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Abstract. This paper presents a compositional framework for the niogledf
interactive continuous-time Markov chains with time-degent rates, a subclass
of communicating piecewise deterministic Markov procesgepoly-time algo-
rithm is presented for computing the coarsest quotient usitleng bisimulation
for rate functions that are either piecewise uniform or ¢pieise) polynomial.
Strong as well as weak bisimulation are shown to be congaussiations for the
compositional framework, thus allowing component-wisaimization. In ad-
dition, a new characterization of transient probabiliiegsime-inhomogeneous
Markov chains with piecewise uniform rates is provided.

1 Introduction

Modeling large stochastic discrete-event dynamic systerasdifficult task that typi-
cally requires human intelligence and ingenuity. To féafé this process, formalisms
are needed that allow for the modeling of such systems in gositional manner. This
allows to construct models of simpler components—usuatignffirst principles—that
can be combined by appropriate composition operators td g@mnplete system mod-
els. In concurrency theory, process algebra [20, 16] hasgadeas an important frame-
work to achieve compositionality: it provides a formal aggias for compositional rea-
soning about structure and behavior of systems, and feafdostraction mechanisms
allowing system components to be treated as black boxes.

Although originally aimed at purely functional behaviorpess algebras for stochas-
tic systems have been investigated thoroughly, see esg141. In all these approaches,
the dynamics of the stochastic models is assumed ttnfeehomogeneouse., the
probabilistic nature of mode transitions as well as the tdrieen behavior are indepen-
dent of the global time. This is, however, a serious drawhaadequately model ran-
dom phenomena that occur in practice such as failure rateardfvare components (a
bath-tub curve), software reliability (which reduces doetemory leaks and increases
after a restart), and battery depletion (where the poweaetibn rate non-linearly de-
pends on the remaining amount of energy [5]), to mention a Teis paper attempts
to overcome this deficiency by providing a process algebraificeinhomogeneous
continuous-time Markov chains (ICTMCs). This is a very \atite class of models and
is a natural stepping-stone towards more full-fledged ststit hybrid system models



such as piecewise deterministic Markov processes (PDPsVIg] show that ICTMCs
can be compositionally modeled by using a time-dependeattation of the frame-
work of interactive Markov chains (IMCs) [14]. To faciliathis, ICTMCs are equipped
with the potential for interaction, i.e., synchronizatitmstrumental to this approach is
the memoryless property of ICTMCs.

More importantly though, notions of strong and weak bis@atioh are defined and
shown to be congruences. Together with efficient quotigralgorithms this allows for
the component-wise minimization of hierarchical ICTMC retsd Finally, we present
an axiomatization for strong and weak bisimulation whidiewa$ to simplify models
by pure syntactic manipulations as opposed to performinmgmization on the model
level. As a generalization of results on ordinary lump#pitin Markov chains [3], we
show that strong bisimulation preserves transient and-tongstate probabilities in
ICTMCs. This allows to minimize symbolically ICTMCs prias their analysis.

We present a bisimulation minimization algorithm to obtdiacoarsestand thus
smallest)strong bisimulation quotiendf a large class of interactive ICTMCs, viz.
those that have piecewise uniform—rae.(t) on piecek is of the form fi(¢)-R
for integrable functiorR—polynomial, or piecewise polynomial—where each poly-
nomial is of degree three—rate functions. The worst-case &ind space complexity is
O (mglg(n) + Mm, 1g(n)) andO (m, + m,.), respectively, wherd/+1 is the num-
ber of pieces (or degrees of the polynomiat), is the number of action-labeled transi-
tions andm,. the number of rate-labeled transitions in the ICTMC undersmeration.
This algorithm is based on the partition-refinement bisatiah algorithm for Markov
chains by Derisawet al.[7] and Paige-Tarjan’s algorithm for labeled transitiosteyns
(LTS) [21].

