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Abstract

In this paper, we consider the behavioral pseu-
dometrics for probabilistic systems. The model we
are interested in is probabilistic automata, which are
based on state transition systems and make a clear
distinction between probabilistic and nondeterministic
choices. The pseudometrics are defined as the greatest
fixpoint of a monotonic functional on the complete lat-
tice of state metrics. A distinguished characteristic of
this pseudometric lies in that it does not discount the
future, which addresses some algorithmic challenges to
compute the distance of two states in the model. We
solve this problem by providing an approximation al-
gorithm: up to any desired degree of accuracy ε, the
distance can be approximated to within ε in time ex-
ponential in the size of the model and logarithmic in
1
ε . A key ingredient of our algorithm is to express a
pseudometric being a post-fixpoint as the elementary
sentence over real closed fields, which allows us to ex-
ploit Tarski’s decision procedure, together with binary
search to approximate the behavioral distance.

1 Introduction

Probabilistic systems, where system dynamics en-
codes the probability of making a transition between
states rather than just the existence of such transi-
tions have received considerably attentions of a rapidly
growing research community. In order to capture non-
determinism, Segala introduced a new family of mod-
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els, namely the simple probabilistic automata (SPA in
short),where both probability and nondeterminism are
taken into account. In a nutshell, SPAs are based on
state transition systems and make a clear distinction
between probabilistic and nondeterministic choices and
thus constitute a very expressive framework for the
specification and analysis of probabilistic systems.

In the system theory, for a given model, one of the
fundamental research questions is the notion of equiv-
alence. In the classical investigations in concurrency,
bisimulation is a ubiquitous notion of system equiva-
lence that has become one of the primary tools in the
analysis of system. In probabilistic systems, the stan-
dard notion of bisimulation has to be adapted, usually
by treating the probability as labels. This line of re-
search, dates back to Larsen and Skou’s work on pure
probabilistic systems [9] and now is very fruitful.

However, it is now widely recognized that traditional
equivalence is not a robust concept in the presence of
quantitative (i.e. numerical) information in the model,
in particular, for probabilistic models [8]. To find a
more flexible way to differentiate system states, re-
searchers have borrowed from pure mathematics the
notion of metric1. A metric is often defined as a func-
tion that associates some distance with a pair of ele-
ments. Here, it is exploited to provide a measure of
the difference between two states that are not exactly
bisimilar. Having a nice pseudometric definition for
systems at hand, the next natural question is: How to
compute it? This raises some algorithmic challenges.

In this paper we deal with both of these questions
and now summarize the main contributions as follows:
First, we instantiate the (abstract) pseudometric def-

1In this paper, the term metric is used to denote both metric
and pseudometric. It turns out that in the probabilistic system,
pseudometric is a more natural notion.
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inition given in [6] in the setting of probabilistic au-
tomata and provide a concrete account; We emphasize
that the pseudometric defined here, in contrast to the
one in [4][8], does not discount the future; Second, we
present an approximation algorithm to compute the be-
havioral distance.

Our main technique exploits a decision procedure
for the theory of reals with addition and multiplication
dating from [11]. Namely, we show how to express a
pseudometric being a post-fixpoint in first order theory
of real closed fields which is quadratic in the size of the
system and has a constant number of quantifier alter-
nations. It is known that the (first-order) theory of real
closed fields is decidable in time exponential in the size
of the formula and doubly exponential in the quanti-
fier alternation depth [1]. This, together with binary
search on the range of values gives rise to an exponen-
tial algorithm to approximate the value to any given ε.
Our techniques are simple and combine known results
to provide an algorithm and complexity bound on the
general problem of approximating the distance between
two states in a very general model of probabilistic sys-
tems. Due to space restriction, all of the proofs, the
explicit presentation of the algorithm and more com-
prehensive references are omitted in the current form.
We refer the interested readers to our technical report
[5] for details.

