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Abstract. We investigate the problem of verifying linear-time properties against
inhomogeneous continuous-time Markov chains (ICTMCs). A fundamental ques-
tion we address is how to compute reachability probabilities. We consider two
variants: time-bounded and unbounded reachability. It turns out that both can be
characterized as the least solution of a system of integral equations. We show that
for the time-bounded case, the obtained integral equationscan be transformed
into a system of ordinary differential equations; for the time-unbounded case, we
identify two sufficient conditions, namely theeventually periodic assumptionand
the eventually uniform assumption, under which the problem can be reduced to
solving a time-bounded reachability problem for the ICTMCsand a reachability
problem for a DTMC. These results provide the basis for a model checking algo-
rithm for LTL. Under theeventually stable assumption, we show how to compute
the probability of a set of ICTMC paths which satisfy a given LTL formula. By
an automata-based approach, we reduce this problem to the previous established
results for reachability problems.

1 Introduction

Continuous-time Markov chains (CTMCs) are one of the most important models in
performance and dependability analysis. They are exploited in a broad range of ap-
plications, and constitute the underlying semantical model of a plethora of modeling
formalisms for real-time probabilistic systems such as Markovian queueing networks,
stochastic Petri nets, stochastic variants of process algebras, and, more recently, calculi
for system biology. These Markov chains are typicallyhomogeneous, i.e., the rates that
determine the speed of changing state as well as the probabilistic nature of mode transi-
tions are constant. However, in some situations constant rates do not adequately model
real behaviors. This applies, e.g., to failure rates of hardware components [10] (that usu-
ally depend on the component’s age), battery depletion [7] (where the power extraction
rate non-linearly depends on the remaining amount of energy), and random phenomena
that are subject to environmental influences. In these circumstances, Markov models
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with inhomogeneousrates, i.e., rates that are time-varying functions, are much more
appropriate [17].

Temporal logics and accompanying model-checking algorithms have been devel-
oped for discrete-time Markov chains (DTMCs for short), against linear-time properties
[8, 9] and branching-time properties [11]; for CTMCs against branching-time properties
[2, 3] and linear real-time properties [6]. And some of them have resulted in a number
of successful model checkers such as PRISM [12] and MRMC [14]. However, the veri-
fication of time-inhomogeneousCTMCs (ICTMCs) has – to the best of our knowledge
– not yet been investigated in depth, with the notable exception [15], which considered
model checking a simple stochastic variant of Hennessy-Milner Logic (without fixed
points) forpiecewise-constantICTMCs. The main aim of the current paper is to fill this
gap by considering model checking ICTMCs w.r.t.linear-timeproperties.

One of the most fundamental linear-time properties are reachability problems. Here
we address two variants: time-bounded and unbounded reachability. The former asks,
given a set of goal states and a time bound, what is the probability of paths of a given
ICTMC that reach the goal states within the time bound. Time-unbounded reachability
is similar except that the time bound is infinity. To solve both of them, we first provide
a characterization in terms of the least solution of a systemof integral equations. This
can be regarded as a generalization of similar results for CTMCs [2, 3] to ICTMCs.
Furthermore, we show that for the time-bounded case, the obtained integral equations
can be transformed into a system of (homogeneous) ordinary differential equations,
which often enjoys an efficient numerical solution; for the time-unbounded case, gen-
erally this is not possible and one has to solve the system of integral equations directly,
which is not so efficient and numerically unstable. To remedythis deficiency, we iden-
tify two sufficient conditions, i.e., theeventually periodicityandeventually uniformity,
under which the problem can be reduced to the time-bounded reachability problem for
ICTMCs and a (time-unbounded) reachability problem for DTMCs and thus can be
solved efficiently. These classes subsume some interestingand important subclasses
of ICTMCs, such as, the piecewise-constant case studied in [15] and ICTMCs with
rates function representingWeibull failure rates. The latter distributions are important
to model hazards and failures, and are popular in, e.g., reliability engineering. We then
turn to model checking ICTMCs against LTL. Strictly speaking, we focus on comput-
ing the probability of the set of paths of a given ICTMC which satisfy the LTL formula.
One of the main difficulties here compared to CTMCs is that in ICTMC, rates between
states are functions over time instead of constants, and thus the topological structure
of ICTMCs, when considered as a digraph, is not stable. To circumvent this problem,
we identify a condition, i.e., theeventually stable assumptionwhich intuitively means
that after a (finite) time, the topological structure of the ICTMC doesnot change any
more. Under this assumption, we can adapt the standard automata-based approach. A
crucial ingredient is that we can construct a correspondingseparatedBüchi automaton
from an LTL formula1, based on which, one can build the product of the given ICTMC
and the separated Büchi automaton while obtaining a well-defined stochastic process.

1 Note that one can also use deterministic automata, but that would incur an extra (unnecessary)
exponential blowup.
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We then reduce the LTL model checking problem to the previousestablished results for
reachability problems.

2 Preliminaries

Given a setS, let Distr(S) denote the set of probability distributions overS.

Definition 1 (ICTMC). A (labeled)inhomogeneous continuous-time Markov chain
(ICTMC) is a tupleC = (S, AP, L, α,R(t)), whereS is a finite set ofstates; AP is
a finite set ofatomic propositions; L : S → 2AP is a labeling function; α ∈ Distr(S)
is an initial distribution; R(t) : S × S × R>0 → R>0 is a rate matrix.

Let diagonal matrixE(t) = diag [Es(t)] ∈ R
n×n
>0 , wheren = |S| andEs(t) : S ×

R>0 → R>0 be defined asEs(t) =
∑

s′∈S Rs,s′(t) for all s ∈ S, i.e.,Es(t) is theexit
rate of states at timet. We require that all rates and exit rates, as functions of time t,
are integrable. If all rates (and thus exit rates) are constant, we obtain a CTMC. A state
s is absorbingif Rs,s′(t) = 0, for s′ 6= s.