Related workICTMCs are related to piecewise deterministic Markov psses (PDPs),
a more general class of continuous-time stochastic des@etnt dynamic systems pro-
posed by Davis [6]. The probabilistic nature of mode traos# in PDPs is as for
ICTMCs; in fact, ICTMCs are a subclass of PDPs when the gltba ¢t has a clock
dynamics i.e.f = 1. The notion of parallel composition of ICTMCs corresponals t
that for communicating PDPs (CPDPs) as introduced by Sewia van der Schaft
[24,23]. Alternative modeling formalisms for PDPs are, evgriants of colored Petri
nets [9] but they lack a clear notion of compositionalitygmsitional modeling for-
malisms for hybrid systems have been considered by, e.d.].[3trong bisimulation
has been proposed for several classes of (stochastic)dhsystems, see e.g., [4,12,
25]. Our notion of bisimulation is closely related to that foPDPs [25] but differs
in the fact that the maximal progress assumption—a racedsgtwne or more rates
and a transition that is not subject to interaction with theimnment is resolved in
favor of the internal transition—is not considered in [2Btoofs of the major results
are contained in [13].

2 Inhomogeneous Continuous Time Markov Chains

Definition 1 (ICTMC). An inhomogeneous continuous-time Markov chain is a tuple
C = (S,R) where:S = {1,2,...,n} is afinite set of states, al(t) = [R; ;(t) >



0] € R"*" is a time-dependent rate matrix, whefg ; (¢) is the rate between states
i,7 € Sattimet € R>.

Let diagonal matrixE(t) = diag [E;(t)] € R™™", whereE;(t) = >, s R; ;(t) for
all 4,5 € S, i # ji.e., E;(t) is the total exit rate of staté at timet¢. Consider a
non-homogeneous Poisson procé&gt)|t > 0} with rate R(¢). The probability ofk
arrivals in the intervalt, t + At] is:

A k
S R@al

The probability that there will be no arrivals in the intdriat + At] is:

k=0,1,....

Pr{Z(t+ At) — Z(t) = 0} = ¢~ ST RO — o= [ R(t+0)dl. 1)

Let the random variabl&; ;(¢) be the firing time of transition — j (¢, j € S) with
rate R; ;(t) at timet. From (1) we obtain the cumulative probability distributiof the
firing time of transitioni — j:

Pr{Wi,(t) < At} =1 —Pr{Z(t+ At) — Z(t) = 0} = 1 — e~ Jo " Bus(t+0dt ()

Probability measuresFor every ICTMC one can specify measures of interest. These
measures are either related to the states or to the trarssitfoan ICTMC. Consider a
random variabléV; (¢) which denotes the waiting time in state

Property 1.
Pr{W;(t) < At} =1— ¢ Jo Bilt+0dl, 3)

An intuitive explanation of (3) is that the waiting tini&; (¢) in state: is determined
by the minimal firing time of allk outgoing transitions from state i.e., W;(t) =
min{Wiyl(t), ey Wzyk(t)} WhenRi_’j(t) = Ri,j andEl(t) = F;forallt RZ(),
i.e., the ICTMC is a CTMCW;(t) has the distributiol — e~F:4f, An interesting
property is that the waiting time in any statis memoryless.e.:

Pr{W;(t) <t' + At|W;(t) > t'} = Pr{W;(t + ') < At}. (4)
This can be shown as follows:

: R i A O M I COLE
Pr{W;(t) < + At|W;(t) > ¢'} =

o= Jo Bi(t+0)de

R O O A o Pr{W;(t+t') < At}.
Equation (4) will be of importance when we later define a dalsfor ICTMCs.
Property 2. The probabilityPr; ;(t) to select transition — j (¢ # j,%,j € S) with

rateR; ;(t) attimet is:

Priaj (t) = / RiJ (t + 7')37 Iy Ei(tJrf)dsz. (5)
0



When rates are constant, the measure (5) takes theHoym= Rbij (Pr; j(t) =Pr;
for all t € IR>(), which corresponds to transition probability in CTMCs.

Property 3. The cumulative probability distributioRr; ; (¢, At) to move from state
to statej (¢ # j) with rateR; ;(¢t) in At time units starting at timé

At
Prog(40) = [ Ryt e 7 B0 ©)
0
Notice that (6) is the same as (5) except that the range of tker-most integral is

[0, At]. For CTMCs Pr; ; (t, At) = Pr; ;(At) forall ¢ € IR>(), equation (6) results in
Pr; j(At) = Bt (1 — e~ Eidt),

Transient probability distribution One important measure which quantifies the proba-
bility to be in a specific state at some time point is ttamsient probability distribution
Consider an ICTMC described by the stochastic pro¢és&)|t > 0}. The transient
probability distributiorPr { X (¢ + At) = j}, denoted byr; (t + At), is the probability

to be in statg at timet + At, and is described by the equation:

