - II1(0, 1) , (6)
T _ 1) @), 70 = o | )



whereQ(t) = R(t) — E(¢t) is theinfinitesimal generatoof C.

Intuitively, this proposition implies that solving the $gm of integral equations
II(x, t) boils down to computing the transient probability vectot) with each element
7s(t) indicating the probability to be in stateat timet given the initial probability
distributiona = 7(0). The transient probability is specified by a system of ODBs (7
the celebrated Chapman-Kolmogorov equations.

Given ICTMC C, let C[F] be the ICTMC obtained by making the stateshAn
absorbing inC. We have the following theorem:

Theorem 1. For anyICTMC C, Prob€ (s, z, &S Tatp) = Prob®F (s, 2, o= Tatp).

To sum up, Proposition 1, 2 together with Theorem 1 suggestcibmputing time-
bounded reachability probabilities in an ICTMC can be ddnefirst making theF'
states absorbing (and thus obtaini®id’]) followed by solving a system of homoge-
neous ODEs (7) fo€[F]. By using standard numerical approaches, &gler method
or Runge-Kutta methodnd their variants [16], this system of ODEs (i.e. the transi
probability vector) can be solved.

3.2 Time-Unbounded Reachability

We then turn to théime-unbounded reachabiligroblem, i.e., there are no constraints
on the time to reach the-states. LetProb(s, z, {> atr) denote the reachability proba-
bility from states at timex to reachF’ within time interval|0, co). Using Proposition
1, we can characterizBrob (s, x, ) at ) as follows:

/ Z R (x+T)e” Jo Bs(@tv)do., Prob(s',x + 7, Qatp)dr, ifs¢ F  (8)
70 s'esS
1, ifseF (9

The cases € F is derived from (2), where the probability to delay in Arstate for
zero units of time isl and the probability to leave (i.e. taking a Markovian jump) a
F-state in zero units of time i8. Whens ¢ F, Eq.(8) is similar to (3) except that
there is no bound on the time to leave a staté F'. Note that in contrast to thgme-
boundectase, in general it is not possible to reduce this systentedial equations to
a system of ODESs. Since solving a system of integral equatogenerally time con-
suming and numerically instable, we propose to investigatee special cases (subsets
of ICTMCs), for which the reduction to ODESs is possible. Hereconsider two such
classes, i.eeventually periodi¢CTMCs andeventually uniformCTMCs. Their com-
mon feature is that rate functions of the given ICTMC exhibgular behaviors after
some timeT'. This allows for computing time-unbounded reachabilitglpabilities ef-
ficiently (e.g., via DTMCSs). Hence the problem turns out tadducible to computing
the time-bounded reachability probabilities with time hdd’, which has been tack-
led in the previous section, and reachability probabdifier DTMCs. Both of them,
fortunately, enjoy efficient computational methods.
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Fig. 1. Eventually periodic assumption (left) and eventually Eassumption (right)

Eventually periodic assumptionVe consideeventually periodicCTMCs.

Definition 4 (Eventually periodic assumption (EPA)).An ICTMC C is eventually
periodicif there exists some time € R~ such that for any two states s’ € S, there
exists somé&’; 5 € R>o andn, s € N such that

R (6) = RU) (1) ift< Ty
R (1) ift>Toy

Whereng/(t) = sz, (t 4+ ns,s-P).

An example rate function under the EPA is illustrated in Eigleft). After time
pointT; 5, the functionR; s (t) becomes periodic with the period .- P, whereP
is the “common factor” of all the periods of rate functidRs . (¢), forall s, s’ € S. For
any ICTMCC satisfying EPA, leTsp = max; s es Ts,s andPep = (ged, g eg Ns,s7)-P-
Intuitively, Tgp is the time since when all rate functions are periodic' ahd is the
period of all the periodic rate functions. For instance,mmsge there are two rate func-
tions with R, (t) = 2 + cos(3t) and RZ,, (1) =3 - sin(t), and letTy, o, =
10, Ts,.s, = 15. ThenTgp=max{10, 15}=15, P=m, n,, s,=4 andn, 5, =6, and
PEP: ng{4, 6}-71':127'{'.

