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Abstract. This paper focuses on the so called controller synthesis prob-
lem, which addresses the question of how to limit the internal behavior
of a given system implementation to meet its specification, regardless of
the behavior enforced by the environment. We consider this problem in
the probabilistic setting, where the underlying model has both probabil-
ism and nondeterminism and the nondeterministic choices in some states
are assumed to be controllable while the others are under the control of
an unpredictable environment. As for the specification, it is defined by
probabilistic computation tree logic. We show that under the restriction
that the controller exploits only Markovian randomized strategy, the ex-
istence of such a controller is decidable, which is done by a reduction to
the decidability of first-order theory for reals. This also gives rise to an
algorithm which can synthesize the controller if it does exist.

1 Introduction

In this paper, we focus on Markovian randomized strategy of controllers for a
Markov Decision Process (MDP for short) like model. Let us start by putting
this problem in a more general setting: It is well-known that in the system
design, to develop a system which satisfies the user requirement is one of the
basic goals [1]. Undoubtedly, one hopes to automate this error-prone process as
far as possible. To achieve this, one of the goals is to synthesize a system based
on the requirements. However, this goal is usually too ambitious to be realized,
and thus a more practical, but equally important task is to synthesize only a
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controller which can limit or control the behaviors of an existing system (in terms
of control theory, this is usually called plant), to meet the given specification.
This is often referred to as the controller synthesis problem.

In such a framework, the plant acts usually in an environment. The goal is to
find a schedule for the controllable events that guarantees the specification to
be satisfied considering all possible environmental behaviors. One can also un-
derstand the controller and environment as two players, and thus take a game-
theoretical point of view on the controller synthesis problem (in the below, we
take the liberty to switch between these two points of views). The plant consti-
tutes the game board and controller synthesis becomes the problem of finding a
winning strategy for the controller that satisfies the specification whatever move
the environment does, or in other words, under any adversary [1]. Correspond-
ingly, the requirement specification is the winning condition in terms of game
theory [11], i.e. the controller wins once the specification is satisfied. We note
that the winning condition can be given either internally or externally: the for-
mer often imposes restrictions, for instance, on the number of visits of a state in
the plant, typical examples include Büchi or Muller condition. The latter is usu-
ally temporal logic formulas which are supposed to be satisfied by the controller
plant.

As a fundamental problem in control theory and computer science, the con-
troller synthesis problem has attracted a lot of attentions in recent years. For
discrete systems, it is well understood [14]. Recently, it also has been studied
for timed systems and probabilistic systems. In this paper, we shrink our at-
tention to the probabilistic setting, following [1]. Our underlying model for the
plant is Markov Decision Processes [7][12]. However, different from the standard
MDP model [12], here we adopt the point of view of [7] and distinguish states
that are under control of the plant from those that are under the control of the
environment. To put this in the game theory, this model is also known as turn-
based stochastic 2 1

2 -player games [4] (we note that the normal MDP is basically,
turn-based stochastic 1 1

2 -player games, see [4] for details). And by translating
the player to other terms, one can construct a lot of examples of the similar
spirit. Actually it is a very popular model in planning, AI, control problems,
etc. In particular, it has been extensively applied for natural computation, fuzzy
systems and knowledge discovery.

In this paper, we study the problem of finding a strategy for the plant such
that a given external specification formalized as a probabilistic temporal logic for-
mula is fulfilled, no matter how the opponent (environment) behaves. Concretely
speaking, here the specification is given by a formula of probabilistic computation
tree logic ([9], PCTL for short), which is one of the most influential and widely
used probabilistic temporal logics. As for strategy, we follow [1], i.e. we consider
the following choices:

– The system or the opponent has to choose deterministically (D) or randomly
(R); and