J(t+ At = Pr{X(t) =i} - Pr{X(t+ At) = j|X(t) = i}. 7
€S

Equation (7) can be expressed in matrix form aét + At) = =(t)®(t + At,t),
whererr(t) = [m1 (t), ..., 7, (t)] and®(t+ At, t) represents thieansition probability
matrix. This equation represents the solution of a system of ODEs:

dn(t) . w(t+A)—w(t) [®( + Aty 1) — 1)
@ AT A AmtO——x — ®
For the diagonal elements , () of the matrixlim ;o 2201 from (8), we

obtaing; ;(t) = lima,_o SHXHADZAXW=0"1 A Pr {X (1 + At) = i| X (1) = i}
denotes the probab|I|ty to stay in statf-:Dr at leastAt units of time or the probability
to return to state in two or more steps, it follows:

e 2 Bi(t+0)de _ 1+o0(At)
At—0 At

= —E;(t),

whereo (At) denotes the probability to make two or more transitionglinunits of
time. Notice thatim ;.o 222 = 0. For the off-diagonal elemenis ;(t) (¢ # j) of

At
226071 the relation is similar:

matrix lim ;.o [

o Pr{X(t+ At) =X (t) =i} .. Pr;(t, At) +o(At)
¢i.j(t) = lim, Al = Jim, Al )

which can be reduced using (6) to:

A Rij(t 4 e JT B0 4o (A
4s(0) = lim, A =B (0)




The resultingnfinitesimal generatomatrix Q(¢) has the form:

[®(t + At,t) — 1]

_ R+ _
At—0 At =R'(t) - E@),

whereR’ equalsR except thaTR;_’i(t) = 0. PluggingQ(t) into equation (8) yields the
system of ODEs which describe the evolution of transienbability distribution over
time (Chapman-Kolmogorov equations):

dm(t)

== =mhQE), Y mlt) =1, ©)
=1

wherem () is the initial condition. From the literature (see [17, pe§84—631]) it is
known that the solutiomr (¢) of (9), written as:

7(t) = 7(to)B(t, o) (10)

has the transition probability matrix given by the Peand&daeries:

T1

t t
®(t,to) =1+ | Q(m)dr + [ Q(m1) Q(m2)dmodry + ... (11)
to

t() t()

Note that ifQ(m1) [, Q(r2)dr2 = [ Q(r2)dr2Q(m1) then®(t,ty) = oJio QT)AT

t
If the rate matrixR.(t) is piecewise (;onstarite., R(t) = Ry or Q(t) = Qy for all
t € [tg,tpr1) andk < M € IN (M + 1 is the total number of constant pieces),
equation (10) can also be rewritten as (see [22]):

W(to)er(tito) if t € [to, tl)
w(t) = : : and 7 (ty) = 7 (tp_y )eQr-tEr—te-1),
Tr(ta,{)6QA[(t7tAl) if t € [tM, OO)
The general case is when the rate matripiiscewise uniforme., R(t) = Ry (t) =

fe@®)RrorQ(t) = Qi(t) = fi(t)Qy forany integrable functiomfiy,(t) : R>o — IR>o
on time intervalty, tx11), constant matriceR, andQy,.

Theorem 1. The transient probability distribution (¢) of anICTMC € = (S, R) with
a piecewise uniform rate matriR (¢) and M +1 pieces is given by:

TI'(to)er ffto fo(r)dr ift € [to, tl)
Tr(t) — . .

: . :
7'r(tM)eQM ftM fym(r)dr if £ € [tar,00)

tk .
wherer () = 7 (t_y)e X~ Je—a P10



3 Inhomogeneous Interactive Markov Chains

In order to facilitate the compositional modeling of ICTM®ge equip these processes
with the capability to allow for their mutual interactionhik is established by adding
actions to ICTMCs. LetAct be the countable universe of actions. The aim of these
actions is that certain actions can only be performed tagetfth other processes.

Definition 2 (12MC). An inhomogeneous interactive Markov ch@ifiMC) is a tuple
T = (S, Act,—, R, s") whereS andR are as before~ C S x Act x S is a transition
relation ands® € S is the initial state.

The semantic model ofMC represents the time-dependent variant of IMC [14].

