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Abstract. This paper presents a compositional framework for the modeling of
interactive continuous-time Markov chains with time-dependent rates, a subclass
of communicating piecewise deterministic Markov processes. A poly-time algo-
rithm is presented for computing the coarsest quotient under strong bisimulation
for rate functions that are either piecewise uniform or (piecewise) polynomial.
Strong as well as weak bisimulation are shown to be congruence relations for the
compositional framework, thus allowing component-wise minimization. In ad-
dition, a new characterization of transient probabilitiesin time-inhomogeneous
Markov chains with piecewise uniform rates is provided.

1 Introduction

Modeling large stochastic discrete-event dynamic systemsis a difficult task that typi-
cally requires human intelligence and ingenuity. To facilitate this process, formalisms
are needed that allow for the modeling of such systems in a compositional manner. This
allows to construct models of simpler components—usually from first principles—that
can be combined by appropriate composition operators to yield complete system mod-
els. In concurrency theory, process algebra [20, 16] has emerged as an important frame-
work to achieve compositionality: it provides a formal apparatus for compositional rea-
soning about structure and behavior of systems, and features abstraction mechanisms
allowing system components to be treated as black boxes.

Although originally aimed at purely functional behavior, process algebras for stochas-
tic systems have been investigated thoroughly, see e.g., [15, 14]. In all these approaches,
the dynamics of the stochastic models is assumed to betime-homogeneous, i.e., the
probabilistic nature of mode transitions as well as the time-driven behavior are indepen-
dent of the global time. This is, however, a serious drawbackto adequately model ran-
dom phenomena that occur in practice such as failure rates ofhardware components (a
bath-tub curve), software reliability (which reduces due to memory leaks and increases
after a restart), and battery depletion (where the power extraction rate non-linearly de-
pends on the remaining amount of energy [5]), to mention a few. This paper attempts
to overcome this deficiency by providing a process algebra for time-inhomogeneous
continuous-time Markov chains (ICTMCs). This is a very versatile class of models and
is a natural stepping-stone towards more full-fledged stochastic hybrid system models



such as piecewise deterministic Markov processes (PDPs [6]). We show that ICTMCs
can be compositionally modeled by using a time-dependent adaptation of the frame-
work of interactive Markov chains (IMCs) [14]. To facilitate this, ICTMCs are equipped
with the potential for interaction, i.e., synchronization. Instrumental to this approach is
the memoryless property of ICTMCs.

More importantly though, notions of strong and weak bisimulation are defined and
shown to be congruences. Together with efficient quotienting algorithms this allows for
the component-wise minimization of hierarchical ICTMC models. Finally, we present
an axiomatization for strong and weak bisimulation which allows to simplify models
by pure syntactic manipulations as opposed to performing minimization on the model
level. As a generalization of results on ordinary lumpability on Markov chains [3], we
show that strong bisimulation preserves transient and long-run state probabilities in
ICTMCs. This allows to minimize symbolically ICTMCs prior to their analysis.

We present a bisimulation minimization algorithm to obtainthecoarsest(and thus
smallest)strong bisimulation quotientof a large class of interactive ICTMCs, viz.
those that have piecewise uniform—rateRk(t) on piecek is of the formfk(t)·R
for integrable functionR—polynomial, or piecewise polynomial—where each poly-
nomial is of degree three—rate functions. The worst-case time and space complexity is
O (ma lg(n) + Mmr lg(n)) andO (ma + mr), respectively, whereM+1 is the num-
ber of pieces (or degrees of the polynomial),ma is the number of action-labeled transi-
tions andmr the number of rate-labeled transitions in the ICTMC under consideration.
This algorithm is based on the partition-refinement bisimulation algorithm for Markov
chains by Derisaviet al. [7] and Paige-Tarjan’s algorithm for labeled transition systems
(LTS) [21].

Related work.ICTMCs are related to piecewise deterministic Markov processes (PDPs),
a more general class of continuous-time stochastic discrete-event dynamic systems pro-
posed by Davis [6]. The probabilistic nature of mode transitions in PDPs is as for
ICTMCs; in fact, ICTMCs are a subclass of PDPs when the globaltime t has a clock
dynamics i.e.,̇t = 1. The notion of parallel composition of ICTMCs corresponds to
that for communicating PDPs (CPDPs) as introduced by Strubbe and van der Schaft
[24, 23]. Alternative modeling formalisms for PDPs are, e.g., variants of colored Petri
nets [9] but they lack a clear notion of compositionality. Compositional modeling for-
malisms for hybrid systems have been considered by, e.g., [2, 1]. Strong bisimulation
has been proposed for several classes of (stochastic) hybrid systems, see e.g., [4, 12,
25]. Our notion of bisimulation is closely related to that for CPDPs [25] but differs
in the fact that the maximal progress assumption—a race between one or more rates
and a transition that is not subject to interaction with the environment is resolved in
favor of the internal transition—is not considered in [25].Proofs of the major results
are contained in [13].

