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Abstract— We propose a novel stochastic extension of timed
automata, i.e.Markovian Timed Automata. We study the prob-
lem of optimizing time-bounded reachability probabilities in
this model, i.e., the maximum likelihood to hit a set of goal d-
cations within a given deadline. We propose Bellman equatits
to characterize the probability, and provide two approaches
to solve the Bellman equations, namely, a discretization aha
reduction to Hamilton-Jacobi-Bellman equations.
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|I. INTRODUCTION

This paper introducesMarkovian Timed Automata
(MTA), a novel extension of timed automata [1] with expo-
nentially distributed location residence times. To givenso
motivation, let's look at the following example: A robot
moves on & x 3-grid (Fig. 1), starting fromA and trying to
reachB in Ty units of time. At each
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cell, it can move up (u), down (d), left| 4 :- Fig. 2. MTA for the robot example
() and right (r) (when applicable). In general, controller synthesis problems for MTA are to
Cells are associated with rates, whic determine the sequence of actions that maximize the proba-
intuitively represent the speed of th bility2 to reach certain goal locations in MTA within a given
robot. As soon as it moves to a cell, B deadline {ime-bounded reachabilily To solve this issue,
the robot decides a direction to mov we first apply the standard region construction [1] to MTA.
to the next cell, and then waits in the Fig. 1. Robot example  Then we characterize maximum (time-bounded) reachability
current cell for a certain amount of probabilities by a variant of the Bellman equation [3]. This

time, which is governed by an exponential distribution withyroyides the basis for two approaches to compute such proba-
a given rate), i.e., the probability of leaving the cell within pjjities. The first approach uses discretization, and stbas
timet is 1—e~*".* The robot is allowed to stay in consecutivemax-reachability probabilities can be reduced to maximum
dark cells for at mosfl} units of time, while there is no reachability probabilities in a finite state Markov decisio
time constraint for the bright cells. At each cell, the rObObrocess (MDP), for which various efficient algorithms, such

has a probability0.1 to break down, apart from moving as value iteration [3], exist. We show that the accuracy of ou
to the neighboring one. Since there are different ways tgsylt is(1—e*).(1—e*T), whereh is the discretization

reach3, each of which is associated with some probabilitystep, 7" is the deadline, and is the maximal rate of all

one natural question is: What's timeaximum probabilitto  exponential distributions in the MTA. The second approach
reachB from A within 75 units of time? This problem can s hased on partial differential equations (PDEs), in patsir
be readily formulated as a controller synthesis problem fqqamjiton-Jacobi-Bellman equations [11].
MTA depicted in Fig. 2, where each location {i, . .., (s } We point out that MTA are rather expressive: Zero-clock
corresponds to a cell and y areclocksto specify the time  \17a correspond to a subclass of CTMDPs [2][5], whereas
congtra|nts_. (N.B. th_e failure location anq all thg traonsis probabilistic timed automata (PTAs) [12] are obtained by
leading to it are omitted for th_e clearer illustration. F_bet basically ignoring the exit rates in any location in the MTA.
same reason the repr_ese_ntatlon of the MTA here is a Qf aarlier work 8], 71, [?], we have usedeterministicMTA
different from the one in Fig. 3.) as specification formalism for linear real-time properties
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undecidable in general (foE%-player games), while the constraintz > ¢, denotedn = x < ¢, if and only if
qualitative question= 0” or “= 1" can be solved in PTIME n(x)  ¢; it satisfies a conjunction of such expressions if
for 1%—player games with a single clock. MTA are essentiallyand only if satisfies all of them. Led denote the valuation
1%—p|ayer stochastic timed games. However, our focus is ahat assign$ to all clocks. For a subseX C X, the reset
quantitative analysis rather than on qualitative analysis oof X, denotedn[X := 0], is the valuation;y such that
decidability issues. In [6], a game extension of semi-MarkoVz € X. 7/(z) := 0 andVz ¢ X. n/(x) := n(x). For
decision process (SMDP) was considered and the winnifge R, and X-valuationn, n+d is the X-valuation n”
objective was specified by a deterministic timed automatosuch thatvz € X. n’(z):= n(x)+4, which implies that all
Again, only thequalitative question were addressed. clocks proceed at the same speed.