2 Preliminaries

Before starting our exposition, let us first fix some
general notations. Throughout the paper, we assume
a fixed F of some real closed ordered field. An ordered
field F is real closed if no proper algebraic extension of
F is ordered. Examples of real closed fields are the real
algebraic numbers, the computable numbers, the real
numbers, superreal numbers, hyperreal numbers, etc.
For a countable set X , a probability distribution on X is
a function δ : X �→ [0, 1]∩F such that

∑
x∈X δ(x) = 1.

We denote the set of probability distributions on X
by D(X). For a probability distribution δ ∈ D(X) we
define ||δ||, the support of δ, as ||δ|| = {x ∈ X | δ(x) >
0}. Note here we exert a restriction to each distribution
η such that η(x) ∈ F. Namely, for instance, if one
sets F as the set of real algebraic numbers, then the
probability can not be, say, π

4 , which is transcendental.

2.1 Probabilistic Automata

Definition 1 (Probabilistic Automata) A proba-
bilistic automaton is a tuple P = (S, A,→) where S
is a finite set of states; A is a finite set of actions;
and →⊆ S × A × D(S) is the transition relation. We

shall write s
a→ η as a more suggestive notion instead

of (s, a, η) ⊆→. For each state s and action a, we write
I(s, a) for {η ∈ D(S) | s

a→ η}.
Now, we provide a classical notion of equivalence

between states, namely, the (strong) bisimulation. As-
suming η is a distribution on S and V ⊆ S, we write
η(V ) for

∑
s∈V η(s). We first lift an equivalence rela-

tion on S to an equivalence relation between distribu-
tions over S in the following way:

Definition 2 Let η, η′ ∈ D(S), we say that they are
equivalent w.r.t. an equivalence R on S, written η ≡R
η′ if

∀U ∈ S/R. η(U) = η′(U)

Definition 3 (Probabilistic Bisimulation) An
equivalence relation R ⊆ S × S is a (strong) bisimula-
tion if sRt implies:

whenever s
a→ η, there exists η′ such that t

a→ η′ and
η ≡R η′.

Two states s, t are bisimilar, denoted by s ↔ t, if
there exists some bisimulation R s.t. sRt.

3 Behavioral Metrics

In this section, we define pseudometric as a great-
est fixpoint of a certain functional. Let us fix a sim-
ple probabilistic automata P = (S, A,→) and consider
pseudometrics on its set of states. We note that this
metric suffices even if one wants to compute the dis-
tance between the states in two different SPAs, say P
and P ′, since we can simply take the disjoint union
of the state space S 
 S′ and view them as a single
automaton.

Definition 4 An 1-bounded pseudometric space is a
pair (X, dX) consisting of a set X and a distance func-
tion dX : X × X → [0, 1] s.t. (1) for all x ∈ X,
dX(x, x) = 0; (2) for all x, y ∈ X, dX(x, y) = dX(y, x);
and (3) for all x, y, z ∈ X, dX(x, z) ≤ dX(x, y) +
dX(y, z). As a convention, we often write X instead
of (X, dX) and we denote the distance function of a
metric space X by dX .

In this paper, we focus on the behavioral pseudo-
metric which does not discount the future. We char-
acterize the pseudometric as the greatest fixpoint of a
functional from a complete lattice to itself. This char-
acterization can be viewed as a quantitative analogue
of the greatest fixpoint characterization of bisimilarity.

Definition 5 Let M be the class of 1-bounded pseu-
dometric on state set S. The order � on M is defined
by d1 � d2 if for all s, t ∈ S, d1(s, t) ≥ d2(s, t).
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Remark 1 Note the reverse direction of � and ≥ in
the above definition. This is to make d the greatest
fixpoint, in analogy with the characterization of bisim-
ilarity, rather than a least fixpoint.

Lemma 6 The set of 1-bounded pseudometric over S
endowed with the order � forms a complete lattice.
Formally, (M,�) is a complete lattice.