2 Inhomogeneous Continuous Time Markov Chains

Definition 1 (ICTMC). An inhomogeneous continuous-time Markov chain is a tuple
C = (S,R) where:S = {1, 2, . . . , n} is a finite set of states, andR(t) = [Ri,j(t) ≥



0] ∈ IRn×n is a time-dependent rate matrix, whereRi,j(t) is the rate between states
i, j ∈ S at timet ∈ IR≥0.

Let diagonal matrixE(t) = diag [Ei(t)] ∈ IRn×n, whereEi(t) =
∑

j∈S
Ri,j(t) for

all i, j ∈ S, i 6= j i.e., Ei(t) is the total exit rate of statei at time t. Consider a
non-homogeneous Poisson process{Z(t)|t ≥ 0} with rateR(t). The probability ofk
arrivals in the interval[t, t + ∆t] is:

Pr{Z(t + ∆t) − Z(t) = k} =

[

∫ t+∆t

t
R(ℓ)dℓ

]k

k!
e−

R

t+∆t

t
R(ℓ)dℓ, k = 0, 1, . . . .

The probability that there will be no arrivals in the interval [t, t + ∆t] is:

Pr{Z(t + ∆t) − Z(t) = 0} = e−
R

t+∆t

t
R(ℓ)dℓ = e−

R

∆t

0
R(t+ℓ)dℓ. (1)

Let the random variableWi,j(t) be the firing time of transitioni → j (i, j ∈ S) with
rateRi,j(t) at timet. From (1) we obtain the cumulative probability distribution of the
firing time of transitioni → j:

Pr {Wi,j(t) ≤ ∆t} = 1 − Pr{Z(t + ∆t) − Z(t) = 0} = 1 − e−
R

∆t

0
Ri,j(t+ℓ)dℓ. (2)

Probability measures.For every ICTMC one can specify measures of interest. These
measures are either related to the states or to the transitions of an ICTMC. Consider a
random variableWi(t) which denotes the waiting time in statei.

Property 1.
Pr {Wi(t) ≤ ∆t} = 1 − e−

R

∆t

0
Ei(t+ℓ)dℓ. (3)

An intuitive explanation of (3) is that the waiting timeWi(t) in statei is determined
by the minimal firing time of allk outgoing transitions from statei, i.e., Wi(t) =
min {Wi,1(t), . . . , Wi,k(t)}. WhenRi,j(t) = Ri,j andEi(t) = Ei for all t ∈ IR≥0,
i.e., the ICTMC is a CTMC,Wi(t) has the distribution1 − e−Ei∆t. An interesting
property is that the waiting time in any statei is memoryless, i.e.:

Pr {Wi(t) ≤ t′ + ∆t|Wi(t) > t′} = Pr {Wi(t + t′) ≤ ∆t} . (4)

This can be shown as follows:

Pr {Wi(t) ≤ t′ + ∆t|Wi(t) > t′} =
e−

R

t′

0
Ei(t+ℓ)dℓ − e−

R

t′+∆t

0
Ei(t+ℓ)dℓ

e−
R

t′

0
Ei(t+ℓ)dℓ

= 1 − e−
R

t′+∆t

0
Ei(t+ℓ)dℓ+

R

t′

0
Ei(t+ℓ)dℓ = Pr {Wi(t + t′) ≤ ∆t} .

Equation (4) will be of importance when we later define a calculus for ICTMCs.

Property 2. The probabilityPri,j(t) to select transitioni → j (i 6= j, i, j ∈ S) with
rateRi,j(t) at timet is:

Pri,j(t) =

∫ ∞

0

Ri,j(t + τ)e−
R

τ

0
Ei(t+ℓ)dℓdτ. (5)



When rates are constant, the measure (5) takes the formPri,j =
Ri,j

Ei
(Pri,j(t) = Pri,j

for all t ∈ IR≥0), which corresponds to transition probability in CTMCs.

Property 3. The cumulative probability distributionPri,j(t, ∆t) to move from statei
to statej (i 6= j) with rateRi,j(t) in ∆t time units starting at timet:

Pri,j(t, ∆t) =

∫ ∆t

0

Ri,j(t + τ)e−
R

τ

0
Ei(t+ℓ)dℓdτ. (6)

Notice that (6) is the same as (5) except that the range of the outer-most integral is
[0, ∆t]. For CTMCs (Pri,j(t, ∆t) = Pri,j(∆t) for all t ∈ IR≥0), equation (6) results in
Pri,j(∆t) =

Ri,j

Ei

(

1 − e−Ei∆t
)

.