Time-unbounded reachability probabilities for an ICTMCden the EPA can be
computed according to Alg.1 and justified by Theorem 2. Leexgslain it in more
detail. Due to (9), oncé’ states are reached, it is irrelevant how the paths continue.
This justifies the model transformation fratnto C[F']. The reachability problem can
be divided into two subproblems: (1) first to compute the @tobty to reach state
s’ € S at exactly timelgc (the second’rob in (10), see below); and (1) then to com-
pute the time-unbounded reachability frafne S to F' (the third Prob in (10)). In
the following we will focus on (I1): Recall that we denofrob(s, Trp, $~ Frat )
to be the probability to reach from to s’ after time Pgp starting from time point
Tgp. Since after tim&gp all rate functions are periodic with peridgsp, it holds that
Prob(s, Tgp, Q:PEPats/) = Prob(s, Tgp+n-Pgp, Q:PEPats/), for alln € N. It then
suffices to comput@rob(s, Tep, $~ raty ) for any s, s’ € S. Given the ICTMCC
with state spac§, we builda DTMCD. = (S, P) with P575/:Pr0bc(s, Tep, Q:PEPats/).
Intuitively, P, » is the one-step probability (one-step here means one pedadove
from s to s/, and the problem (Il) is now reduced to computing the reaitihaprob-
ability from s to F-states in arbitrarily many steps (since the time-unbodnthese
is considered), i.e Prob"¢!71 (s, & at ). This can be done by standard methods, e.g.,
value iterationor solving a system of linear equatigrsge, among others, [4] (Ch. 10).



Theorem 2. LetC = (S, AP, L, o, R(t)) be anlICTMC satisfyingEPAwith timeTgp
andPgp, s € SandF C S. Then:

Pmb%p (s,0,Oatp)= Z ProbClF] (5,0, 0= TP at ) ProbPetrl (s, & atp)  (10)
s’es

Remark 1.Sometimes we need to compulob$p (s, z, {atp) for ICTMC C =

(S,AP, L, o, R(t)), namely, the starting time is instead of0. To accomplish this,
we define an ICTMQ' = (S,AP, L, o, R/(t)) such thatR’(t) = R(t + =) and it
follows thatC’ still satisfies EPA (witil,p = Tgp — = if 2 < Tgp and 0 otherwise;
PlLp = Pgp) andProb$y (s, x,  atp) = Probgp(s, 0, atr).

Algorithm 1 Time-unbounded reachability for ICTMCs satisfying EPA
Require: ICTMC C = (S,AP, L, a, R(t)), EPA timeTxp, period Pep
Ensure: Prob$p(s,0,< atr)

1: For any two states, s’ € S in C[F], compute théime-bounded reachability probabilityith
time boundIzp, starting from time point, i.e. Prob®¥1(s,0, 6= at,,);

2: For any two states, s’ € S in C[F], compute théime-bounded reachability probabilityith
time boundPgp, starting from time poinfzp, i.e. Prob° (s, Tep, $=TPP at ./ );

3: Construct adiscrete-time Markov chaitDTMC for short) D¢ pp = (S, P) with P, v =
Prob®Y(s, Tep, $="EP at ). We denote theeachability probabilityfrom s to F' in D¢ by
Probeiri(s, & atp);

4: Returny_, s Prob“Fl(s,0, &= 8P at) - Prob™eirl (s, & atr).

s

Eventually uniform assumptioriThe previous section has discussed rate functions en-
joying a periodic behavior. A different class of rate funcis are those which increase
or decrease uniformly, e.g., an ICTMC in which all rates amutiplicative of the
Weibull failure ratewhich is characterized by the functigi{t) = g(é)”_l, where

~ and« are the shape and scale parameters of the Weibull distiibutespectively.
These distributions can e.g., characterize normal digidhs, and are frequently used

in reliability analysis. This suggests to investigatentually uniformdlCTMCs.

Definition 5 (Eventually uniform assumption (EUA)). An ICTMC C is eventually
uniformif there exists some tiniB:;y € R and an integrable functiori(t) : R~y —
R such thatlim;_, f:ﬁEU f(r)dr — oo and for any two states, s’ € S andt >
Twu, Rs,5(t) = f(t) - RS, whereRg , is a constant.

s,8"1

In terms of the infinitesimal generat@(¢) of the ICTMCC, EUA intuitively en-
tails that there exists some functigiit) and constantinfinitesimal generato° =
R° — E° (R¢ andE* are the constant rate matrix and exit rate matrix, respagiv
such thatQ(t) = f(¢t)-Q° for all t > Tgry. We also define theonstant transition

’

probability matrixP< such thatPs ,, = R—
By restricting to the EUA, one can reduce the time-unbourrédadhability prob-
lem for an ICTMCC to computing the time-bounded reachability probabilitythwi
time boundTky and the reachability probability in a DTMOS;[F] with transition
probability matrixP<[F'], whereP[F]; s = P¢ , fors ¢ F; P°[F|;s = 1 and
Pe[F|s,s = 0,fors € Fands’ # s. This is shown by the following theorem.