Our goal is to introduce a functional from the com-
plete lattice (M,�) to itself of which the behavioral
pseudometric dS is the greatest fixpoint. For this pur-
pose, first we have to lift each metric to be a metric
on distributions, namely, we need to endow a metric to
the distribution D on sets of states, since in probabilis-
tic automata, the transitions are generally from state
to distribution.

It turns out that the classical Hutchinson metric on
probabilistic distributions suffices.

Definition 7 (Hutchinson Metric) Given a metric
space (S, dS), we lift it to be a metric over D(S). As-
suming η, η′ ∈ D(S), we define d̂(η, η′) as the solution
of the following linear program:

maximize
∑

s∈S(η(s) − η′(s)) · xs

s.t. for any s ∈ S, 0 ≤ xs ≤ 1
for any s, t ∈ S, xs − xt ≤ d(s, t)

Remark 2 As mentioned in Section 1, here, we follow
the nondiscounted version of pseudometric definition.
An alternative one, i.e. the discounted version, which
scales the above d(η, η′) by a factor γ ∈ (0, 1), can be
found in [8].

The following lemma shows that this extension to
distributions satisfies the triangle inequality and is con-
sistent with the ordering on pseudometrics. From the
first conclusion, it is not difficult to show that d̂ is in-
deed a pseudometric on D(S).

Lemma 8 • Let d ∈ M. Then for any η1, η2, η3 ∈
D(S), d̂(η1, η3) ≤ d̂(η1, η2) + d̂(η2, η3);

• Let d1 � d2. Then for any η, η′ ∈ D(S),
d̂1(η, η′) ≥ d̂2(η, η′).

We now are in a position to define a monotonic
transformation (i.e. functional) on M. First let us
recall the definition of Hausdorff distance.

Definition 9 (Hausdorff Distance) Given a 1-
bounded pseudometric on Z, the Hausdorff distance
between two subsets X, Y ⊆ Z is given as follows:

Hd(X, Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(y, x)}

where we set inf ∅ = 1 and sup ∅ = 0.

As the next step, we define a functional ∆ on M
based on the Hausdorff distance. Recall that I(s, a) =
{η | s

a→ η}.
Definition 10 (Functional ∆) Let d be a 1-bounded
pseudometric on S. The distance function ∆(d) : S ×
S → [0, 1] is defined by

∆(d)(s, t) = max
a∈A

{Hd̂(I(s, a), I(t, a))}

It is not difficult to see that ∆ is well-defined. To
ensure the existence of the greatest fixpoint, it suffices
to show that ∆ is monotonic. The proof is straightfor-
ward and thus omitted here.

Lemma 11 ∆ is monotonic on M.

According to the remarkable Knaster-Tarski theo-
rem, the fixpoints of a monotonic functional on a com-
plete lattice form a complete lattice and hence, the
functional has a greatest and least fixpoint. In the fol-
lowing, we denote the greatest fixpoint of ∆ by gfp(∆).

Definition 12 We define dS as the greatest fixpoint of
∆, formally

dS
def= gfp(∆)

To justify the soundness of the pseudometic defini-
tion, we have to establish the correspondence between
the behavioral pseudometrics and probabilistic bisimu-
lation (c.f. Definition 3): the distance zero captures
probabilistic bisimilarity, which is stated by the follow-
ing theorem formally. Since the proof is similar to the
one in [6], we omit it here.

Theorem 13 s ↔ t if and only if d(s, t) = 0.

4 Approximation Algorithm

In this section, we present the main ingredients of
our approximation algorithm. First, we have to provide
some technical definitions.

Definition 14 d is a post-fixpoint of ∆ if d � ∆(d).

We give an explicit characterization of post-fixpoint.