Process algebra fof?MC. Originally developed by Hoare and Milner (see [20, 16]),
process algebras have been developed as a compositiomedwicak for describing
the functional behavior of the system. It allows for modgltomplex systems in a
component-wise manner by offering a sebpkratorsto combine component models.
Actions are the most elementary notions. The combinati@geeéral actions using the
operators forms processWe extend this framework by stochastic timing facilities.

Definition 3. Let X be a process variable)(t) € IR>o witht € R>9, A C Act
anda € Act. The syntax of inhomogeneous interactive Markov lang#géL) for
I?MCs is defined as follows:

Pu=0 | aP | )P | P+P | P|uP | P\A | X.

Process variables are assumed to be defined by recursiviioeguat the formX := P,
whereP is an PML term. Thenull proces) is the deadlock process and cannot perform
any action. The prefix operators arg” and\(t). P for actions and rates, respectively.
ThechoiceoperatorP + ) chooses between procesgesr Q. Proces?|| 4@ denotes
the parallel compositiorof processe$ and(@ where synchronization is required only
for actions inA; actions not inA are performed autonomously. The procés§ A
behaves likeP except that all actions il become unobservable to other processes;
this is established by relabeliagby the distinguished action € Act. The operational
semantics ofAML terms is defined by the inference rules in Table 1 wheretersake
of conciseness symmetric rules are not shown.

A few remarks concerning time-prefix and choice are in ortlee process\(t).P
evolves intoP within At time units with probability:

At
Pryw).pp(t, At) = / At + 7)e Jo AeH0dlgr — 1 _ o= Jo* " Akt
0

giventhat\(¢).P is enabled at the global tinteThe above relation can be easily proven
from (6) by takingi = A(t).P,j = P, Rij(t +7) = At + 1) andE,(t + ¢) =
A(t + £). The process\(t).P + u(t).Q can evolve intoP if the time delay gener-
ated by a stochastic process with raig) is smaller than that generated by a differ-
ent stochastic process with raiét). By a symmetric argument it may evolve infp
Therefore, from (3) it follows that the distribution of timentil a choice is made is



PP and QLQ'( s P pr
a a a
a.P—PpP PllaQ—P'[aQ’ A).P2Up P\A2pn A
pP-.p! P-.p P2 pr Blx:=E/x]"YE
P e, pr P @, pr (a ¢ A) A(t) A(t)
+Q— lAQ—P'4Q P+Q=Y X:=E=5FR
_LP (a g A) Pép’_( € A) Pm) E[X:=E/X]"-F'
a a @
P\A—P"\ A P\A— P\ A PHAQ P’|| Q X:=FE—FE'

Table 1. Inference rules for the operational semantics’dlL.

Pr{W(t) < At} = 1 — e~ Jo " At+m)+ut+7)d7 For a choice betweed| processest

is a finite index set), the distribution of the waiting timecbenesPr{W (t) < At} =

1 — e Ji"" Ties 204747 |f the rates), (t) in the process ;. , A (t).P; are constant
(A\i(t) = A\y), then the waiting time is exponentially distributed wittetsum of the rates
A i.e. Pr{W(t) < At} = 1 — e~ Zies %4t This corresponds to the interpretation of
choice in Markovian process algebras [15]. It is importanbote that wher?, = P

foralli € J, the proces$ _, ; \i(t).P will evolve into P with rate) -, ; Ai(t).

Parallel composition.When considering just actions the asynchronous parallel co
position has the same functionality as that from basic meaalculi. On the other
hand when considering stochastic delays the compositiami® involved. Consider
P = \(t).P' and@ := u(t).Q'". They can evolve intd® and(@)’ after a time delay
governed by a distribution with ratgt) andu(t), respectively. Since the waiting time
in any state is memoryless (4), we can show the way by whicbgases” andQ are
composed (see diagram below).

First consider that when both processes start their exarciti

At) u(ty  initial state P||@Q (the shadowed state) they probabilistically select
a time delay, sayAty for P and At, for Q. If Aty < At, then
PQ] [PIQ'] P finishes its execution first and evolves it The same applies
to @ whenAt,, < Aty. By intuition we could think that when it
uet) A s already inP’||@Q, At, = 0 and the remaining delay for process

@ until it finishes its execution ig\¢,, — At,. What really happens
is that on entering state’||@) both delays are set to zero i.e\fy = At, = 0. As
P’ has no transitionsA¢, remains0 but for Q its delay is initialized to a new value
which might be different from\¢,, — At, due to a probabilistic selection. Due to the
memoryless property, however, the remaining delayfis fully determined by. only.