Semantics.An ICTMC induces a stochastic process. The probability to take a transition
from s to s′ at timet within ∆t time units is given by:

Prob{s→s′, t, ∆t} =

∫ ∆t

0

Rs,s′(t+τ)e−
R

τ

0
Es(t+υ)dυdτ =

∫ t+∆t

t

Rs,s′(τ)e−
R

τ

t
Es(v)dvdτ.

Definition 2 (Timed paths). Let C be anICTMC. An infinite path starting at timex
is a sequenceρx = s0

t0−−→ s1
t1−−→ s2 · · · such that for eachi ∈ N, si ∈ S, ti ∈ R>0

andRsi,si+1(t) > 0 wheret = x +
∑i

j=0 tj . A finite path is a prefix of an infinite path
ending in a state.

We will sometimes omit the subscript ofρx if the starting timex is irrelevant. Let
Paths

C andPaths
C(s, x) denote the set of (finite and infinite) paths inC and those

starting from states at time x, respectively. The superscriptC is omitted whenever
convenient. Letρ[n] := sn be then-th state ofρ (if it exists) andρ〈n〉 := tn the time
spent in statesn. Let ρx@t be the state occupied inρ at timet ∈ R>0, i.e. ρx@t :=
ρx[n] wheren is the smallest index such thatx +

∑n
i=0 ρx〈i〉 > t. We assume w.l.o.g.

that the time to stay in any state is strictly greater than 0.
Let I denote the set of all nonempty intervalsI ⊆ R>0 and let I ⊕ t (resp.

I ⊖ t) denote{x + t | x ∈ I} (resp.{x − t | x ∈ I ∧ x > t}). The definition
of a Borel spaceover paths through ICTMCs follows [3]. An ICTMCC with initial
states0 and initial timex yields a probability measurePrCs0,x on paths as follows: Let
Cx(s0, I0, . . ., Ik−1, sk) denote thecylinder setconsisting of all pathsρ ∈ Paths(s0, x)
such thatρ[i] = si (i 6 k) andρ〈i〉 ∈ Ii (i < k). F(Paths(s0, x)) is the smallestσ-
algebra onPaths(s0, x) which contains all cylinder setsCx(s0, I0, . . ., Ik−1, sk) for
all state sequences(s0, . . ., sk) ∈ Sk+1 andI0, . . ., Ik−1 ∈ I. The probability measure
PrCs0,x onF(Paths(s0, x)) is the unique measure recursively defined by:

PrCs0,x

(
Cx(s0, I0, . . ., Ik−1, sk)

)

=

∫

I0⊕x

Rs0,s1(τ0)·e
−
R

τ0
x

Es0(v)dv · PrCs1,τ0

(
Cτ0(s1, I1, . . ., Ik−1, sk)

)
dτ0
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Example 1.An example ICTMC is illustrated in Fig. 2(a) (page 10), whereAP =
{a, b, c} and the rate functions areri(t) (1 6 i 6 6). In particular, the exit rate function
of s1 is r2(t) + r3(t). The initial distribution isα(s0) = 1 andα(s) = 0 for s 6= s0. A
possible rate function can be the ones depicted in Fig. 1 (page 7).

Linear temporal logic.The set of linear temporal logic (LTL) formulae over a set of
atomic propositions AP is defined as follows:

Definition 3 (LTL syntax). Given a set of atomic propositionsAP which is ranged
over bya,b,. . ., the syntax ofLTL formulae is defined by:

ϕ ::= tt | a | ¬ϕ | ϕ ∧ ϕ | X ϕ | ϕ U ϕ.

The semantics of LTL for ICTMCC is defined in a standard way by a satisfaction
relation, denoted|=, which is the least relation|=⊆ Paths

C × R>0 × LTL (here we
useLTL to denote the set of LTL formulae) satisfying:

(ρ, t) |= tt (ρ, t) |= ϕ1 ∧ ϕ2 iff (ρ, t) |= ϕ1 and(ρ, t) |= ϕ2

(ρ, t) |= a iff a ∈ L(ρ@t) (ρ, t) |= ¬ϕ iff (ρ, t) 6|= ϕ
(ρ, t) |= X ϕ iff ∃∆t > 0. (ρ, t+∆t) |= ϕ andρ[1] = ρ@(t+∆t)
(ρ, t) |= ϕ1 U ϕ2 iff ∃∆t > 0. (ρ, t+∆t) |= ϕ2 and∀t′ < t+∆t. (ρ, t′) |= ϕ1

We useats∈AP as an atomic proposition which holds solely at states. ForF ⊆ S,
we writeatF for

∨

s∈F ats. Let Paths(s, x, ϕ) = {ρ ∈ Paths(s, x) | (ρ, x) |= ϕ}.

Note that a timed pathρ = s0
t0−−→ s1

t1−−→ · · · satisfies a formulaϕ iff the “dis-
crete part” ofρ, namely,s0s1s2 · · · (= ρ[0]ρ[1]ρ[2] · · · ) satisfiesϕ. It thus can be eas-
ily shown that the setPaths(s, x, ϕ) is measurable. We denote the probability mea-
sure ofPaths(s, x, ϕ) asProb(s, x, ϕ) = Prs,x (Paths(s, x, ϕ)) and letProb

C(ϕ) =
∑

α(s0)>0 α(s0)·Prob(s0, 0, ϕ) be the probability that ICTMCC satisfiesϕ.

3 Reachability Analysis

In this section, we tackle reachability problems for ICTMCs. We distinguish two vari-
ants:time-boundedreachability andtime-unboundedreachability. To solve both of them,
we first give a characterization ofProb(s, x,♦IatF ), namely, the probability of the set
of paths which reach a set of goal statesF ⊆ S within time intervalI starting from state
s at time pointx. This is done by resorting to a system of integral equations,which is a
generalization of a similar characterization for CTMCs [3].