– The system or the opponent chooses according to the current state (M, also
called stationary or Markovian) or the history of the game played so far (H).
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The combination gives rise to (at least) four classes of strategies, i.e. MD, HD,
MR and HR strategies. In [1], it is shown that any of the strategy-classes (HD,
HR, MD and MR) requires its own synthesis algorithm. Moreover, in that paper,
the problem is only solved for MD strategies w.r.t. PCTL properties. However,
the other three are left open (We quote a sentence from [1] which says “For other
strategy types (MR, HD or HR), the complexity or even the decidability of the
controller synthesis problem for PCTL is an open problem”). The aim of this
paper is to attack this problem by considering MR strategy. The importance
of MR strategy is justified by the fact that based on it, the controller can use
random number generator rather than memory to make decisions. In practice,
especially for embedded systems, it often leads to some “cheap” solution. It
turns out even under this restriction, the problem is non-trivial. In the below,
we discuss the main difficulties and our solutions in brief, from both the strategy
and the specification perspectives:

– For strategy. As for the MD strategy, the controller synthesis problem can
be trivially reduced to the model checking problem for Markov Chain w.r.t.
PCTL specification. This is because there are only finitely many MD strate-
gies for a given MDP, and thus one can try out all possibilities. Actually,
in [1], this brute forth approach is used. However, for MR strategy, some
more sophisticated approach has to be exploited since the total number of
MR strategies is infinite (even uncountable since one can easily show the
cardinality of the set of MR strategy is ℵ1). To overcome this problem, we
appeal to the deep results on the complexity of decision procedures for the
first-order theory of reals (R,+, ·,≤), which is well-known to be decidable
[13]. To be more precise, we encode the existence of a MR-controller to
(R,+, ·,≤), thus prove the decidability of the existence of MR-controller.

– For specification. As we suggested before, in this paper we consider external
specification, which is expressed by PCTL. In the game theory, this is rather
difficult and a common approach to deal with external specification (winning
condition) is to turn this into some internal one and at the same time, to
transform the underlying model. For example, for linear-time properties, one
can “encode” the specification by deterministic Muller automata and then
take a product with the game graph (here it is MDP), thus the problem
can be reduced to the one with a new MDP w.r.t. Muller winning condition
(which is an internal winning condition). However, in the case of branching-
time properties considered in this paper, it is not obvious how to adapt
this approach, since in order to “encode” PCTL, we have to introduce some
notion like “probabilistic tree automata”, which has not been well studied
yet, due to the knowledge of the authors. Fortunately, we find that our idea
to exploit the decidability of (R,+, ·,≤) can also be used to circumvent this
difficulty.

It is worth emphasizing that our underlying model essentially agrees with 2 1
2 -

player game. However, we allow the two players to use different sorts of strategies
in the sense that on the controller’s aspect, it is only allowed to take MR strat-
egy while on the environment aspect, we do not exert any restriction on the
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strategy which it can take. We note that this situation is akin to the notion
of “modulo checking” [10] which deals with the problem of checking whether a
module behaves correctly no matter in which environment it is placed. Actually,
the interested reader will detect that in the second step of our algorithm (see
Section 3), we implicitly encode the “module checking” problem for MDP into
(R,+, ·,≤). We believe this kind of “asymmetry” makes our result stronger and
more general, and it is more useful in some applications. Moreover, it should be
noticed that some related work has appeared in [4][5]. In both of papers, essen-
tially the same problem is considered. However, the difference lies in that they
considered linear-time specification (which can be regarded as internal winning
condition), while we consider branching time specification. As we have suggested
before, for controller synthesis problem, branching time specification is much
more involved.

The structure of this paper is as follows: Section 2 summarizes some back-
ground material on MDP, strategy and PCTL. Section 3 presents our algorithm
for MR strategy, and a simple example from [1] is given. Due to space restriction,
in this extended abstract, most of proofs and practical examples are omitted and
we refer the interested readers to the technical report version of this paper for
more details.

2 Preliminaries

Definition 1 (Distribution). A distribution on a countable set X denotes a
function μ : X → [0, 1] such that

∑
x∈X μ(x) = 1. We use Distr(X) to denote

the set of all distributions on X .