Theorem 3. LetC = (S, AP, L, o, R(t)) be anlICTMC with s € S. Given a sef” of
goal states and theventually uniform assumptionith the associated timé&gy and
DTMC Dy, it holds that

Prob®(s,0,Oatp) = Z ProbFl(s,0,0= 50 at ) - ProbPeulF] (s, Oatr). (11)
s'eS

Remark 2.We note that the two assumptions, EUA and EPAiacemparable There
are rate functions (e.g. polynomials) which catbe represented as periodic functions
but satisfy EUA; on the other hand, in case of EPA one can,rfstance, assign the
same sort of rate functions (eggn) with different periods, and thus obtain an ICTMC
which invalidates EUA.

4 LTL Model Checking

In this section, we tackle the problem of model checking props specified by LTL
formulae for ICTMCs. Model checking CTMCs against LTL is mety difficult, since
one can easily extract trembeddedTMC of the given CTMC, and thus reduce the
problem to the corresponding model checking problem of DEM®@hich is well-
studied, see, e.g. [8]. However, this approach amgsvork for ICTMCs, since the rates
of the ICTMC vary with time. Below we shall employ an autombtsed approach. For
this purpose, some basic definitions are in order.

Definition 6 (Generalized Buchi automata).A generalized Buchi automaton (GBA)
isatupled = (X, Q, A, Qo, F), whereX is afinite alphabet( is a finite set of states;
A C Q x ¥ x Qs atransition relation;Q, C Q is a set of initial states, and C 2©

is a set of acceptance sets.

We sometimes writg = ¢’ if (¢,0,q¢") C A for simplicity. An infinite word w €
Xv is accepted by, if there exists an infiniteun 6 € Q“ such that9[0] € Qo,
(0[i], w[i],0fi + 1]) € A for i > 0 and for eachF” € F, there exist infinitely many
indices;j € N such that)[j] € F. Note thatw[i] (resp.f[i]) denotes the-th letter (resp.
state) onw (resp.d). The accepted language.df denoted’(.A), is the set of all words
accepted byd. Given a GBAA and state;, we denote byd[q] the automatot with ¢
as the unique initial state. Note thatA) = (J .o, £(Alg]). A GBA A s separated
if for any two states, ¢, L(A[¢']) N L(A[¢"]) = @.

It follows from [9] that the correspondence between LTL fofee and separated
GBA can be established:

Theorem 4. For any LTL formula ¢ over AP, there exists sseparated GBA, =
(2,Q,4,Q0, F), whereX = 247 and |Q| < 2°U¢D, such thatC(A,) is the set of
computations satisfying the formula

We note that the notion afeparateds crucial for the remainder of this paper. A
closely related notion, referred to asambiguoughas been widely studied in automata
and language theory, dating back to [1]. See also, amongtfd[13] for relevant
literature. To the best of our knowledge, the notion of “sefed” was firstly exploited
in [9] for model checking DTMCs against LTL.



Definition 7 (Product). Given anICTMC C = (S, AP, L, o, R(¢)) and a separated
GBA A= (X,Q,A,Qo,F), the producC ® A is defined as

C ® A - (L067 AP7 Ea da R(t))v

whereLoc = S x Q; L((s,q)) = L(s); a((s0,q0)) = a(so) if a(se) > 0 and
qo € Qo, and undefined elsewhere; aqu7q>,<5,,q,>(t) =R, (t)ifq L&), q.

For the sake of clarity, we call the states of a produdbeations

{a} {b} {c} {a}
) ( )

(a) ICTMCC (b) Separated GBA4

TOTTTTOTON gt
\/57 = (52,q3) *41)*

-
s = (54,5

1 r1(t) 173(t) 176(1)

—- v _ - ¥ _ - ¥ _

/ ; p ~
Lo = (51, q2) 1 s = (54,q3) ) Lo = (54,q2) )

—_ - ~_ - _ - —

(c) ProductC ® A
Fig. 2. Example product construction of ICTMCand separated GBA

Example 2.Given ICTMCC (Fig. 2(a)) and separated GBA (Fig. 2(b)), the product
C ® A is shown in Fig. 2(c).