As a by-product of our work we obtain two procedures to Definition 2: [MTA] A Markovian timed automatois a
compute maximum time-bounded reachability probabilitiesuple M = (Act, X, Loc, ¢y, E,~~), where
in locally uniform CTMDPs. This problem has also been
treated in [2][5][15], Where [2][5] mainly ad_dress_ed time-_ . X is a finite set ofclocks
abstraf:t schedulers which are not necessarlly optimalewhi Loc s a finite set oflocations
here tlme—dependent schedule_rs are considered, as well as ¢, € Locis theinitial location:
[15]. Comparing to [15], we discretize both th(_e t|me_ and_ « E:Loc— R., is theexit rate functionand
the state space. Moreover a §ystem of PDI_E_S is denve_z(_j N, . C Locx Actx B(X) x Distr(2% x Loc) is theedge
order to characterize the maximum reachability probahilit
The error bound that we obtain improves the error bound

given in [15] yielding a substantial reduction in the regair where ¢ is a probability distribution ovee® x Loc. Here

number of iterations. we don't include location invariants, as in [1], and we don’t

Due to space restriction, all proofs and some furthe|require edge relation- to be total, e.g., there might be some

te;cpr:ihciatllig ir: [g]rr}gtret?]eh?rltla ) dz\tlg'lsrefer the reader to ﬂ]:efock constraintg for which ~ is not defined.
! P u s Example 1:An example MTA is shown in Fig. 3, where
Il. MARKOVIAN TIMED AUTOMATA there are 6 locations with, the initial location. In¢y (resp.

Given a setf, let Pr : F(H) — [0,1] be a probability £5), there is a decision to be made between actionanda,

. d~2) when the clock valuation ig(z) € [0,1)
measure on the measurable spébe F(H)), where F(H (resp.y1 and -y, . . - D
is a o-algebra overH. Let Dz’str(H)(de)%ote the s(et )of (resp.n(z) € (1,2)). &5 is the goal location, which will

ag,x20
probability measures on this measurable space. ?(e uze)d later. For edgey "“*~ ¢, ((@,¢2) = 0.2 and
@,05) = 0.8.
A. Markov Decision Processes ‘ "

2,0.8
Definition 1: [MDP] A (continuous-stateMarkov deci- ; @ >0
sion processs a tupleD = (Act S, so, P) where
o Actis adenumerableset ofactions
« S is a set ofstates
e 5o € .5 is theinitial state

o Actis a finite set ofactions

relation.
For simplicity we abbreviaté/, o, g,¢) € ~ by ¢ % ¢,

e P:SxActx F(S) — [0,1] is thetransition probability Fig. 3. An example MTA
function whereP(s, «, -) is a probability measure over
F(S) for anys € S anda € Act, such thatP(-, -, A) a) Semanticsintuitively, an MTA behaves as follows.
is measurable for anyl € F(S). Consider locatior¢; in Fig. 3. As soon as locatio#; is

The measuré@ (s, o, A) is the one-step transition probability entered with clock valuatiom, action 3 is chosen and
from states € S to the set of statesl € F(S) by taking a waiting time 7 in ¢, is sampled from the probability
actiona € Act Notice that in general one can extend thdlistribution E(¢1)e= 27 If 5 4+ 7 |= z < 1, there will
MDP model to uncountably many actions (see [16]). In thi®€ a jump to locatior, with probability 0.5 or to location
paper we will consider only MDPs which have finitely many/s With probability 0.5, otherwise no jump occurs and MTA

actions, i.e., finitely-branching MDPs. remains in locatiord; . When for instance the next locatién
_ . is entered with clock valuation’ (= 5+ 7 in this example),
B. Markovian Timed Automata action a; or as is chosen and the waiting time’ in ¢,

Let X={z1,...,x,} be a set ofonnegativevariables in is sampled from the probability distributiafi(¢y)e~Z(¢)™",
R, calledclocks A clock-valuation is a functiom:X—R>, Supposen; is picked andy’ + 7' = = > 0 (the guard of
assigning to each variable a valuen(z). Let V(X) de- actionas), the MTA jumps to the next location according
note the set of all clock-valuations ovéf. A clock con- to the probability distribution associated with. The MTA
straint on X, denoted byy, is a conjunction of expressions follows the same behavior continuously.
of the form z > ¢ for clock = € X, comparison operator The semantics of an MTA with clock set is given as
e {<,<,>, >} and ¢ € N. Let B(X) denote the set a continuous-state MDP, whestatesare of the form(¢,n)
of clock constraints ove®’. A clock valuationn satisfies wheref € Locandn € V(X) is a clock valuation.