Proposition 1. Let C = (S, AP, L, α,R(t)) be an ICTMC with s ∈ S, x ∈ R>0,
F ⊆ S and intervalI ⊆ R>0 with T1 = inf I andT2 = sup I. The functionS×R>0×
I → [0, 1], (s, x, I) 7→ Prob(s, x,♦IatF ) is the least fixed point of the operator

Ω : (S × R>0 × I → [0, 1]) → (S × R>0 × I → [0, 1]) ,

whereΩ(f)(s, x, I) =8>>>><>>>>: Z T2

0

X
s′∈S

Rs,s′(x + τ )e−
R

τ
0Es(x+v)dv

· f(s′, x + τ, I ⊖ τ )dτ, if s /∈ F (1)

e−
RT1
0 Es(x+v)dv+

Z T1

0

X
s′∈S

Rs,s′(x+τ )e−
R

τ
0 Es(x+v)dv

·f(s′, x+τ, I ⊖ τ )dτ, if s ∈ F (2)
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3.1 Time-Bounded Reachability

We now solve thetime-bounded reachabilityproblem, i.e., given ICTMCC, a set of
goal statesF ⊆ S and a time boundT ∈ R>0, to computeProb(s, x,♦6TatF ), the
probability ofPaths(s, x,♦6TatF ) which is the set of paths that reachF within T time
units given the initial timex. To accomplish this, we first computeProb(s, x,♦=TatF ),
where the slightly different property♦=TatF , in contrast to♦6TatF , requires that
states inF are reached atexactlytime T . Note that♦6T atF and♦=T atF can also be
written as♦[0,T ]atF and♦[T,T ]atF , respectively, whereI = [0, T ] or I = [T, T ] is a
time interval. By instantiating (1), (2) in Prop. 1, we obtain thatProb(s, x,♦=TatF ) =8>>>><>>>>:Z T

0

X
s′∈S

Rs,s′(x + τ )e−
R

τ
0 Es(x+v)dv

· Prob(s′, x + τ,♦
=T−τatF )dτ, if s/∈F (3)

e−
R

T
0 Es(x+v)dv+

Z T

0

X
s′∈S

Rs,s′(x+τ )e−
R

τ
0Es(x+v)dv

·Prob(s′,x+τ ,♦
=T−τatF )dτ, if s∈F (4)

Intuitively, (3) and (4) are justified as follows: Ifs /∈ F , the probability of reaching an
F -state froms after exactlyT time units given the starting timex equals the probability
of reaching some direct successors′ of s in τ time units, multiplied by the probability
of reaching anF -state froms′ in the remainingT − τ time units. Ifs ∈ F at timex,
then it can either stay ins (i.e., delay) forT time units (the first summand in (4)), or
regards as a non-F state and take a transition (the second summand in (4)).

We now address the problem of solving (3) and (4), read as asystem of integral
equations. We defineΠ(x, T ) as the matrix with entriesΠi,j(x, T ) denoting the prob-
ability of the set of paths starting from statei at timex and reaching statej at time
x + T . For any ICTMC, the following equation holds:

Π(x, T ) =

∫ T

0

M(x, τ)Π(x + τ, T − τ)dτ

︸ ︷︷ ︸

Markovian jump

+D(x, T )
︸ ︷︷ ︸

delay

(5)

M(x, T ) is the probability density matrix whereMi,j(x, T ) = Ri,j(x+T )·e−
R

T

0
Ei(x+v)dv

is the density to move from statei to j at exactly timeT andD(x, T ) is the diagonal
delay probability matrix withDi,i(x, T ) = e−

R
T

0
Ei(x+v)dv.

We note thatΠ(x, T ) is actually the (equivalent) matrix form of (3) and (4). For
(4), it follows directly that each of its summands has a counterpart in (5). For (3), note
thatD(x, T ) is a diagonal matrix where all the off-diagonal elements are0 and that (3)
does not allow a delay transition from a non-F state. This correspondence builds a half-
bridge betweenProb(s, x,♦=T atF ) andΠ(x, T ), whereas the following proposition
completes the other half bridge betweenΠ(x, T ) and thetransient probability vector
~π(t) of ICTMCs:

Proposition 2. Given ICTMC C with initial distribution α and rate matrixR(t). We
have thatΠ(0, t) and~π(t) satisfy the following two equations:

~π(t) = α · Π(0, t) , (6)

d~π(t)

dt
= ~π(t) ·Q(t), ~π(0) = α , (7)
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whereQ(t) = R(t) − E(t) is theinfinitesimal generatorof C.

Intuitively, this proposition implies that solving the system of integral equations
Π(x, t) boils down to computing the transient probability vector~π(t) with each element
~πs(t) indicating the probability to be in states at time t given the initial probability
distributionα = ~π(0). The transient probability is specified by a system of ODEs (7),
the celebrated Chapman-Kolmogorov equations.

Given ICTMC C, let C[F ] be the ICTMC obtained by making the states inF
absorbing inC. We have the following theorem:

Theorem 1. For any ICTMC C, Prob
C(s, x,♦6TatF ) = Prob

C[F ](s, x,♦=TatF ).

To sum up, Proposition1, 2 together with Theorem1 suggest that computing time-
bounded reachability probabilities in an ICTMC can be done,by first making theF
states absorbing (and thus obtainingC[F ]) followed by solving a system of homoge-
neous ODEs (7) forC[F ]. By using standard numerical approaches, e.g.,Euler method
or Runge-Kutta methodand their variants [16], this system of ODEs (i.e. the transient
probability vector) can be solved.