Remark 3.Note that in general the product itselfristan ICTMC. The reason is two-
fold: (1) If |Qo| > 1, thena is nota distribution; (2) The sum of the rates of outgoing
transitions from a location might exceed the exit rate ofldwation. For instance, in
Example 2, the exit rate df, as defined, i, (t) = E,,(t) = r1(t); while the sum
of the rates of its outgoing transitions 2, (¢). However, due to the fact thad is
separated, as we will see later, it would not be a problen®rofposition 3.

The generalized Bichi acceptance condition, roughly ldpgarequires to visit
some states infinitely often. As in the tradition of modelatirg Markovian models,
we need to identifybottom strongly connected compone(BSCCs) of the product
(when read as a graph).girongly connected compond®CC for short) of the product
denotes a strongly connected set of locations such thatomepsuperset is strongly
connected. A BSCC is an SCC from which no location outsideadshable. Unfortu-
nately, generally in ICTMCs, there is no way to define a BSCE€r ke product since
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the rate of each transition isfanctionof time instead of a constant and thus a BSCC at
time ¢ might not be a BSCC at timé&. In other words, the topological structure (edge
relation) of the product might change at any moment of tim@gctvis one of the main
difficulties of model checking ICTMCs.

To circumvent this problem, we make an (arguably mild) agsion, that is, we
assume that ICTMCs amventually stablgn the following sense.

Definition 8 (Eventually stable assumption (ESA))AnICTMC C is eventually sta-
ble if for each states € S, there exists some timg, such that for any > T, and
s’ € S, eitherR; ¢ (t) > 00r R 4 (t) = 0.

W.l.0.g., we assum@, is the smallest time point that the above assumption holds fo
states. Let Tgs = max,cg Ts be the smallest time point that an ICTMCsgable
Intuitively, an ICTMC is stable if its topological struceidoesnot change any more.
More specifically, transitions can alter their rates, butfram positive to zero or vice
versa, i.e., no transitions will “disappear” or “newly cted’. An example rate function
is illustrated in Fig. 1 (right), where aftéfgs the rates keep strictly positive (note the
particular value is irrelevant here). It turns out that ESAessential for identifying
stable BSCCs (also model checking LTL)sfableproduct as well astableBSCC are
defined in the same way, relative to the time pdipt. In the sequel, when we refer to
BSCGs, we implicitly refer to the stablBSCGs in the stable productn accordance
with this, we will sometimes write — s’ for ICTMC C if R o (¢) > 0 with ¢ > Tgg;
and similarly for¢ — ¢’ in the product.

Definition 9 («BSCC). Given the produc @ A of an ICTMC C = (S,AP, L,
a, R(t)) satisfyingESAand aGBA A = (X, Q, A, Qo, F), we define

I. a SCCis a set of location3 C S x @ such that(i) B is strongly connected
meaning that for any two locations ¢ € B, ¢ —* ¢’ where—* denotes the
reflexive and transitive closure e, and (ii) no proper superset @B is strongly
connected;

Il. aSCCB s acceptingf VE € F, there exists som@, ¢) € B such thaly € F;

Ill. a SCC B is anaccepting bottom SCCB € aBSCCfor shor) if (i) B is ac-
cepting;(ii) for each locatior? € B, there doesotexist any locatiort’ such that
¢ — (" and?’ is in any otherccepting SC¢(iii ) for each locatior? = (s, ¢) € B,
for anys’ with s — ¢, (s, ¢') € B for somey’.

As an example, we note, suppose that), r5(t), r6(t) > 0 whent > Tgg, that an
accepting BSCC in the stable product in Fig. 2(c) is formed/hys, ¢4. Note that
{¢7} is not an (accepting) SCC, so llif is not violated.{¢s} is not an SCC either,
since we would require thdt —* /g which fails to be.

Recall that given an LTL formula, one can obtain a correspandeparatedau-
tomaton, which renders us very nice properties for the prodefined in Definition 7.
A couple of lemmas, dedicated to illustrate these propedie in order. The following
two essentially exploit the fact that for each accepted vafral separated GBA, there
is a unigue accepting path.
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Lemma 1. Given the producf ® A where A is separated. For anyBSCC B of the
stable product @ A, it cannotbe the case thats, ¢) — (s',¢') and(s,q) — (s',¢")
forany(s,q), (s',q'), (s, ¢") in Bwith ¢ # ¢".

We say that two locationés, ¢) and(s’, ¢’) in the productC ® A areconnected
if ¢ ﬂ)q/z_ We say that from locatiois, ¢) there is a path leading to a BSCE,

if there is a sequenc@o, qo), (s1,q1); - - -, (Sn, qn) SUch that(s, ¢) = (so,q0), (Si, i)
and(s;;1, ¢i+1) are connected fdr < i < n.and(s,, ¢,) € B.