Definition 3: [Semantics] LetM = (Act X, Loc, ¢y, E, history it will consider also the waiting time. In this paper
~+) be an MTA. The MDP associated with is D(M) =  we will mainly consider early schedulers, although the tiieo
(Act S, sp, P) whereS = Loc x V(X); so=({o, 0); and can be adapted to late schedulers easily Remarkl).

« for each edge “¥ ¢ in M with ¢(X,¢') =p >0, Given any initial locatiorYy, the initial clock valuation,,

00 and schedulef, one obtains grobability measurelry, , ¢
P((l,n),c, A) := /O E(@)e PO 14(n+7)-pdr, 1) over a set of paths in a standard way (see [9]).

whereA = {(¢',7/) | 3r € Rso. /' = (n+7)[X := 0] and ¢) Maximum reachability:We are mainly interested in
n+7 = g} and1,(-) is the characteristic function, i.e., computing the maximum probability to reach a set of goal
1,(n+7)=11if n+7 | g; 0, otherwise. locationsG C Loc from the initial location?.

Definition 5: Let M = (Act X, Loc, ¢y, E,~) be an
) e ARG _ MTA and Sched the set of all schedulers. The maximum
sions(so it is nondeterministiginstead of a pure stochastic probability to reach a set of goal locatiofs C Loc from
model like deterministicMTA (DMTA) studied in [8]. TO 5 |ocation? and clock valuation; is the func_tioan=G :
state it alternatively, any DMTA coincides with an MTA | j. V(X) = [0,1] defined as max
with Act={«}. Moreover, for DMTA, the edge relation is ’
defined as« C LocxB(X) x 2% x Distr(Loc), while the pMCG ()= sup Pry,e(RPaths, (G)).
MTA model allows for each set of transitions to reset theif,, \words. the maxi%’fjrgr};e%robability is the maximal one

clocks differently. This has also been usedpimbabilistic among all the schedulers.
timed automatgPTA, [12]). In this sense, our model can beé  The next theorem says that for MTA and maximum

considered as a continuous-time extension of PTA, due to the, hapility probabilities, it suffices to considgositional
presence of exponential distributions. Any MTA where theceqylers instead of history dependent schedulers défined

exit rate of any location is zero is a PTA. Locally uniformpet 4 j e, the decision depends only on the current lopati
continuous-timeMDPs (CTMDPs) [14] (the exit rate of 544 clock valuation.

each location doegsot depend on actions) witfinite state h 1:[Reachability in MTA] Let M (Act X
. Cay eorem 1:[Reachability in e = (Act X,
space are zero-clock MTAs (i.eX = @). We note that as Loc,ly, ,~) be an MTA andG C Lot a set of goal

in MDPs, it is assumed that action labels from any locatioflc ations, The maximum reachability probability;.¢ is the
in MTA are pairwise different. o least fixpoint of the integral operatd¥ : (Loc x V(X) -

Finite paths in DATAM are of the forméoﬁ [0, 1]) — (L0c>< V(X)) — [0, 1]), where for the given
¢ Sy . Sacbinclyy, where for each edge "% ¢ function Pr : Loc x V(X) — [0,1], location ¢ € Loc
of M with ;(X;,%4i+1) > 0 (¢; € Loc, a; € Act, t; € R5o, and clock valuationn, F(Pr)(¢,n) = 1 if ¢ € G, and
X; C X and0 < i < n), we have thaty, is a valid F(Pr)(¢,n) = 0 if RPaths,(G) = @. For all other! ¢ G
clock valuation onenteringlocation ¢; satisfyingn, = 0, We haves(Pr)(¢,n) =
(ni+ti) | gi, andnip1 = (9 +1t;)[X; := 0]. Let Paths(M) 0 B L,
(resp. Paths,,(M)) denote the set of finite paths (resp. al“g%){ ; E(0)e > 14(n+7)-p-Pr(fn) dr}, (3)
starting in location?¢ with initial clock valuationn) in M. PRy
Given a set of location&' C Loc, we write RPathg ,,(G) C
Pathsg ,(M) as the set of paths reachiidg from location
¢ and clock-valuation. ((X,¢')=pandy = (n+7)X :=0].