Example 1.Consider two hardware components described by the eqsdtios A\, (¢)
O+X2(t).use.Pand@ := pq(¢).0+pa(t).use.Q, respectively. Each of the components
may fail with rateA;(¢) andu;(t), respectively. As a result of the failure they evolve
into proces9$). On the other hand, the components may move to the workite with
the rate);(t) and us(t), respectively, where they carsesome resources. If one of
them fails then the entire system fails. Both componentsusznthe resources at the
same time if the system is working properly. Figure 1 depluesPMC of Pl fuse} Q-



4 Strong and Weak Bisimulation

In order to compare the behavior of ICTMCs (and their intBvaosariants) we exploit
the well-studied and widely accepted notion of bisimulatiq3,20,14].

A classical bisimulation re-

pa(t) A1(t) lation requires equivalent
() ) stgtgs to bg able to mutually
mimic their stepwise be-

pa(t) Xa(t) havior. In the probabilistic

[0l guse} Q] [Plluseyuse.Q]  use [use.Plluse} Q] [Pll{use} 0] Setting this is interpreted as
s (t) Aa(t) 1o (%) Ao (t) requiring equivalent states
AL(t) pa(t) to have equal cumulative

rates to move to any equiv-

[Ollguseyuse-Q] - fuse-Plluseyuse.-Qf [use.Plliuse}0] alence class. Bisimulation
is considered as a natural

Fig. 1. P|[ {use} @- notion of equivalent behav-

ior, is equipped with quotienting algorithms, and has arctesrespondence to equiv-
alence in terms of logical behavioral specifications. Irs théction, we will define
strong bisimulation foraMC starting from a similar notion on ICTMCs. Some alge-
braic and probabilistic properties of bisimulation aredstigated. The same applies to
weakbisimulation that allows for the abstraction of internas, i actions.

Bisimulation forTlCTMCs.

Definition 4 (ICTMC strong bisimulation). An equivalenc&k C S x S is a strong
bisimulation whenever for allP, Q) € R,t € R>o andC € S/R:

R(P7 C7 t) = R(Q7 C7 t)?
A()

whereR(P,C,t) = Y {|\(t)|P —; P',P' € C|}. P and(Q are strongly bisimilar,
denotedP ~ @, if (P, Q) is contained in some strong bisimulatiéh

Here,{]...|} denotes a multiset. It follows that s the largest strong bisimulation, i.e.,
it contains any strong bisimulation. To be able to compaf@MCs by bisimulation, let
us equip an ICTMC with an initial stat®’ € S. Two ICTMCsCp = (Sp, Rp, s%) and
Cq = (Sq, Rq, sy are bisimilar, denotedp ~ Cq, iff their initial states are bisimilar,
i.e.,sh ~ s%. The quotient of an ICTMC undey is defined in the following way.

Definition 5 (Bisimulation quotient). For the ICTMC C = (S, R, s%) and ~, the
quotientC /~ is defined by’ /~= (S/~, R, s? ) wheres? = [s°] _ andR... is defined
by: R ([P]~, [P'),t) = R(P,[P'],t) forallt € Rso.

Note thatC is strongly bisimilar taC /~. An important property of strong bisimulation
is that it preserves transient probabilities; in particulsis means that there is a strong
relationship between the transient probabilities in anMCTand its quotient.



Theorem 2. LetC = (S, R, s”) be anICTMC. For everyC' € S/ ~, the transient
probability distributionm¢ (¢) of the state” in the quotient chaig /~ is:

mo(t) = Z ws(t) forallt € R>o,
seC

wherer,(t) is the transient probability distribution of statec Sin C.

From Theorem 2 we may conclude that the steady state prdgabdtribution (if it
exists) is also preserved.

Corollary 1. LetC = (S, R, s°) be anICTMC. For everyC' € S/~, the steady-state
probability distributionm of the state”' in the quotient chaiif /~ is:

e = lim me(t) = lim ) m(t) =) m,

t—o0o

seC seC
wherer; is the steady-state probability distribution of state S.