Lemma 2. Given the produdf ® A of anICTMC C and a separate®BA A, it cannot
be the case that there are two locatiofzsq) and (s, ¢') with ¢ # ¢’ such that both of
them have a path reaching aB&CC

As said, given ICTMQC and separated GBAL, the product ® A itself is not an
ICTMC (see Example 2). However, thanks to the fact thas separated, we can trans-
formC ® A into an ICTMC. Lemma 1 and 2 entail that in the proddcb A, we can
safely remove the locations which do not lead to an acce@®§C, and thus obtain
an ICTMC model, denoted®.A. Let us illustrate this by continuing Example 2. First
note that the dashed locations are the trap locations froichwthe accepted locatiah
cannot be reached. Those locations can safely be remoweslthia paths passing them
will never be accepted. It is not a coincidence that at mostafrthe outgoing transi-
tions from those “nondeterministic” locations (i.&,, ¢, {3, £4) can reach the accepted
locations. This is guaranteed by the separated propertyeodtitomaton (Lemma 2).
By deleting all the dashed locations, we obtain.A.

The following proposition claims thai®.A can be viewed as an ICTMC in the
sense that it defines a stochastic process exactly as an ICTNerucial point is that
in C®.A, for each locatiorf and timet, the sum of the rates of the emanating transitions
from ¢ doesnot exceed the exit rate @t (Note that the sum could be strictly less than
the exit rate as fof; in Fig. 2(c), thus it is “substochastic”.) With a little alng of
terms, we call this model an ICTMC.

Proposition 3. C®.A is anICTMC. Moreover, for each accepting cylinder sétand
C®.A give rise to the same probability.

LetC®.A* be obtained fron€ ®.4 by making each location in theBSCCs absorb-
ing, and definel™* as the set of locations in amBSCC. Given an ICTMCC with
eventually stable assumption (wiffxs) and an LTL formulap, the probability of the
set of paths of satisfyingy, denotedProb%S(go), can be computed by Alg. 2.

Theorem 5. For an ICTMC C with Tgg and anLTL formulap,

Prob$s(¢) = Z Z a(Lo)-Prob®@A (£, 0, 6=T8s aty)- Prob @A (¢, Tgs, & atp+).
a(lp)>0LeLoc

2 Note that we daot require thats — s’. So “connected” is purely a graph-theoretic notion
where the time is irrelevant.
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Algorithm 2 Model checking ICTMC against LTL

Require: ICTMC C, LTL formula ¢, ESA timeTxs;

Ensure: ProbSs(p)

: Transformyp to a separated generalized Buchi automation

: Build the product ® A = (Loc, AP, L, &, R(t));

: Find allacceptingBSCGsin the (stable) produdt ® A;

: Remove all the trap locations yieldidg.A;

. Compute théime-bounded reachabilitin C®.A from initial location/y to each? € Loc,
Prob®@4(£y,0, =T8S aty);

: Make each location in theBSCCs absorbing, thus obtainidg.4* and F™*;

7: Compute theime-unbounded reachability probability C®.4* from each? € Loc to F*,

i.e., Prob’@A" (0, Tas, & atp+);
8: Probs(9) = sy >0 ore poe A(£0)-Prob®®A (Lo, 0, =" S aty)- Prob®®A™ (¢, Tis, & atp+).

a b wN PP

(o]

Note that Prob“24(£y, 0, &= at,) and Prob®EA" (£,0, { aty,. ) can be com-
puted by the approaches in Section 3.1 and 3.2, respect®elypputing the former
relies on solving a system of ODESs, whereas computing ther)as stated in Sec-
tion 3.2, one has to solve a system of integral equationsnegd

Remark 4 EPA, EUA andESA). EPA and ESA arsncomparablei.e., there are ICTMCs
that are eventually periodic but not stable (see e.g., tHBMC with one rate function

in Fig. 1 (left)), and vice versa (see, e.g., that in Fig. ght)). When both assumptions
are applied, we obtain ICTMCs that are “eventually posifieeiodic”, i.e., eventually
periodic and all rate function values in the periods areegifftrictly positive or being
zero. For this subset of ICTMCs, one can resort to solvingtesy of ODEs and linear
equations, as presented in Theorem 2 as well as Alg. 1.

EUA and ESA arencomparableas well. The counterexamples for both directions
can be easily constructed. When both assumptions are dpptién the previous case,
the subset of ICTMCs (wherg(t) is eventually strictly positive) can be dealt with by
solving a systems of ODEs and linear equations (Theorem 3).