b) SchedulersThe decision of which action to choose ) .

in an MTA is resolved by scheduletsA scheduler must Remark 1:0ne can transfprm Thm._ 1 1o deal W.'th the
have enough “knowledge” to make such a decision whicﬁlass,, of Iate_ SC_Qedﬁ'eFS- Th'? '? gbtgune(il) byﬂ mO\ﬁng the
might be the current location and clock valuation (memo—max term inside the integral of (3), i.eF(Pr)(¢,n) =
ryless/positional schedulers), or the path from the ihtta o
the current location (history dependent schedulers). Vée u§/ E(é)efE(g)T'afg%é) { Zlg(n+7) -p~Pr(€’ﬂ7’)}dT-
Z(¢)eAct to denote the set of actions enabled in locatfon Py

Definition 4: [Schedulers] LetM = (Act X, Loc, ¢y, E, p,X
~) be an MTA. A scheduler foM is a measurable function
6 : Paths(M) — Act such that form € N,

We emphasize that MTA is a Markovian model wihci-

p,X
where transition? |°‘—’;> ¢ is defined by transitiod “ ¢,
b,

C. Region construction foMTA

A main step in computing maximum reachability proba-
O(fg —22t0y ¢y 1ty . Semblisiy gy € T(4,). (2)  bility or the least fixpoint of the operator defined in Thm. 1
In the above definition we assume that the scheduler makigso apply theregion constructiorf1] in a similar way as for
the decision as soon as a location is entered. These ard caligandard TA. Formally, a region is an equivalence classunde
early schedulers [14]. In contrast)ate scheduler will decide =~ an equivalence relation on clock valuations, which can be
which action to take upon leaving a location, i.e., besities t characterized by a specific form of a clock constraint.d,et
3 o - be the largest constant with which € X is compared in
In control engineering, one tends to use another termiypliog., con-

. . ,
trollers, while in CS community, schedulers, adversaries, polic#ategies, some guard !n the MTA. Clock eyaluatlomﬁn . € _V(X)
etc are more common. We duaot distinguish them in the current paper. ~ are clock-equivalentdenoted; = #/, if and only if either




1) for anyz € X it holds: n(z) > ¢, andn/(x) > ¢, or are calleddelay edges (jump)whereas those of the form
2) foranyz;, z; € X with n(z;),n'(z;) < Ca; andn(z;), 4, “%%  are calledMarkovian edges (jump)Note that
1'(xj) < g, it holds: n(z;) <n'(z;) iff [n(z:)] = Markovian edges emanating from a vertex corresponding to
L' (i) | and {n(z:)}<{n'(z:)}, where [d] ({d}) is  a non-delayable region duot contribute to the reachability
the integral (fractional) part of € R. probability. The waiting time in such vertex is always zero.
This clock equivalence is coarser than the traditionaFherefore, we can safely remove all the Markovian edges
definition [1] by merging the “non-delayable” regions (teos emanating from vertices with non-delayable regions and
with point constraints like £ = 07) into the “delayable” combine each such non-delayable region with its unique
regions (those only with interval constraints likeé < y <  delayable (direct) successor. In the sequel, by slightebéis
1”). For instance, forX = {z,z2}, the non-delayable notation, we refer to thisimplified region graphas G(M).
regions (z; = 0,22 = 0), (0 < 21 < 1,22 = 0) and Note that ther|»[X := 0] C /|, in the last item of Def. 6.
(x1 = 0,0 < z2 < 1) are merged with the delayable regionAn example region graph is shown in Fig. 4.
(0<z1 <1,0< 2y <1)yielding (0 <21 < 1,0 < 22 < Example 2:For the MTA M in Fig. 3, the reachable part
1). The reason for this slight change will become clear late(forward reachable from the initial vertex and backward
We define the boundary of a regiéhasd® = ©\ O, where reachable from the accepting vertices) of the region graph
© is the closure and is the interior of®, respectively. For G(M) is shown in Fig. 4.
instance, a regio® = (z; < 1,25 > 0) has its closure Lo T
O = (z; < 1,22 > 0), its interior © = (x1 < 1,9 > 0) , v
and its boundary® = (z; = 1,25 = 2). Here® is viewed /
as a set of elements from(.X).