In many cases it is reasonable to assume that two proc&sard ) are equal up
to timeT. For this case we propose tfirite-horizon bisimulation

Definition 6. An equivalenc& C S x S is a finite-horizon bisimulation whenever for
all (P,Q) € R, t € [0,T] (T € R>o)andC € S/R: R(P,C,t) = R(Q,C,t). P
andQ are finitely-horizon bisimilar, denote® ~* @, if (P, Q) is contained in some
finite-horizon bisimulatiork.

Notice that the definition of finite-horizon bisimulaties is the same except that the
timet lies in the interval0, T]. It is easy to see that finite-horizon bisimulation pressrve
the transient distribution up to ting.

Proposition1. For0 < --- < T < --- < ooitholds:~°C .. C~T ... C ~ .

Thus ,P ~' @ implies P ~' @ for everyt; < t;. It follows that fort; < ¢;, the
quotient under-%s is coarser than undev’:.

Bisimulation forI>MCs. So far, we have presented bisimulation for ICTMCs. In order
to define bisimulation foraMCs, unobservable actions (i.e:) require special care.
Consider four states such that ~ P, ~ Q1 ~ Q2 (see diagram below).
() ) At first sight, it seems natural thaby, ~ @y as
P P Qo —>Q1 R(FPy,C,t) = R(Qo,C,t) = 2A(t). But, stateP, can do
\ \ \ | _ something more. There is a transitiéh Z, P, which con-
- sumes no time since a-action is an internal one and is
Q2 not prevented by the environment (maximal progress as-
sumptlon) The probab|I|ty that transitioR, 2@ P, will be taken in0 time units
is Prp, py (£,0) =[5 2A(t + m)e™ Jd 22404047 — (. Thus, we may conclude that
Py » Qo. When specifying the definition of bisimilarity we have tedt immediate
actions ) in a special way. Le$ be the state-space of atMC.



P+0=P a.P+a.P=a.P (P+Q +R=P+(Q+R)
P+Q=Q+P AO.P+7.Q=7.0Q X1).P+pu(t).P= 1)+ p).P
Table 2. Sound and complete axioms foron the PML sequential fragment.

Definition 7 (12MC strong bisimulation). An equivalencék C S x S is a strong
bisimulation whenever for allP, Q) € R, t € R>o,a € Act andC € S/R:

- P-% PimpliesQ - Q' for someR’ and(P’, Q') € R.
- Q% Q' impliesP —* P’ for someP’ and (P, Q') € R.
— P % (or Q ) impliesR(P,C,t) = R(Q, C,t).

P and@ are strongly bisimilar, denote® ~ @, if (P, Q) is contained in some strong
bisimulationR.

Example 2.Consider thd?>MC from Fig. 1 (c) and\; (t) = u1(t), Aa(t) = pa(t). Its
quotient under bisimulation is depicted in Fig. 2. The eglénce classes', Cy; and
C5 contain the following state§y = {0]|{use} @, Pll{use}0}, C2 = {Pll{useyuse.Q,

use.PH{use}Q} andCs; = {O||{use}use.Q,use.PH{use}0,0||{use}0}.

20u(t) 2at)

In a similar way as for ICTMCs, one can
consider the quotient of arfMC. The compo-
sitional nature ofiMC, however, allows in prin-
ciple for obtaining such quotient in a component-
wise manner, e.g., the quotient Bf| 4@ can be
obtained by first constructing the quotientsif
and @, then combine them, and quotienting the
composition. The necessary requirement thateeds to fulfill is that it is aongru-
encerelation. The relation- is a congruence whenever for procesBeand( it holds:

P ~ @ implies C[P] ~ C|Q] whereC]|:] is any context. (A context is basically a
process term containing a hole that may be filled with any gge9

Fig. 2. Bisimulation quotient.

Theorem 3. ~ is a congruence with respect to all operatordfiML.

Finite-horizon bisimulation is a congruence with one addl property.

Proposition 2. For any processe®, P’, @, Q' and intervals[0, T1] and [0, Tz] with
T,T5 € Rzo we have:

P~ Phand Q ~™2 Q' implies P||4Q ~™™TvT2) P!|| 4@’ for all A C Act.