Lemma 15 d is a post-fixpoint of ∆ if and only if for
any action a ∈ A:

• if s
a→ η, then there exists some η′ such that t

a→ η′

and d̂(η, η′) ≤ d(s, t);

• if t
a→ η′, then there exists some η such that s

a→ η
and d̂(η, η′) ≤ d(s, t);
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Clearly, a fixpoint is also a post-fixpoint. Conse-
quently, we have the following characterization. Note
here � returns the greatest lower bound (a.k.a. infi-
mum, meet) of the subset.

Lemma 16

gfp(∆) =
⊔

{d ∈ M | d � ∆(d)}
Having completed some technical preparations, now

we devote ourselves to expressing the fact “d is pseudo-
metric on state space S according to Definition 12” in
the first-order (elementary) theory of real closed fields
F. Most of shortcuts are standard. We note that when
we write d, we mean implicitly a vector �ds,t where s, t
range over X . This also applies to the case of distribu-
tions with finite support.

In order to make our technical developments stream-
line, we introduce a series of predicates, which lead to
the encoding of a pseudometric being a post-fixpoint
as the elementary sentence over real closed fields.

• The fact that d is a 1-bounded pseudometric can
be captured as follows:

pseudo(d) ≡∧
s,t∈S 0 ≤ ds,t ≤ 1 ∧ ∧

s∈S ds,s = 0∧∧
s,t∈S ds,t = dt,s ∧

∧
s,t,u∈S ds,u ≤ ds,t + dt,u

• Given two probabilistic distributions η, η′ ∈
D(S), where S is finite, we define the predicate
�d(y, d, η, η′) stating the fact that y is the Hutchin-
son metric (c.f. Definition 7) of η and η′ w.r.t. the
metric d on S, formally y = d̂(η, η′) as follows.

As an auxiliary predicate, we first propose the fol-
lowing predicate �p(y, d, η, η′) which encodes the
constraints in the linear programming. Note here
let us set X = {xs | s ∈ S}.

�p(y, d, η, η′) ≡
∃ �X.(y =

∑
s∈S(η(s) − η′(s)) · xs)

∧∧
s∈S 0 ≤ xs ≤ 1 ∧ ∧

s,t∈S xs − xt ≤ d(s, t)

It follows the definition of �d(y, d̂, η, η′):

�d(y, d̂, η, η′) ≡
�p(y, d̂, η, η′) ∧ ∀z.(�p(z, d̂, η, η′) =⇒ y ≥ z)

• We proceed to define the predicate regarding the
Hausdorff distance (c.f. Definition 9). Given a
pseudometric d on S, two states s, t ∈ S, an action
a ∈ A and a distribution η such that s

a→ η, we
define, under the condition that I(t, a) �= ∅, that:

inf(y, d, a, s, t, η) ≡∨
η′∈I(t,a) �d(y, d, η, η′)
∧∀z.(

∨
η′∈I(t,a) �d(z, d, η, η′) =⇒ y ≤ z)

It follows that we define, under the condition that
I(s, a) �= ∅ that:

sup inf(y, d, a, s, t) ≡∨
η∈I(s,a) inf(y, d, a, s, t, η)
∧∀z.(

∨
η∈I(s,a) inf(z, d, a, s, t, η) =⇒ y ≥ z)

• The fact that y is the distance w.r.t. a 1-bounded
pseudometric on distributions, under the con-
straint that I(s, a) �= ∅ and I(t, a) �= ∅ can be
captured as follows:

haus(y, d, a, s, t) ≡
sup inf(y, d, a, s, t) ∧ sup inf(y, d, a, t, s)
∧∀z.(sup inf(z, d, a, s, t) ∧ sup inf(z, d, a, t, s)

=⇒ y ≥ z)

• In view of Lemma 15, to define d is a post-fixpoint
w.r.t. states s and t, we have to distinguish three
cases:

(1) For any a ∈ A, I(s, a) �= ∅ ⇔ I(t, a) �= ∅ and
there exists some a, I(s, a) �= ∅.

postfixpoint1(d, s, t) ≡
∀a ∈ A.I(s, a) = ∅ ⇔ I(t, a) = ∅
∧∃y.