Definition 2 (Markov Decision Process). A Markov Decision Process is a
tuple M = (S,Act,P, sin, AP, L) where

– S is a countable set of states;
– Act is a finite set of actions;
– P : S ×Act× S → [0, 1] is a three-dimensional transition probability matrix

such that for all states s ∈ S and actions a ∈ Act,
∑

t∈S P(s, a, t) ∈ {0, 1};
– sin ∈ S is the initial state;
– AP denotes a finite set of atomic propositions;
– L : S → ℘(AP ) is a labelling function which assigns to each state s ∈ S the

set L(s) of atomic propositions that are (assumed to be) valid in s.

For technical reasons, we require that none of the states is terminal, i.e. for
each state s, there exists an action a and a state s′ with P(s, a, s′) > 0. M is
called finite if the state space S is finite. For T ⊆ S, P(s, a, T ) =

∑
t∈T P(s, a, t)

denotes the probability for s to move to a T -state, provided that action a has
been selected in state s. We write IM(s) or I(s) (if M is clear from the context)
for the action set {a ∈ Act | P(s, a, S)}.
Definition 3 (Path and Trace). A path in M is a finite or infinite alternating
sequence of states and actions σ = s1a1 · · · ansn or σ = s1a1s2a2 · · · such that
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P(si, a, si+1) > 0. We use σ[i] to denote the i-th state of σ. For finite path σ, we
use σ[↓] to denote the last state of σ. Furthermore, we denote by Path∗ (resp.
Pathω) the set of finite (resp. infinite) paths of a given MDP and by Path∗(s)
(resp. Pathω(s)) the set of finite (resp. infinite) paths of a given MDP starting
at the state s.

For infinite path σ, we use tr(σ) (trace of σ) to denote the infinite word over
the alphabet ℘(AP ) which arises from σ by the projection of the induced state-
sequence to the sequence of the labelings. For instance, if σ is defined as above,
then tr(σ) = L(s1)L(s2) · · · ∈ (℘(AP ))ω .

In the sequel, we assume that M is a finite MDP and S0 a nonempty subset of
S consisting of the states which are under the control of the system, i.e. where
the system may decide which of the possible actions is executed. The states in
S \ S0 are controlled by the environment.

Definition 4 (Strategy). A strategy of (M, S0) is an instance D that resolves
the nondeterminism in the S0 states. We distinguish four types of strategies:

– An MD-strategy is function D : S0 → Act such that D(s) ∈ I(s);
– An MR-strategy is function D : S0 → Distr(Act) with D(s) ∈ Distr(I(s));
– An HD-strategy is function D that assigns to any finite path σ in M with
σ[↓] = s ∈ S0 and action D(σ) ∈ I(s);

– An HR-strategy is function D that assigns to any finite path σ in M with
σ[↓] = s ∈ S0 and action D(σ) ∈ Distr(I(s));

We note that the MD-strategy is often called simple or purely memoryless
strategy. We refer to the strategies for the environment as adversaries. Formally,
for X ∈ {MD,MR,HD,HR}, an X-adversary for (M, S0) denotes a X-strategy
for (M, S \ S0). The notion of policy will be used to denote a decision rule
that resolves both the internal nondeterministic choices (to be resolved by the
controller) and the nondeterministic choices (to be resolved by the environment).
We will use D for strategy, E for adversary and C for policies. Policy will often
be written as C = (D,E).

MDPs and Markov Chains Induced by Strategies. Any strategy D for (M, S0)
induces a MDP MD which arises through unfolding M into a tree-like structure
where the nondeterministic choices in S0-states are resolved according to D.
If S0 = S and D = C is a policy for M then all nondeterministic choices are
resolved in MC . For any HR-policy C, the MDP MC is an infinite-state discrete-
time Markov chain. If C is a stationary policy, then MC can be regarded as a
Discrete Time Markov Chain (DTMC for short) with state space S. If C is a
policy for M, then we write P

C
M or just P

C (if M is clear from the context) to
denote the standard probability measure on MC . Moreover, we use Path∗C(s)
(resp. PathωC(s)) to denote the set of finite (resp. infinite) paths of the Markov
chain induced by MDP M and policy C. Similarly, Path∗C(s) (resp. PathωC(s))
the set of finite (resp. infinite) paths of the corresponding Markov chain starting
at the state s.
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2.1 Probabilistic Computation Tree Logic (PCTL)