3.2 Time-Unbounded Reachability

We then turn to thetime-unbounded reachabilityproblem, i.e., there are no constraints
on the time to reach theF -states. LetProb(s, x,♦ atF ) denote the reachability proba-
bility from states at timex to reachF within time interval[0,∞). Using Proposition
1, we can characterizeProb(s, x,♦ atF ) as follows:8><>: Z ∞

0

X
s′∈S

Rs,s′(x + τ )e−
R

τ
0 Es(x+v)dv

· Prob(s′, x + τ,♦atF )dτ, if s /∈ F (8)

1, if s ∈ F (9)

The cases ∈ F is derived from (2), where the probability to delay in anF -state for
zero units of time is1 and the probability to leave (i.e. taking a Markovian jump) an
F -state in zero units of time is0. Whens /∈ F , Eq. (8) is similar to (3) except that
there is no bound on the time to leave a states /∈ F . Note that in contrast to thetime-
boundedcase, in general it is not possible to reduce this system of integral equations to
a system of ODEs. Since solving a system of integral equations is generally time con-
suming and numerically instable, we propose to investigatesome special cases (subsets
of ICTMCs), for which the reduction to ODEs is possible. Herewe consider two such
classes, i.e.eventually periodicICTMCs andeventually uniformICTMCs. Their com-
mon feature is that rate functions of the given ICTMC exhibitregular behaviors after
some timeT . This allows for computing time-unbounded reachability probabilities ef-
ficiently (e.g., via DTMCs). Hence the problem turns out to bereducible to computing
the time-bounded reachability probabilities with time bound T , which has been tack-
led in the previous section, and reachability probabilities for DTMCs. Both of them,
fortunately, enjoy efficient computational methods.
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Ts,s′

ns,s′ ·P

t0

Rs,s′(t)

Ts t0

Rs,s′(t)

Fig. 1. Eventually periodic assumption (left) and eventually stable assumption (right)

Eventually periodic assumption.We considereventually periodicICTMCs.

Definition 4 (Eventually periodic assumption (EPA)).An ICTMC C is eventually
periodicif there exists some timeP ∈ R>0 such that for any two statess, s′ ∈ S, there
exists someTs,s′ ∈ R>0 andns,s′ ∈ N such that

Rs,s′(t) =

{

R
(1)
s,s′(t) if t 6 Ts,s′

R
(2)
s,s′(t) if t > Ts,s′

whereR(2)
s,s′(t) = R

(2)
s,s′(t + ns,s′ ·P ).

An example rate function under the EPA is illustrated in Fig.1 (left). After time
point Ts,s′ , the functionRs,s′(t) becomes periodic with the periodns,s′ ·P , whereP
is the “common factor” of all the periods of rate functionsRs,s′(t), for all s, s′ ∈ S. For
any ICTMCC satisfying EPA, letTEP = maxs,s′∈S Ts,s′ andPEP = (gcds,s′∈S ns,s′)·P .
Intuitively, TEP is the time since when all rate functions are periodic andPEP is the
period of all the periodic rate functions. For instance, suppose there are two rate func-
tions with R

(2)
s1,s2(t) = 2 + cos(1

2 t) andR
(2)
s2,s3(t) = 3 − sin(1

3 t), and letTs1,s2 =
10, Ts2,s3 = 15. ThenTEP=max{10, 15}=15, P=π, ns1,s2=4 andns2,s3=6, and
PEP=gcd{4, 6}·π=12π.

Time-unbounded reachability probabilities for an ICTMC under the EPA can be
computed according to Alg. 1 and justified by Theorem 2. Let usexplain it in more
detail. Due to (9), onceF states are reached, it is irrelevant how the paths continue.
This justifies the model transformation fromC to C[F ]. The reachability problem can
be divided into two subproblems: (I) first to compute the probability to reach state
s′ ∈ S at exactly timeTEC (the secondProb in (10), see below); and (II) then to com-
pute the time-unbounded reachability froms′ ∈ S to F (the thirdProb in (10)). In
the following we will focus on (II): Recall that we denoteProb(s, TEP,♦=PEPats′)
to be the probability to reach froms to s′ after timePEP starting from time point
TEP. Since after timeTEP all rate functions are periodic with periodPEP, it holds that
Prob(s, TEP,♦=PEPats′) = Prob(s, TEP+n·PEP,♦=PEPats′), for all n ∈ N. It then
suffices to computeProb(s, TEP,♦=PEPats′) for anys, s′ ∈ S. Given the ICTMCC
with state spaceS, we build a DTMCDC = (S,P) with Ps,s′=Prob

C(s, TEP,♦=PEPats′).
Intuitively, Ps,s′ is the one-step probability (one-step here means one period) to move
from s to s′, and the problem (II) is now reduced to computing the reachability prob-
ability from s to F -states in arbitrarily many steps (since the time-unbounded case
is considered), i.e.,Prob

DC[F ](s,♦ atF ). This can be done by standard methods, e.g.,
value iterationor solving a system of linear equations, see, among others, [4] (Ch. 10).
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Theorem 2. LetC = (S, AP, L, α,R(t)) be anICTMC satisfyingEPAwith timeTEP

andPEP, s ∈ S andF ⊆ S. Then:

Prob
C
EP(s, 0,♦ atF )=

∑

s′∈S

Prob
C[F ](s, 0,♦=TEPats′)·Prob

DC[F ](s′,♦ atF ) (10)

Remark 1.Sometimes we need to computeProbCEP(s, x,♦ atF ) for ICTMC C =
(S, AP, L, α,R(t)), namely, the starting time isx instead of0. To accomplish this,
we define an ICTMCC′ = (S, AP, L, α,R′(t)) such thatR′(t) = R(t + x) and it
follows thatC′ still satisfies EPA (withT ′

EP = TEP − x if x 6 TEP and 0 otherwise;
P ′

EP = PEP) andProbCEP(s, x,♦ atF ) = ProbC
′

EP(s, 0,♦ atF ).

Algorithm 1 Time-unbounded reachability for ICTMCs satisfying EPA
Require: ICTMC C = (S, AP, L, α,R(t)), EPA timeTEP, periodPEP

Ensure: Prob
C
EP(s, 0,♦ atF )

1: For any two statess, s′ ∈ S in C[F ], compute thetime-bounded reachability probabilitywith
time boundTEP, starting from time pointx, i.e.Prob

C[F ](s, 0,♦=TEPats′);
2: For any two statess, s′ ∈ S in C[F ], compute thetime-bounded reachability probabilitywith

time boundPEP, starting from time pointTEP, i.e.Prob
C[F ](s, TEP,♦=PEPats′);

3: Construct adiscrete-time Markov chain(DTMC for short)DC[F ] = (S,P) with Ps,s′ =

Prob
C[F ](s, TEP,♦=PEPats′). We denote thereachability probabilityfrom s to F in DC by

Prob
DC[F ](s,♦ atF );

4: Return
P

s′∈S
Prob

C[F ](s, 0,♦=TEPats′) · Prob
DC[F ](s′,♦ atF ).