|

Let Re(X) be the set of regions over the sktof clocks. R B N
For ©,0’ € Re(X), ©' is thesuccessor regionf © if for ! % lo,0<a<1 }‘_5,% to,1<2<2 |on.70
all n = © there existsy € R~ such thatp+é = ©' and | : 05 e |
Vo' < 6. n+d’ |E ©VO'. The regionO satisfieghe guardy, | 02,020 \ 2,0.2, 2 :
denoted® k£ ¢, iff Vi = ©. n = g. Thereset operatioron | ‘ L5 / .
region® is defined a®[X := 0] := {n[X :=0] | n | O}. N 05t w lse<? pum
U3, T2 s I o
Notation: Given a tuplev = (vi,--- ,v,) with n com- Lo s P07 T TN
ponents, byv|; we denote thek-th component ofv. In L ‘ /\
particular, for a nodes = (¢,0), v|; returns location/, N / = >
while v |, returns the associated regién el T R
Definition 6: [Region graph of MTA] Theregion graph Go G Go
of MTA M = (Act X, Loc, ¢y, E, ~) with the set of goal Fig. 4. Reachable region gragh(M)

locationsG C Locis G(M) = (Act V,vo, A, —), where Now we define a system of integral equations on the

o V' = Locx Re(X) is afinite set olverticeswith initial  region graphg(M) which will help compute the maximum
vertexvy = ({o, ©0), whereQq is the initial region such  reachability probability from Thm. 1.

that( € Oo; RN .
T . . ) Definition 7: Given the region graphg(M) = (Act
e A:V — Ry is theexit rate functiorwhere: V,v0, A, ) of the MTA M = (Act Loc, X, 4. E, ~) and
. apX ) the set of goal vertice§, for the functionProb,(n) : V' x
Aw) = E(vly) if v = o for somev’ € V. y(x) 5 [0,1] let the operatoF : (V x V(X) — [0,1]) —
0 otherwise (V x V(&) — [0,1]) be defined asF(Prob,(n)) = 1 if

. v € G; F(Prob,(n)) =0if v ¢ G andG cannot be reached
« = C V x ((Actx[0,1] x2¥) U{d}) x V is the from v; and forv ¢ G we have

transition (edge relation, such that: ~
( ge F(Proby(n)) =Proby, s(n) + max )Pmbv,a(n),

5 . .
» v — v if v|; = |1, andv’|, is the successor o €Zlvh
. . v,m
regfr}]{ofl}b' . Proby, o(n) = A(U).e*A(v)‘r,Zp-Probv/((’IH-T)[X::O]) dr,
» v S U if vy |—7;>U/L1 with v]2 = g, and 0 JorX
P,
v]2[X := 0] ='|2. Proby,.s(n) —e MR prop,, (n+b(v,m)),

We also defineG = {v € V | v, € G} to be the set of . Prob,..(n) denotes the probability to reach by

goal verticesin G(M). . S -
Any vertex in the region graph is a pair consisting of ataklng a Markovian jump and’rob.,s(n) the probability to

. . 5
location and a region. For a vertexc V and clock valuation "€achG through vertex)’ by taking the delay jump — .
1 € V(X) we define the boundary functiofw, n) = inf{5 | ~_1neorem 2:LetM = (Act Loc, X, £y, I, ~~) be an MTA
n+ 6 € dula}, which is the minimum time (if it exists) to With the set of goal location&’ and Prob,(n) be the least
“hit’ the boundary of the region corresponding to vertex ixpoint of the operator, then forv|, = ¢ we have

starting from a clock valuation. Edges of the formy <% o/ Prob,(n) = pXtE(e,n).