∨
{a∈A|I(s,a) �=∅} haus(y, a, d, s, t)

∧∀z.
∨

{a∈A|I(s,a) �=∅} haus(z, a, d, s, t)
=⇒ y ≥ z

(2) For any a ∈ A, I(s, a) �= ∅ ⇔ I(t, a) �= ∅ and
for all a ∈ A, I(s, a) = ∅.

postfixpoint2(d, s, t) ≡
∀a ∈ A.I(s, a) = ∅ ∧ I(t, a) = ∅ ∧ ds,t = 0

(3) There exists some a such that I(s, a) = ∅ �⇔
I(t, a) �= ∅.

postfixpoint3(d, s, t) ≡
∃a ∈ A.¬(I(s, a) = ∅ ⇔ I(t, a) = ∅) ∧ ds,t = 1

We note the above three cases (1)(2)(3)are mutual
exclusive. To combine them together, we obtain:

postfixpoint(d, s, t) ≡
postfixpoint1(d, s, t) ∨ postfixpoint2(d, s, t)
∨postfixpoint3(d, s, t)

Here we note that the predicate concerning I(s, a)
and I(t, a) can be instantiated to true or false
when the concrete SPA is considered.

• It follows that

postfixpoint(d) ≡∧
s,t∈S postfixpoint1(d, s, t) ∨ postfixpoint2(d, s, t)
∨postfixpoint3(d, s, t)

This completes our constructions.
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According to Lemma 15, it is not difficult to see that
the following lemma holds:

Lemma 17 Assume any probabilistic automaton P.
Then postfixpoint(d) holds iff d is a post-fixpoint of ∆
given in Definition 10.

Let us fix a probabilistic automata P = (S, A,→),
two states s, t ∈ S and ε as the desired accuracy. Recall
that our goal is to find an interval [�, u] ⊆ [0, 1] such
that u − � ≤ ε and dS(s, t) ∈ [�, u]. With the pred-
icate postfixpoint(d) at hand, the algorithm that ap-
proximates the distance within a tolerance of ε can be
obtained by a binary search. Due to space constraint,
we omit the detailed presentation. The crucial point is
to check whether a given d is a pseudometric on state
space according to ∆ given in Definition 12, which is
encoded by the formula ∃d.postfixpoint(d) ∧ pseudo(d).
In addition, we note that the length of the formula is
quadratic in the size of a given SPA. In addition, the
number of quantifier alternations is a constant in this
formula. The results of [1] shows that quantifier elimi-
nation in the theory of real closed fields over addition
and multiplication can be achieved in time exponential
in the size of the formula and double exponential in
the number of quantifier alternations. Thus we obtain
the exptime upper complexity bound. To conclude,
we obtain:

Theorem 18 Given a simple probabilistic automaton
P, two states s, t, the pseudometric distance can be ap-
proximated up to any ε > 0 in time exponential in the
size of P and logarithmic in 1

ε .

5 Related Works

In this section, we only can mention the most rel-
evant works in brief. [8] studied a logical pseudomet-
ric for labelled Markov chains. A similar pseudomet-
ric was defined by van Breugel and Worrell [4] via the
terminal coalgebra of a functor based on a metric on
the space of Borel probability measures. In [7] Deshar-
nais et al. dealt with labelled concurrent Markov chains
(this model can be captured by our model). [6] con-
sidered a more general framework, called action-labeled
quantitative transition systems (AQTS). The definition
of pseudometric studied in this paper does not deviate
very far from this line of research in the sense it can be
viewed as an instantiate the (abstract) pseudometric
definition given in [6] in the setting of simple proba-
bilistic automata. For the algorithmic aspect, [3] and
[8] both provided algorithms when the metric discounts
the future, which simply do not work in our setting.
More recently, [2] independently proposed an algorithm

when the future is not discounted. Their algorithm is
very similar to us. However, they only considered the
fully probabilistic model while the model considered in
this paper is much more general.
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