Eventually uniform assumption.The previous section has discussed rate functions en-
joying a periodic behavior. A different class of rate functions are those which increase
or decrease uniformly, e.g., an ICTMC in which all rates are amultiplicative of the
Weibull failure ratewhich is characterized by the functionf(t) = γ

α

(
t
α

)γ−1
, where

γ andα are the shape and scale parameters of the Weibull distribution, respectively.
These distributions can e.g., characterize normal distributions, and are frequently used
in reliability analysis. This suggests to investigateeventually uniformICTMCs.

Definition 5 (Eventually uniform assumption (EUA)). An ICTMC C is eventually
uniform if there exists some timeTEU ∈ R>0 and an integrable functionf(t) : R>0 →

R>0 such thatlimt→∞

∫ t

TEU
f(τ)dτ → ∞ and for any two statess, s′ ∈ S and t >

TEU, Rs,s′(t) = f(t) · Rc
s,s′ , whereRc

s,s′ is a constant.

In terms of the infinitesimal generatorQ(t) of the ICTMCC, EUA intuitively en-
tails that there exists some functionf(t) andconstantinfinitesimal generatorQc =
Rc − Ec (Rc andEc are the constant rate matrix and exit rate matrix, respectively)
such thatQ(t) = f(t)·Qc for all t > TEU. We also define theconstant transition

probability matrixPc such thatPc
s,s′ =

R
c

s,s′

Ec
s

.
By restricting to the EUA, one can reduce the time-unboundedreachability prob-

lem for an ICTMCC to computing the time-bounded reachability probability with
time boundTEU and the reachability probability in a DTMCDC

EU[F ] with transition
probability matrixPc[F ], wherePc[F ]s,s′ = Pc

s,s′ for s /∈ F ; Pc[F ]s,s = 1 and
Pc[F ]s,s′ = 0, for s ∈ F ands′ 6= s. This is shown by the following theorem.
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Theorem 3. LetC = (S, AP, L, α,R(t)) be anICTMC with s ∈ S. Given a setF of
goal states and theeventually uniform assumptionwith the associated timeTEU and
DTMC DC

EU, it holds that

Prob
C(s, 0,♦ atF ) =

∑

s′∈S

Prob
C[F ](s, 0,♦=TEUats′) · Prob

DC

EU[F ](s′,♦ atF ). (11)

Remark 2.We note that the two assumptions, EUA and EPA areincomparable. There
are rate functions (e.g. polynomials) which cannotbe represented as periodic functions
but satisfy EUA; on the other hand, in case of EPA one can, for instance, assign the
same sort of rate functions (e.g.sin) with different periods, and thus obtain an ICTMC
which invalidates EUA.

4 LTL Model Checking

In this section, we tackle the problem of model checking properties specified by LTL
formulae for ICTMCs. Model checking CTMCs against LTL is notvery difficult, since
one can easily extract theembeddedDTMC of the given CTMC, and thus reduce the
problem to the corresponding model checking problem of DTMCs, which is well-
studied, see, e.g. [8]. However, this approach doesnotwork for ICTMCs, since the rates
of the ICTMC vary with time. Below we shall employ an automata-based approach. For
this purpose, some basic definitions are in order.

Definition 6 (Generalized Büchi automata).A generalized Büchi automaton (GBA)
is a tupleA = (Σ, Q, ∆, Q0,F), whereΣ is a finite alphabet;Q is a finite set of states;
∆ ⊆ Q×Σ ×Q is a transition relation;Q0 ⊆ Q is a set of initial states, andF ⊆ 2Q

is a set of acceptance sets.

We sometimes writeq σ−−→ q′ if (q, σ, q′) ⊆ ∆ for simplicity. An infinite word w ∈
Σω is accepted byA, if there exists an infiniterun θ ∈ Qω such thatθ[0] ∈ Q0,
(θ[i], w[i], θ[i + 1]) ⊆ ∆ for i > 0 and for eachF ∈ F , there exist infinitely many
indicesj ∈ N such thatθ[j] ∈ F . Note thatw[i] (resp.θ[i]) denotes thei-th letter (resp.
state) onw (resp.θ). The accepted language ofA, denotedL(A), is the set of all words
accepted byA. Given a GBAA and stateq, we denote byA[q] the automatonA with q
as the unique initial state. Note thatL(A) =

⋃

q∈Q0
L(A[q]). A GBA A is separated,

if for any two statesq, q′, L(A[q′]) ∩ L(A[q′′]) = ∅.
It follows from [9] that the correspondence between LTL formulae and separated

GBA can be established:

Theorem 4. For any LTL formula ϕ over AP, there exists aseparated GBAAϕ =
(Σ, Q, ∆, Q0,F), whereΣ = 2AP and |Q| 6 2O(|ϕ|), such thatL(Aϕ) is the set of
computations satisfying the formulaϕ.

We note that the notion ofseparatedis crucial for the remainder of this paper. A
closely related notion, referred to asunambiguous, has been widely studied in automata
and language theory, dating back to [1]. See also, among others, [5][13] for relevant
literature. To the best of our knowledge, the notion of “separated” was firstly exploited
in [9] for model checking DTMCs against LTL.
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Definition 7 (Product). Given anICTMC C = (S, AP, L, α,R(t)) and a separated
GBA A = (Σ, Q, ∆, Q0,F), the productC ⊗ A is defined as

C ⊗ A = (Loc, AP, L̃, α̃, R̃(t)),

whereLoc = S × Q; L̃(〈s, q〉) = L(s); α̃(〈s0, q0〉) = α(s0) if α(s0) > 0 and

q0 ∈ Q0, and undefined elsewhere; and̃R〈s,q〉,〈s′,q′〉(t) = Rs,s′(t) if q
L(s)

−−−→ q′.