As a next step, we consider the possibility to establisimhitation symbolically,
i.e., onthe level of the syntax of the earlier introducedjlzmge ¥ML. This is facilitated
by an axiomatization for.. The soundness of these axioms ensures that any two terms
that are syntactically equal (denoted =) are bisimilarpfally, P = Q = P ~ Q.
Whenever the axioms are complete, in addition, any stroligiynilar processes can be
represented by the same expressionghill, i.e., P ~ Q = P = Q. Summarizing,
any bisimulation can be established syntactically, iyjubt manipulating terms rather



than PMCs, provided the axiom system is sound and complete A.etbe the set of
axioms listed in Table 2 extended with the expansion law:

PlaQ =Y X0 (PllaQ) + Y me(®)- (PlaQr) + > a;. (PillaQ) +

i€J1 keJs aj=bcA

+ Y 4P+ D b (PlaQ)

ajiA/\ajEJz bléA/\bzerl

whereP := 3", ; Ai(t).Pi+>_ ¢, a;.PpandQ =3, 5o pk(t).Qr+ 3¢ 5, bi-Qu
with the finite index setds, Js, J3 andJy. Then the following holds:

Theorem 4. ForanyP,Q € RG, A.+ P=Qifandonlyif P ~ Q.

The termRG denotes the set of alégular (no parallel composition inside recursion)
andguarded(by actions or rates) expressions. While - P = ) means thaf” = @

can be deduced from the set of sound and complete axiom sydtenThe axiom
At).P + u(t).P = (A(t) + u(t)).P is due to the fact that the sum of two Poisson
processes with rategt) andu(t) is a Poisson process with the ratg)+u(t), whereas
the axiom\(t).P 4+ 7.Q = 7.Q is due to the maximal progress assumption. Notice that
A.. also contains all standard axioms which involve hiding aecursion operators
which are standard and omitted here.

Bisimulation minimization.The previous sections have set the stage for bisimulation
minimization. Experiments have shown that in the trad#iojil] as well as in the
stochastic setting [19] exponential state space savingdeachieved. Given that
is a congruence, individual processes can be replaced bikenilar quotient (un-
der~) and the peak memory requirements can be reduced signific@his all, how-
ever, requires an efficient bisimulation minimization altfon. We adopt thgartition-
refinementparadigm to obtain a minimization algorithm foftMCs. As the problem
for arbitrary rate functions is undecidable, we restricthiee classes of rate matrices
R(t): piecewise uniform, polynomiaR(t) = t" 'Ry, 1 + - -- + tRo + Ry, where
R, withi < M+1 € IN are constant matrices) and piecewise polynomial (eaclesec
a polynomial of degree three). The same classes have besidered for the transient
probability distribution, cf. Theorem 1. Rate comparisansl summations can easily
be realized for these classes of functions. For rate mRtribet M/ + 1 denote the total
number of intervals for piecewise uniforRi(¢), the polynomial degree wheR(t) is
polynomial, and the number of polynomial pieces wiiRe(t) is piecewise polynomial.
Our bisimulation minimization algorithm foMCs is based on a generalization
of the algorithm for obtaining the coarsest quotient of a kéarchain under bisimula-
tion by Derisaviet al.[7], and Paige-Tarjan’s algorithm for LTS. The basic ide#ois
minimize iteratively over all pieces (or degrees of the palyials). The bisimulation
algorithm exploits an efficient data structure which groalbstates with the same out-
going rate. This is in fact a binary tree where eacldehas four parameteraode.left
andnode.right- pointers to the left and right child, respectivatpde.sum stores the
sum of the rates andode.S stores all states with the samede.sumUsing such data
structures, the time- and space complexity of bisimulatidgnimization for PMCs re-
duces to:



Theorem 5. The coarsest quotient under of any PMC can be obtained in a worst-
case time complexi® (m, lg(n) + M'm, lg(n)) and space complexit9 (m, + m,),
wherem, andm,. is the number of action-labeled and rate-labeled transisiocrespec-
tively.

Recall that ICTMCs are?MCs that contain no action-labeled transitions. As a side re
sult, the above theorem yields that the coarsest bisinomafiiotient of a time-
inhomogeneous CTMC can be obtained with time and space esitypD (Mm,. 1g(n))
and O (m,.), respectively. (The time complexity for homogeneous Markbains is

O (m. 1g(n)) [7]). Given the results in this paper thatpreserves transient and steady
state distributions, our algorithm can be used to minimizerpo any such analysis.