Based on this theorem, we will focus on the efficien{3]. Intuitively, A is the length of time in which aingle
computation of maximum time-bounded reachability probMarkovian jump takes place from a given location. By
abilities in region graphs (instead of in MTAs) in theeach Markovian jump inG(M) can be approximated by
following section. a Markovian jump which only takes place at time points
{0,h,...,NT}. This gives rise to an MDP:
_ _ S Definition 8: Given G(M) = (Act, V, vy, A, —) and dis-

In this section, we concentrate on maximiziigne- cretization steph = L (N € N.o), the MDP D (M) =

- e . N >0/ h
bounded reachablllty prob_ab|I|t|em a region grap_Iﬁ(/\/l) (ActU {1}, S, s0,P) is defined as follows:
= (Act, V,vp, A, =), i.e., given a seG of goal vertlggs and « S={(v,m,t)|vEV ApEvla At <TY;
time boundT € N, we are interested in maximizing the _ 3 AN
. e . . . -So—(Uo,OO

probability to reachG within 7" time units To this end, we
introduce afresh clock ¢, denoting theglobal time which is
initialized to zero and never reset. To distinguish the aile X
t, we write the state ofj(M) as (v,n,t). As in this case (i) If h <b(v,n,t) andv”Z5 o’ then
time bounds to reactr have to be considered < T should , _A(o)h
be added to each vertex ¢f(M). Formally, by notation P((vm,1) 0, (v, n[X := 0], 4)) =p- (1 —¢ );
abuse we overload(v,,t) to be min{b(v,n),T — t}, i.e. P((v,m,t), , (v, + hyt + h) ) =e M
the minimum time to hit the bounda@uv |, at timet < 7. ..
For instance, leBv|, bez = 1 Ay = 2, T = 100, and (iiy 1f h <b(v,n,t) andAct(v) = & then

Ill. TIME-BOUNDED REACHABILITY

» L is afreshaction encoding the “delay” i (M);
For each(v,n,t) € S we distinguish three cases:

suppose)(xz) = 0.5, n(y) = 1.7. If t = 2.5, thenb(v, n,t) = P((v,n,t), L, (v,n+ h,t +h)) =e~ AW,
min{l — 0.5,2 — 1.7,100 — 2.5} = 0.3; if ¢ = 99.9, then S
b(v,m,t) = min{l — 0.5,2 — 1.7,100 — 99.9} = 0.1; (i) If h>b(v,n,t) andv>v’ then

The following Bellman (dynamic programming) equations
derived from Def. 7 play an essential role in solving the” ( (v:7,t), L, (v, +b(v,n,8), t +b(v,1.1)) ) =
time-bounded reachability problem. Let(v,7,t) be the Each state in the MDFD, (M) has an outgoing transition
maximum probability at time for state(v,n) to reachG ¢ type (i), (ii) or (iii).
within time boundT'. P(v,n,t) = 1if v € G andt < T}
0if t > T or G is not reachable fromw; and otherwise =~ Example 3:Fig. 5 depicts the first half (til2h) of the

oA (v)

P(v,n,t) = reachable part of the MDBD;, (M) for the region graph
) G(M) in Fig.4 with the step sizé = 1 and time bound
(v,m, . .
AT Py 1t d T = 2. This means that in the MDP, the goal state(s) should
oglfui){ QZX / _,_13 (v, t47) T} be reached within 4 steps. Therefore, the second I3alf (
& (*) and 4h) is not necessary anyway. We add (i), (i) and (iii)
RS onto the edge labels to indicate which type of transition it
is.
—A(v)b(v,n,t) "
+e P(v", n+b(,n0), t+5(,n1), @)

(i) B, e7mh

(%)

(I

whereZ(v) is the set of actions enabled in ' = (n +
7)[X := 0] andw <, v”, wherev” is the time successor of
v. Term(I) represents the maximum reachability probability
(among all enabled actions) by taking a Markovian ju
v Q@X v" and (IT) represents the probability of taking the
boundary jump <y o, Note that(x) is the density function

. a,p, X . . -
of takingv < ¢’ at timer and (xx) is the probability not
to leave locatiorv within b(v, 7, t) time units.

We will now provide two ways to solve (4): one by

discretization (4) and the other based on the Hamllton'—: 5 MDP obtained from th _ b with discretiatitenh
JaCObl Be”man equatlon [11] 1g9. o. obtained from the region graph wit iscretatsteph.