For the sake of clarity, we call the states of a product aslocations.

s0 s1 s2 s3

s4

r1(t) r2(t) r5(t)

r3(t)
r4(t)

r6(t)

{a} {b} {c} {a}

{b}

(a) ICTMCC

q0 q2 q4 q5

q1 q3

a a c

a

b

a
b

c
c

(b) Separated GBAA

ℓ0 = 〈s0, q0〉 ℓ1 = 〈s1, q1〉 ℓ2 = 〈s2, q5〉

ℓ5 = 〈s4, q3〉

ℓ4 = 〈s3, q0〉

ℓ3 = 〈s4, q1〉

ℓ6 = 〈s1, q2〉

ℓ7 = 〈s2, q3〉ℓ8 = 〈s4, q5〉

r1(t) r2(t) r5(t)

ℓ9 = 〈s4, q2〉

r6(t)

r3(t)
r2(t) r4(t)

r4(t)

r6(t)

r3(t)r1(t)

(c) ProductC ⊗ A

Fig. 2. Example product construction of ICTMCC and separated GBAA

Example 2.Given ICTMCC (Fig. 2(a)) and separated GBAA (Fig. 2(b)), the product
C ⊗ A is shown in Fig. 2(c).

Remark 3.Note that in general the product itself isnot an ICTMC. The reason is two-
fold: (1) If |Q0| > 1, thenα̃ is not a distribution; (2) The sum of the rates of outgoing
transitions from a location might exceed the exit rate of thelocation. For instance, in
Example 2, the exit rate ofℓ0, as defined, is̃Eℓ0(t) = Es0(t) = r1(t); while the sum
of the rates of its outgoing transitions is2r1(t). However, due to the fact thatA is
separated, as we will see later, it would not be a problem, cf.Proposition 3.

The generalized Büchi acceptance condition, roughly speaking, requires to visit
some states infinitely often. As in the tradition of model checking Markovian models,
we need to identifybottom strongly connected components(BSCCs) of the product
(when read as a graph). Astrongly connected component(SCC for short) of the product
denotes a strongly connected set of locations such that no proper superset is strongly
connected. A BSCC is an SCC from which no location outside is reachable. Unfortu-
nately, generally in ICTMCs, there is no way to define a BSCC over the product since
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the rate of each transition is afunctionof time instead of a constant and thus a BSCC at
time t might not be a BSCC at timet′. In other words, the topological structure (edge
relation) of the product might change at any moment of time, which is one of the main
difficulties of model checking ICTMCs.

To circumvent this problem, we make an (arguably mild) assumption, that is, we
assume that ICTMCs areeventually stable, in the following sense.

Definition 8 (Eventually stable assumption (ESA)).An ICTMC C is eventually sta-
ble if for each states ∈ S, there exists some timeTs such that for anyt > Ts and
s′ ∈ S, eitherRs,s′(t) > 0 or Rs,s′(t) = 0.

W.l.o.g., we assumeTs is the smallest time point that the above assumption holds for
states. Let TES = maxs∈S Ts be the smallest time point that an ICTMC isstable.
Intuitively, an ICTMC is stable if its topological structure doesnot change any more.
More specifically, transitions can alter their rates, but not from positive to zero or vice
versa, i.e., no transitions will “disappear” or “newly created”. An example rate function
is illustrated in Fig. 1 (right), where afterTES the rates keep strictly positive (note the
particular value is irrelevant here). It turns out that ESA is essential for identifying
stable BSCCs (also model checking LTL). Astableproduct as well asstableBSCC are
defined in the same way, relative to the time pointTES. In the sequel, when we refer to
BSCCs, we implicitly refer to the stableBSCCs in the stable product.In accordance
with this, we will sometimes writes 7→ s′ for ICTMC C if Rs,s′(t) > 0 with t > TES;
and similarly forℓ 7→ ℓ′ in the product.

Definition 9 (aBSCC). Given the productC ⊗ A of an ICTMC C = (S, AP, L,
α,R(t)) satisfyingESAand aGBA A = (Σ, Q, ∆, Q0,F), we define

I. a SCC is a set of locationsB ⊆ S × Q such that(i) B is strongly connected
meaning that for any two locationsℓ, ℓ′ ∈ B, ℓ 7→∗ ℓ′ where 7→∗ denotes the
reflexive and transitive closure of7→, and(ii) no proper superset ofB is strongly
connected;

II . a SCCB is acceptingif ∀F ∈ F , there exists some〈s, q〉 ∈ B such thatq ∈ F ;
III . a SCC B is an accepting bottom SCC(B ∈ aBSCC for short) if (i) B is ac-

cepting;(ii) for each locationℓ ∈ B, there doesnotexist any locationℓ′ such that
ℓ 7→ ℓ′ andℓ′ is in any otheraccepting SCC; (iii ) for each locationℓ = 〈s, q〉 ∈ B,
for anys′ with s 7→ s′, 〈s′, q′〉 ∈ B for someq′.

As an example, we note, suppose thatr4(t), r5(t), r6(t) > 0 whent > TES, that an
accepting BSCC in the stable product in Fig. 2(c) is formed byℓ2, ℓ3, ℓ4. Note that
{ℓ7} is not an (accepting) SCC, so III(ii ) is not violated.{ℓ8} is not an SCC either,
since we would require thatℓ8 7→∗ ℓ8 which fails to be.