Weak bisimulation fof>MCs. Strong bisimulation requires equivalent states to sim-
ulate their mutual stepwise behavior. While preservingitt@iching structure, strong
bisimulation also requires mimicking of immediate actigny As immediate actions
consume no time it seems reasonable that two states willlieadent regardless of the
number ofr-steps in a sequence that they make. Therefore, the equiealeéhich will
allow for the abstraction of sequences of immediate actwilisoe denoted asveak
bisimulation Let the transition== be the reflexive and transitive closure-6t>" and
=% a shorthand foe= == (a # 7).

Definition 8 (12MC weak bisimulation). An equivalenc&® C S x S is a weak bisim-
ulation whenever for allP, Q) € R, t € R>¢, a € Act andC € S/R:

- P -% P impliesQ == Q' for someQ’ and (P, Q') € R.
— P % impliesR(P,C,t) = R(Q",C,t) for someQ” - such that) == Q" and
(P,Q") e R.

For @ symmetric rules apply? and @ are weakly bisimilar, denoteft ~ @, if (P, Q)
is contained in some weak bisimulati®n

It seems intuitive that for the sequen@e== Q" the ratesk(P, C,t) andR(Q", C,t)
have to be compared starting from tirtfe= ¢ + At where At is the time needed to
make allr in the sequenc® == Q". As 7 transitions take no time the result will be
the same even when the rates are compared fromttime

Example 3.Consider thd?MC from Fig. 2 and its abstraction i.e. all actions are trans-
formed into immediate ones). The quotient undet is depicted in Fig. 3, withC1,

Cy andCjy as in Fig. 2 andly = {P||{yse1 @, use. Pl {useyuse.Q}. It is important to
note that after abstraction the transition labeled with results in an immediate tran-
sition which gives the possibility to put the stat@$ ..} Q anduse. P||{,scyuse.Q in

the same equivalence class. Also note that the obtafd@ has no transitions labeled
with actions, i.e., it is an ICTMC. This shows that weak biglation may be an effec-
tive mechanism to turn a#MC into anICTMC, which may be subject to analysis as
discussed in Section 2.



‘ a.7.P=a.P P+rP=1P A(t).7.P = X(t).P a.(P+7.Q)+a.Q=a.(P+71.0Q)

Table 3.Sound and complete axioms faron the PML sequential fragment.

As in the case of strong bisimulation,
weak bisimulation is also a congruence with
respect toIML operators. But there is an ex-
ception. Weak bisimulation is not a congru-
ence with respect to the choic® ¢ Q) op-
erator [20]. This is due to the fact that weak

Fig. 3. Weak bisimulation quotient. bisimulation will equate two processes when-
ever one can de= and the other one can do
nothing. In order to cope with the choice operator one hasffierdntiate betweer=-
and== "= whena = 7 as follows:

Definition 9 (Weak congruence).Pand (@ are weakly congruent, denoted By— Q,
whenever for alb € Act, t € R>p andC € RG/~:

- P % P impliesQ === Q' for someQ’ and P’ ~ Q'.
- Q % Q' impliesP == -*== P’ for someP’ and P’ ~ Q.
— P % (or Q ) impliesR(P,C,t) = R(Q, C, ).

Theorem 6. « is a congruence with respect to all operatordfiML.

Consider the set of axioms from Table 2 and 3 together witbragirelated to hiding
and recursion operators as.. As for strong bisimulation the following also holds for
weak congruence:

Theorem 7. Forany P, @@ € RG, A+ P =Qifand only if P = Q.

Recall thatP and@ are regular and guarded process terms.

5 Concluding Remarks and Future Work

This paper presented a compositional formalism for tinfeemogeneous continuous-
time Markov chains (ICTMCs), a subclass of piecewise deit@stic Markov pro-
cesses (PDPs). The main contributions are a full-fledgecssoalgebra for interactive
ICTMCs, congruence results for weak and strong bisimutattmd a polynomial-time
quotienting algorithm. In addition, a new characterizatid transient probabilities is
provided for rate functions that are piecewise uniform. démtcast to works on com-
municating PDPs [24, 23, 25], this paper considers weaknbilsition, congruence re-
sults and axiomatization, and, more importantly a notiobisimulation which respects
maximal progress. Current work consists of investigatmgrovements to the quotient-
ing algorithm akin to [8], model-checking algorithms [18hd simulation relations for
ICTMCs.
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