PCTL, the probabilistic extension of CTL (computation tree logic), was defined
by Hansson and Jonsson [9] and is one of the most widely used probabilistic
temporal logics. Let AP = {p, q, . . . } be a countable infinite set of atomic propo-
sitions. The syntax of PCTL is given by the following BNF:
State formula:

Φ ::= � | p | ¬Φ | Φ ∧ Φ | [ϕ]��r

Path formula:
ϕ ::= ©Φ | ΦUΦ

where p ∈ AP and r ∈ [0, 1].
The most interesting part is [ϕ]��r, which intuitively asserts that the prob-

ability measure of the paths satisfying ϕ meets the bound given by �� r. The
path modalities © (next step) and U (until) have the same meaning as in CTL.
Other boolean connectives and the temporal operations ♦ (eventually) and �
(always) can be derived as a standard way. In particular, we set ⊥ def= ¬(�).

Semantics. Given a MDP M as before, the formal definition of the satisfaction
relation |= for PCTL path and state formulas is defined as

M, s |= �
M, s |= p ⇔ p ∈ L(s)
M, s |= ¬Φ ⇔ s �|= Φ
M, s |= Φ1 ∧ Φ2 ⇔ s |= Φ1 and s |= Φ2

M, s |= [ϕ]��r ⇔ for all policies C, P
C
M({π ∈ Pathω(s) | π |= ϕ}) �� r

M, π |= ©Φ ⇔ π[1] |= Φ
M, π |= Φ1UΦ2 ⇔ ∃j ≥ 1.(π[j] |= Φ2 ∧ ∀1 ≤ i < j.π[i] |= Φ1)

For any formula Φ (resp. ϕ), the (standard) closure of formula cl(Φ) (resp.
cl(ϕ)) contains formulas whose truth values can influence the truth value of Φ
(resp. ϕ).

3 Controller Synthesis for PCTL

Let us recall that the controller synthesis problem discussed in this paper is
formalized by triples (M, S0,Spec) where M is a finite MDP, S0 a set of con-
trollable states in M and Spec a temporal logical formula. The question is to
find a strategy D for (M, S0) such that Spec holds for the MDP MD, no mat-
ter how the environment (adversary) behaves. As shown in [1], the role of the
strategy-type for controller synthesis is completely different from the situation
in PCTL model checking, which has been addressed in [2]. While a single algo-
rithm suffices for PCTL model checking, for controller synthesis, any strategy
type requires its own synthesis algorithm. In the rest of this section, we focus on
MR-strategy.
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Definition 5. For any MDP M, s ∈ S, and PCTL state-formula Φ, we define
PathωC(s, Φ) = {σ ∈ PathωC(s) | σ |= Φ} and furthermore

– P
+
s (Φ) def= max{P(PathωC(s, Φ)) | C ∈ MD};

– P
−
s (Φ) def= min{P(PathωC(s, Φ)) | C ∈ MD}.

Where, C is ranged over by policies.

The satisfaction relation for PCTL does not depend on the chosen policy type
because maximal and minimal probabilities for PCTL-path formulas under all
HR-policies are reached with simple policies, as shown in [2]. This fact is stated
by the following theorem, which is one of the cornerstones of our algorithm.

Theorem 1. ([2][6]) For any MDP M, s ∈ S, and PCTL path-formula ϕ, the
following properties hold:

1. s |= [ϕ]��r where ��∈ {≤, <} if and only if P
+
s (ϕ) �� r;

2. s |= [ϕ]��r where ��∈ {≥, >} if and only if P
−
s (ϕ) �� r.

Before presenting our approach in a formal way, we give an overview of the
main ideas. Basically, we will construct a closed formula of (R,+, ·,≤) such that
this formula is valid if and only of there exists an MR-controller for the given
MDP M w.r.t. specification Φ, which is a PCTL state-formula. Let us denote
the aforementioned MR-controller D, then the formula is of the form

∃D.MD, sin |= Φ

Note here MD is also an MDP with controllable sets attributed to the environ-
ment. Our main challenge is how to encode MD |= Φ in (R,+, ·,≤), which turns
out to be non-trivial and includes several subtle tricks. Now, let us start our
construction in the following steps. Note that for convenience, we abuse the no-
tation a little in the sense that for any first-order variable set X = {X1, · · · , Xn}
and formula ψ, we write ∃Xψ as an abbreviation for ∃X1 · · · ∃Xnψ.