Recall that given an LTL formula, one can obtain a corresponding separatedau-
tomaton, which renders us very nice properties for the product defined in Definition 7.
A couple of lemmas, dedicated to illustrate these properties are in order. The following
two essentially exploit the fact that for each accepted wordof a separated GBA, there
is a unique accepting path.
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Lemma 1. Given the productC ⊗ A whereA is separated. For any aBSCCB of the
stable productC ⊗ A, it cannotbe the case that〈s, q〉 7→ 〈s′, q′〉 and〈s, q〉 7→ 〈s′, q′′〉
for any〈s, q〉, 〈s′, q′〉, 〈s′, q′′〉 in B with q′ 6= q′′.

We say that two locations〈s, q〉 and〈s′, q′〉 in the productC ⊗ A areconnected,

if q
L(s)

−−−→ q′2. We say that from location〈s, q〉 there is a path leading to a BSCCB,
if there is a sequence〈s0, q0〉, 〈s1, q1〉, . . . , 〈sn, qn〉 such that〈s, q〉 = 〈s0, q0〉, 〈si, qi〉
and〈si+1, qi+1〉 are connected for0 6 i < n and〈sn, qn〉 ∈ B.

Lemma 2. Given the productC⊗A of anICTMC C and a separatedGBA A, it cannot
be the case that there are two locations〈s, q〉 and〈s, q′〉 with q 6= q′ such that both of
them have a path reaching an aBSCC.

As said, given ICTMCC and separated GBAA, the productC ⊗ A itself is not an
ICTMC (see Example 2). However, thanks to the fact thatA is separated, we can trans-
form C ⊗ A into an ICTMC. Lemma 1 and 2 entail that in the productC ⊗ A, we can
safely remove the locations which do not lead to an acceptingBSCC, and thus obtain
an ICTMC model, denotedC⊗A. Let us illustrate this by continuing Example 2. First
note that the dashed locations are the trap locations from which the accepted locationℓ2

cannot be reached. Those locations can safely be removed since the paths passing them
will never be accepted. It is not a coincidence that at most one of the outgoing transi-
tions from those “nondeterministic” locations (i.e.,ℓ0, ℓ1, ℓ3, ℓ4) can reach the accepted
locations. This is guaranteed by the separated property of the automaton (Lemma 2).
By deleting all the dashed locations, we obtainC⊗A.

The following proposition claims thatC⊗A can be viewed as an ICTMC in the
sense that it defines a stochastic process exactly as an ICTMC. The crucial point is that
in C⊗A, for each locationℓ and timet, the sum of the rates of the emanating transitions
from ℓ doesnot exceed the exit rate ofℓ. (Note that the sum could be strictly less than
the exit rate as forℓ1 in Fig. 2(c), thus it is “substochastic”.) With a little abusing of
terms, we call this model an ICTMC.

Proposition 3. C⊗A is an ICTMC. Moreover, for each accepting cylinder set,C and
C⊗A give rise to the same probability.

Let C⊗A⋆ be obtained fromC⊗A by making each location in theaBSCCs absorb-
ing, and defineF ⋆ as the set of locations in anyaBSCC. Given an ICTMCC with
eventually stable assumption (withTES) and an LTL formulaϕ, the probability of the
set of paths ofC satisfyingϕ, denotedProb

C
ES(ϕ), can be computed by Alg. 2.

Theorem 5. For an ICTMC C with TES and anLTL formulaϕ,

Prob
C
ES(ϕ) =

∑

α̃(ℓ0)>0

∑

ℓ∈Loc

α̃(ℓ0)·Prob
C⊗A(ℓ0, 0,♦=TESatℓ)·Prob

C⊗A⋆

(ℓ, TES,♦ atF ⋆).

2 Note that we donot require thats 7→ s′. So “connected” is purely a graph-theoretic notion
where the time is irrelevant.
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Algorithm 2 Model checking ICTMC against LTL
Require: ICTMC C, LTL formula ϕ, ESA timeTES;
Ensure: Prob

C
ES(ϕ)

1: Transformϕ to a separated generalized Büchi automatonA;
2: Build the productC ⊗A = (Loc, AP, L̃, α̃, R̃(t));
3: Find allacceptingBSCCs in the (stable) productC ⊗ A;
4: Remove all the trap locations yieldingC⊗A;
5: Compute thetime-bounded reachabilityin C⊗A from initial locationℓ0 to eachℓ ∈ Loc,

Prob
C⊗A(ℓ0, 0,♦=TES atℓ);

6: Make each location in theaBSCCs absorbing, thus obtainingC⊗A⋆ andF ⋆;
7: Compute thetime-unbounded reachability probabilityin C⊗A⋆ from eachℓ ∈ Loc to F ⋆,

i.e.,Prob
C⊗A⋆

(ℓ, TES,♦ atF ⋆);
8: Prob

C
ES(ϕ) =

P
α̃(ℓ0)>0

P
ℓ∈Loc

α̃(ℓ0)·Prob
C⊗A(ℓ0, 0,♦=TESatℓ)·Prob

C⊗A⋆

(ℓ, TES,♦ atF ⋆).

Note thatProb
C⊗A(ℓ0, 0, ♦=TESatℓ) andProb

C⊗A⋆

(ℓ, 0,♦atℓF ⋆ ) can be com-
puted by the approaches in Section 3.1 and 3.2, respectively. Computing the former
relies on solving a system of ODEs, whereas computing the latter, as stated in Sec-
tion 3.2, one has to solve a system of integral equations in general.

Remark 4 (EPA, EUA andESA). EPA and ESA areincomparable, i.e., there are ICTMCs
that are eventually periodic but not stable (see e.g., the ICTMC with one rate function
in Fig. 1 (left)), and vice versa (see, e.g., that in Fig. 1 (right)). When both assumptions
are applied, we obtain ICTMCs that are “eventually positiveperiodic”, i.e., eventually
periodic and all rate function values in the periods are either strictly positive or being
zero. For this subset of ICTMCs, one can resort to solving a system of ODEs and linear
equations, as presented in Theorem 2 as well as Alg. 1.