The comparison of EPA and EUA can be found in Remark 2. We esiph@ance
again that ESA is of most importance in LTL model checkingoider to find stable
BSCCs. However EPA or EUA are certain subsets of ICTMCs tleatan efficiently
deal with (meaning by solving a system of ODEs and linear ggjus). \We mention that
there are other approaches which can handle and solve tieesgsintegral equations,
e.g., approximation by truncating the infinite range of thtegral.

Example 3.We continue Example 2 to show how to compute the set of pattGT¥C
C accepted byA. Let the rate functions be defined agit) =i fort > 0 and3 < i < 6;
and

t z €1[0,9.5)
ri(t) = { 0 2 €[9.5,10)  ra(t) = {4~1 z € [0,15)

—sin(Y
2+ cos(Lt) = € [10,00) 7.6 —sin(zt) x € [15,00)

Itis not difficult to see that this ICTMC satisfies both the E&#d EPA and kg = 10,
Tep = 15 andPEp = 12m7.
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To computeProb%S (A), Alg. 2 is applied. Note that we omit the step of transform-
ing an LTL formulato a GBA and the notatidProb$s (A) is self-explanatory. We con-

sider the firstProb appearing in step 8, namely, to compi#@b“E4(4y, 0, &0 aty)
forall £in C®.A. This is actually to compute the transient probability eeda C®.4 at
time Trs = 10, which can be done by solving a system of ODEs. We then contside

secondProb appearing in step 8, namely, to Complﬂﬁpr@A* (¢,10, < aty,) (note
that F* = {/»}). Finally, we wrap them up as follows:

( )
( )

Pmb%s(A) z Prob®@4 (4,0, =10 ate,) - (12)
E )

The left column of (12) is the transient probability vectee then show how to com-
pute the elements in the right column. For this purpose, gdigave have to solve a
system of integral equations. Here we obtain the following:o

flo (Qj) = fooo 71 (CC —+ 7)6_ fJ 71 ($+U)dv.fgl (:C —+ T)dT
fo, (@) = [T ra(@ + 7)e & reletv)trs(atoldv. g, (3 4 1)dr
ffz (‘T) =1

In this case, one obtains that, (z) = 1,

o I a143)d = Lo\ [35(a048)du— [ (7.6—sin(L (a-+0))+3)d
fe, (10) :/4.16 Jiot S vdT+/ (7.6—sin(§7'))-e Jro iR ATme)arT s LB memi gty Ydr .
10 15

and f, (10) can be computed accordingly. It follows thBitob“24" (¢, 10, > ate,) =
f1,(10) and Prob°@4” (44,10, ¢ ate,) = f¢,(10). Hence (12) can be obtained.
Alternatively, let us note that fortunately in this cases #PA is satisfied. So one
can apply Alg. 1 to computé’mbC@A* (¢,10, < aty, ). Let us illustrate for the case that
{ = ly. (The case that = ¢, is similar.) For the firstProb in Alg. 1, step 4, it is again
to compute the transient probability matob 24" (¢,10, 6= aty.), for £, ¢ €
{¢; | 1 <i < 4} (note that/; is already made absorbing@wr.4*); and for the second

Prob, we need to construct the DTMD with Py, = Prob’@4 (0,15, 6="" aty).
It follows that

o - Pmbc@"‘: (£0,10, O aty.) - Prob® (Lo, & ate,)
Probys™ (00,10, & ate,) £ { Prob’@A" (05,10, G510 aty)) - Prob® (01, < ate,)
Prob®@4" (45,10, 615 aty,) - 1

TheP matrix of the DTMCD is as follows (let® denoteC 2.4*):

Prob® (Lo, 15, &= 12" ate,) Prob® (Lo, 15, S~ ate,) Prob® (Lo, 15, O™ 12" aty,)
P= 0 Prob® (01,15, 572 atg, ) Prob® (04,15, 5712 aty,)
0 0 1
CRA™ .
HenceProbyp (4o, 10, < aty,) can be easily computed.
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5 Conclusion

We have studied the problem of verifying linear-time prdjgsragainst ICTMCs. Two
variants of reachability problems, i.e. time-bounded amolwnded reachability, as well
as LTL properties were considered. Future work consistsl@ftifying more classes
of ICTMCs for which efficient computational methods existisithat the approach
studied in this paper can be applied. Other specificatibegD)TA, M()TL, will also
be investigated.
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