Step 1
For each state s ∈ S0 and action a ∈ I(s), we introduce a first-order variable
Xs,a. Intuitively, Xs,a denotes the probability of choosing the action a in the
state s ∈ S0, thus it represents the strategy D. Then ∃D.MD |= Φ turns out to
be

∃{Xs,a | s ∈ S0, a ∈ I(s)}∧
Xs,a

(0 ≤ Xs,a ≤ 1) ∧ ∧
s∈S0

(
∑

a∈I(s)Xs,a = 1) ∧MD, sin |= Φ
(1)

Step 2
The main goal of Step 2 is to encode MD, sin |= Φ. To this end, for every
ψ ∈ cl(Φ) and s ∈ S, we introduce a first-order variable Ys,ψ, which ranges over
{0, 1}. That is, these variables are essentially boolean values and we set

Ys,ψ = 1 iff s |= ψ



156 T. Chen, T. Han, and J. Lu

However, it is not easy to express Ys,ψ = 1 in an inductive way. We then construct
formula Ws,ψ for every s ∈ S and ψ ∈ cl(Φ), which can be defined inductively
on the structure of ψ. Intuitively, Ws,ψ denotes s |= ψ and thus we have Ys,ψ =
1 ⇔ Ws,ψ. It follows that (1) can be refined to

∃{Xs,a | s ∈ S0, a ∈ I(s)}.∧
Xs,a

(0 ≤ Xs,a ≤ 1) ∧ ∧
s∈S0

(
∑

a∈I(s)Xs,a = 1) ⇒
∃{Ys,ψ | s ∈ S, ψ ∈ cl(Φ)}.∧

Ys,ψ
(Ys,ψ = 0 ∨ Ys,ψ = 1) ∧ (Ys,ψ = 1 ⇔Ws,ψ) ∧ (Ysin,Φ = 1)

(2)

Clearly, the remaining thing is to construct the formula Ws,ψ , which is the most
difficult task. As we mentioned before, this will be done in an inductive way
according to the structure of ψ. We proceed by a case analysis on the form of ψ.

1. ψ = p. If p ∈ L(s), then Ws,ψ
def= � else Ws,ψ

def= ⊥;

2. ψ = ¬ψ1. Then Ws,ψ
def= (Ys,ψ1 = 0);

3. ψ = ψ1 ∧ ψ2. Then Ws,ψ
def= (Ys,ψ1 = 1) ∧ (Ys,ψ2 = 1);

4. ψ = [©ψ1]��r. We have two cases:
– s ∈ S0. Then

Ws,ψ
def=

∑

a∈I(s),t∈S
Xs,a · P(s, a, t) · Yt,ψ1 �� r

– s ∈ S \ S0. Then we have to distinguish the following two subcases
according to ��.
• ��∈ {≤, <}. Then by Theorem 1(1), Ws,ψ

def= P
+
s (©ψ1) �� r. Accord-

ing to Definition 5, it is easy to see that

P
+
s (©ψ1) = max

a∈I(s)
{
∑

t∈S
P(s, a, t) · Yt,ψ1}

We can find a solution for the above equation by solving the following
linear program:

min xs
s.t. xs ≥

∑
t∈S P(s, a, t) · Yt,ψ1 for any a ∈ I(s)

We then introduce first-order variables Zs for s ∈ S \ S0. It follows
that Ws,ψ is defined as

∃{Zs | s ∈ S \ S0}.(0 ≤ Zs ≤ 1) ∧
∧

a∈I(s)

(Zs ≥
∑

t∈S
P(s, a, t) · Yt,ψ1)

∧(Zs �� r) ∧ (∀{Z ′
s | s ∈ S \ S0}.(0 ≤ Z ′

s ≤ 1) ∧
∧

a∈I(s)

(Z ′
s ≥

∑

t∈S
P(s, a, t) · Yt,ψ1) ⇒ (Z ′

s ≥ Zs))

• If ��∈ {≥, >}. This is the duality of the previous subcase.