EUA and ESA areincomparableas well. The counterexamples for both directions
can be easily constructed. When both assumptions are applied, as in the previous case,
the subset of ICTMCs (wheref(t) is eventually strictly positive) can be dealt with by
solving a systems of ODEs and linear equations (Theorem 3).

The comparison of EPA and EUA can be found in Remark 2. We emphasize once
again that ESA is of most importance in LTL model checking, inorder to find stable
BSCCs. However EPA or EUA are certain subsets of ICTMCs that we can efficiently
deal with (meaning by solving a system of ODEs and linear equations). We mention that
there are other approaches which can handle and solve the system of integral equations,
e.g., approximation by truncating the infinite range of the integral.

Example 3.We continue Example 2 to show how to compute the set of paths ofICTMC
C accepted byA. Let the rate functions be defined as:ri(t) = i for t > 0 and3 6 i 6 6;
and

r1(t) =

8<: t x ∈ [0, 9.5)
0 x ∈ [9.5, 10)
2 + cos( 1

2
t) x ∈ [10,∞)

r2(t) =

�
4.1 x ∈ [0, 15)
7.6 − sin( 1

3
t) x ∈ [15,∞)

It is not difficult to see that this ICTMC satisfies both the ESAand EPA andTES = 10,
TEP = 15 andPEP = 12π.
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To computeProb
C
ES(A), Alg. 2 is applied. Note that we omit the step of transform-

ing an LTL formula to a GBA and the notationProb
C
ES(A) is self-explanatory. We con-

sider the firstProb appearing in step 8, namely, to computeProb
C⊗A(ℓ0, 0,♦=10 atℓ)

for all ℓ in C⊗A. This is actually to compute the transient probability vector in C⊗A at
timeTES = 10, which can be done by solving a system of ODEs. We then consider the
secondProb appearing in step 8, namely, to computeProb

C⊗A⋆

(ℓ, 10,♦atℓ2) (note
thatF ∗ = {ℓ2}). Finally, we wrap them up as follows:

Prob
C
ES(A)

P
=

8>>>><>>>>:Prob
C⊗A(ℓ0, 0,♦=10 atℓ0) · Prob

C⊗A⋆

(ℓ0, 10,♦ atℓ2)

Prob
C⊗A(ℓ0, 0,♦=10 atℓ1) · Prob

C⊗A⋆

(ℓ1, 10,♦ atℓ2)
Prob

C⊗A(ℓ0, 0,♦=10 atℓ2) · 1
Prob

C⊗A(ℓ0, 0,♦=10 atℓ3) · 1

Prob
C⊗A(ℓ0, 0,♦=10 atℓ4) · 1

(12)

The left column of (12) is the transient probability vector;we then show how to com-
pute the elements in the right column. For this purpose, generally we have to solve a
system of integral equations. Here we obtain the following one:







fℓ0(x) =
∫ ∞

0 r1(x + τ)e−
R

τ

0
r1(x+v)dv·fℓ1(x + τ)dτ

fℓ1(x) =
∫ ∞

0
r2(x + τ)e−

R
τ

0
r2(x+v)+r3(x+v)dv·fℓ2(x + τ)dτ

fℓ2(x) = 1

In this case, one obtains thatfℓ2(x) = 1,

fℓ1(10) =

Z 15

10

4.1e−
R

τ
10(4.1+3)dvdτ+

Z ∞

15

(7.6−sin(
1

3
τ ))·e−

R 15
10 (4.1+3)dv−

R
τ
15(7.6−sin( 1

3
(x+v))+3)dvdτ .

andfℓ0(10) can be computed accordingly. It follows thatProb
C⊗A⋆

(ℓ0, 10,♦ atℓ2) =

fℓ0(10) andProb
C⊗A⋆

(ℓ1, 10,♦atℓ2) = fℓ1(10). Hence (12) can be obtained.
Alternatively, let us note that fortunately in this case, the EPA is satisfied. So one

can apply Alg. 1 to computeProb
C⊗A⋆

(ℓ, 10,♦atℓ2). Let us illustrate for the case that
ℓ = ℓ0. (The case thatℓ = ℓ1 is similar.) For the firstProb in Alg. 1, step 4, it is again
to compute the transient probability matrixProb

C⊗A⋆

(ℓ, 10,♦=15−10 atℓ′), for ℓ, ℓ′ ∈
{ℓi | 1 6 i 6 4} (note thatℓ2 is already made absorbing inC⊗A⋆); and for the second
Prob, we need to construct the DTMCD with Pℓ,ℓ′ = Prob

C⊗A⋆

(ℓ, 15,♦=12π atℓ′).
It follows that

Prob
C⊗A⋆

EP (ℓ0, 10,♦ atℓ2)
P
=

8<:Prob
C⊗A⋆

(ℓ0, 10,♦=15−10 atℓ0) · Prob
D(ℓ0,♦ atℓ2)

Prob
C⊗A⋆

(ℓ0, 10,♦=15−10 atℓ1) · Prob
D(ℓ1,♦ atℓ2)

Prob
C⊗A⋆

(ℓ0, 10,♦=15−10 atℓ2) · 1

TheP matrix of the DTMCD is as follows (letΘ denoteC⊗A⋆):

P =

0�Prob
Θ(ℓ0, 15,♦=12π atℓ0) Prob

Θ(ℓ0, 15,♦=12π atℓ1) Prob
Θ(ℓ0, 15,♦=12π atℓ2)

0 Prob
Θ(ℓ1, 15,♦=12π atℓ1) Prob

Θ(ℓ1, 15,♦=12π atℓ2)
0 0 1

1A .

HenceProb
C⊗A⋆

EP (ℓ0, 10,♦atℓ2) can be easily computed.
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5 Conclusion

We have studied the problem of verifying linear-time properties against ICTMCs. Two
variants of reachability problems, i.e. time-bounded and unbounded reachability, as well
as LTL properties were considered. Future work consists of identifying more classes
of ICTMCs for which efficient computational methods exist such that the approach
studied in this paper can be applied. Other specifications like (D)TA, M(I)TL, will also
be investigated.
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