(i) 72,0.2:(1 — e~"2)

(i) ar, 1—e" 7"

(i) ag,e=oh

i) L,e ok
i) L.e (v1,2h,2h)

() a,0.2(1 — e~"oh)
(i) as,0.2-(1—e 7o)

() ag,0.2-(1—e~"0h)

(va,2h,2h)

(i) L,e =" (iiiy L,e ="

A. Discretization Let Y (v, n,t) be the maximum reachability probability in

Our first approach is tdiscretize the continuous variablesthe MDP Dy, (M). ThenY (v,7,t) =
in the Bellman equation. Using a discretization steg % e~ APy (v ptb(v,m,t), t+b(v,n,t)),if B > b(v,n,1)
(N € N5yp), the aim is to obtain dinite-stateMDP D(M) max { Z (1—e ALY (o 7, }+8 AORY (y, b, t+h), 0/ w,
from G(M). For this MDP, a similar Bellman equation [*€Z(»)

U‘—)u’

can be derived and solved efficiently e.g. by value iteration (5)



wheren = n[X := 0] andv SN characterize the probability. We remark that in this paper
By the discretization step, the regions ofj (M) contain only the locally uniform model (i.e., the exit rate of each

finitely many points (one point is a state in the MDP). Tdocation solely depends on the location instead of actions)

be more exact, each region has maximallpoints for each was addressed, however the general case can be treated

clock. Together with the fact that there are only finitely man without any difficulty.

regions of interest iy (M), the number of states in the MDP  Many future works remain to be done. For example, we

is finite. plan to extend the MTA model to rewards; also one can
Theorem 3:[Error bound] For any stat@, i), time bound consider more general variables than clocks, resulting in

T, discretization steph = + and A = max,ev {A(v)}

which is the maximum rate of all exponential distributions

appearing in the region graph: "
1

sup |P(v,nt) =Y (vpt)] < (1—e ) (1 — ™). 2

t€[0,T]
B. Hamilton-Jacobi-Bellman Equations

As in traditional control theory [3], the dynamic program- [3]
ming principles lead to a first-order integro-differenggjua-
tion, which is theHamilton-Jacobi-Bellmar{HJB) partial
differential equationPDE).

Given the region grapl§(M) = (Act, V,vp, A, —) let
f(v,n,t) := P(v,n,t) be the maximum time-bounded
reachability probability at time in G(M). For everyv € V
andn € V(X) andt < T let f(v,n,t) be given as follows:

af (v,n,t) af(vnt)
ot

(4]

(5]
(6]

(7]

} 5 El

¢ 1101

|X]

>

i=1

{A(v) .

wheren( is thes’th clock variable. The initial conditions o
the above PDE ar¢(v,n,T) = 1¢(v,n) for anyveV and

nev|s. Moreover, for everynedv|s and transitionvim’,
the boundary conditions take the forfitw, n, t)=1 (v, n, t).
Several methods can be used to solve the above HJB
equation, e.g., the finite volume method [17] or the time ant?
state space discretization technique [7]. Note that foozer
clock MTA, i.e., CTMDPs, we obtain a system of ODEsl13]
instead of PDEs; for details see [9]. [14]

o

max
a€Z(v)

> p(flomt)—f (' X = 0L,t))

aX.p
v o= v

[11]

IV. CONCLUSION

We have defined an extension of timed automata witH®!
exponentially distributed durations on locations. We conpg;
structed region graphs of such automata based on which the
time-bounded reachability problems were investigated. W?
proposed Bellman equations to characterize the probﬁbilil[
and presented two approaches to solve these equations,
namely, by discritization and a reduction to HJB PDEs. Hg{

Another interesting question is thiene-unboundedeach-
ability problem, i.e., the deadline of reaching the goal
locations is absent. We refer the readers to [10], [9] for
the solution of this question. In a nutshell, we show that,
for single-clock MTA, they can be characterized as the
solution of a system of linear equations whose coefficients
are maximum reachability probabilities in CTMDPs, i.e.,
zero-clock MTA. Moreover, for general MTA, Bellman
equations, which are a variant of Eq. (4), are proposed to

7]

] T. Chen, T. Han, J.-P. Katoen, and A. Mereacre.

Markovianhybrid automata.
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