On the Markovian Randomized Strategy of Controller 157

5. ψ = [ψ1Uψ2]��r. This case is the most involved one. However, the basic idea
remains similar as the previous case. We also have the following two cases:
– s ∈ S0. Then clearly it follows that

Ws,ψ
def=

⎧
⎨

⎩

� if Ys,ψ2 =1
⊥ if Ys,ψ1 =0
Ys,ψ1 = 1 ∧ ∑

a∈I(s),t∈SXs,a · P(s, a, t) · Yt,ψ �� r o.w.

It is easy to transform this definition into a normal first-order formula
in (R,+, ·,≤) as follows:

(Ys,ψ2 = 1 ⇒ �) ∧ (Ys,ψ1 = 0 ⇒ ⊥) ∧
(Ys,ψ2 = 0 ∧ Ys,ψ1 = 1 ⇒ Ys,ψ1 = 1 ∧

∑

a∈I(s),t∈S
Xs,a · P(s, a, t) · Yt,ψ �� r

– s ∈ S \ S0. As in the previous case, we have to distinguish the following
two subcases according to ��.
• ��∈ {≤, <}. Then Ws,ψ

def= P
+
s (ψ1Uψ2) �� r. According to Definition

5, it is easy to see that

P
+
s (ψ) =
⎧
⎪⎪⎨

⎪⎪⎩

1 if Ys,ψ2 = 1
0 if Ys,ψ1 = 0
maxa∈I(s){

∑
t∈S\S0

P(s, a, t) · P
+
t (ψ)

+
∑
t∈S0

P(s, a, t) · Yt,ψ} o.w.

However, different from the previous case, now it is difficult to re-
duce this problem to solving a pure linear programming, since in the
definition, the case distinctions have to be involved. Fortunately, we
can still borrow the same idea, because actually what we need is to
express the linear inequation in (R,+, ·,≤) rather than to find the
solution concretely. By this observation, we set

min xs
s.t. for any a ∈ I(s),⎧

⎨

⎩

xs = 1 if Ys,ψ2 =1
xs = 0 if Ys,ψ1 =0
xs ≥

∑
t∈S\S0

P(s, a, t)xt +
∑

t∈S0
P(s, a, t)Yt,ψ o.w.

For simplicity, for Zs (s ∈ S), we define �(Zs, Zt) as

�(Zs, Zt)
def= (Ys,ψ2 = 1 ⇒ Zs = 1) ∧

(Ys,ψ1 = 0 ⇒ Zs = 0) ∧
(Ys,ψ2 = 0 ∧ Ys,ψ1 = 1

⇒ Zs ≥
∑

t∈S\S0

P(s, a, t)Zt +
∑

t∈S0

P(s, a, t)Yt,ψ)
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It follows that Ws,ψ is defined as

∃{Zs | S \ S0}.(0 ≤ Zs ≤ 1) ∧ �(Zs, Zt) ∧ (Zs �� r)
∧(∀{Z ′

s | S \ S0}.(0 ≤ Z ′
s ≤ 1) ∧ �(Zs, Zt) ⇒ (Z ′

s ≥ Zs))

• ��∈ {≤, <}. This is the duality of the previous case.

This completes our construction for formula Ws,ψ .
With Ws,ψ on hand, we can fill the gap in (2), which completes the construc-

tion of MD, sin |= Φ. ��
The correctness of our algorithm can be ensured by the following theorem, whose
proof is the “reverse” of our construction shown above and thus is omitted.

Theorem 2. For MDP M, PCTL formula Φ, there exists an MR-controller for
M if and only if (2) holds.

Thus, we have the following corollary concerning on the complexity of the algo-
rithm, according to [8][3].

Corollary 1. For MDP M, specification Φ, the problem of deciding whether
there exists an MR-controller is in EXPTIME. Moreover, if such a controller
does exist, it can be effectively constructed.
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