Transient probability distribution.One important measure which quantifies the proba-
bility to be in a specific state at some time point is thetransient probability distribution.
Consider an ICTMC described by the stochastic process{X(t)|t ≥ 0}. The transient
probability distributionPr {X(t + ∆t) = j}, denoted byπj (t + ∆t), is the probability
to be in statej at timet + ∆t, and is described by the equation:

πj (t + ∆t) =
∑

i∈S

Pr {X(t) = i} · Pr {X(t + ∆t) = j|X(t) = i} . (7)

Equation (7) can be expressed in matrix form as:π(t + ∆t) = π(t)Φ(t + ∆t, t),
whereπ(t) = [π1 (t) , . . . , πn (t)] andΦ(t+∆t, t) represents thetransition probability
matrix. This equation represents the solution of a system of ODEs:

dπ(t)

dt
= lim

∆t→0

π(t + ∆t) − π(t)

∆t
= lim

∆t→0
π(t)

[Φ(t + ∆t, t) − I]

∆t
. (8)

For the diagonal elementsqi,i(t) of the matrix lim∆t→0
[Φ(t+∆t,t)−I]

∆t from (8), we

obtainqi,i(t) = lim∆t→0
Pr{X(t+∆t)=i|X(t)=i}−1

∆t . As Pr {X(t + ∆t) = i|X(t) = i}
denotes the probability to stay in statei for at least∆t units of time or the probability
to return to statei in two or more steps, it follows:

qi,i(t) = lim
∆t→0

e−
R

∆t

0
Ei(t+ℓ)dℓ − 1 + o (∆t)

∆t
= −Ei(t),

whereo (∆t) denotes the probability to make two or more transitions in∆t units of
time. Notice thatlim∆t→0

o(∆t)
∆t = 0. For the off-diagonal elementsqi,j(t) (i 6= j) of

matrix lim∆t→0
[Φ(t+∆t,t)−I]

∆t , the relation is similar:

qi,j(t) = lim
∆t→0

Pr {X(t + ∆t) = j|X(t) = i}

∆t
= lim

∆t→0

Pri,j(t, ∆t) + o (∆t)

∆t
,

which can be reduced using (6) to:

qi,j(t) = lim
∆t→0

∫ ∆t

0
Ri,j(t + τ)e−

R

τ

0
Ei(t+ℓ)dℓdτ + o (∆t)

∆t
= Ri,j(t).



The resultinginfinitesimal generatormatrixQ(t) has the form:

Q(t) = lim
∆t→0

[Φ(t + ∆t, t) − I]

∆t
= R′(t) − E(t),

whereR′ equalsR except thatR
′

i,i(t) = 0. PluggingQ(t) into equation (8) yields the
system of ODEs which describe the evolution of transient probability distribution over
time (Chapman-Kolmogorov equations):

dπ(t)

dt
= π(t)Q(t),

n
∑

i=1

πi(t0) = 1, (9)

whereπ(t0) is the initial condition. From the literature (see [17, pages 594–631]) it is
known that the solutionπ(t) of (9), written as:

π(t) = π(t0)Φ(t, t0) (10)

has the transition probability matrix given by the Peano-Baker series:

Φ(t, t0) = I +

∫ t

t0

Q(τ1)dτ1 +

∫ t

t0

Q(τ1)

∫ τ1

t0

Q(τ2)dτ2dτ1 + . . . . (11)

Note that ifQ(τ1)
∫ τ1

t0
Q(τ2)dτ2 =

∫ τ1

t0
Q(τ2)dτ2Q(τ1) thenΦ(t, t0) = e

R

t

t0
Q(τ)dτ .

If the rate matrixR(t) is piecewise constanti.e., R(t) = Rk or Q(t) = Qk for all
t ∈ [tk, tk+1) and k ≤ M ∈ IN (M + 1 is the total number of constant pieces),
equation (10) can also be rewritten as (see [22]):

π(t) =











π(t0)e
Q0(t−t0) if t ∈ [t0, t1)

...
...

π(tM )eQM (t−tM ) if t ∈ [tM ,∞)

and π(tk) = π(tk−1)e
Qk−1(tk−tk−1).

The general case is when the rate matrix ispiecewise uniformi.e., R(t) = Rk(t) =
fk(t)Rk orQ(t) = Qk(t) = fk(t)Qk for any integrable functionfk(t) : IR≥0 → IR≥0

on time interval[tk, tk+1), constant matricesRk andQk.

Theorem 1. The transient probability distributionπ(t) of anICTMC C = (S,R) with
a piecewise uniform rate matrixR(t) andM+1 pieces is given by:

π(t) =















π(t0)e
Q0

R

t

t0
f0(τ)dτ if t ∈ [t0, t1)

...
...

π(tM )e
QM

R

t

tM
fM (τ)dτ if t ∈ [tM ,∞)

whereπ(tk) = π(tk−1)e
Qk−1

R tk
tk−1

fk−1(τ)dτ
.



3 Inhomogeneous Interactive Markov Chains

In order to facilitate the compositional modeling of ICTMCs, we equip these processes
with the capability to allow for their mutual interaction. This is established by adding
actions to ICTMCs. LetAct be the countable universe of actions. The aim of these
actions is that certain actions can only be performed together with other processes.

Definition 2 (I2MC). An inhomogeneous interactive Markov chain(I2MC) is a tuple
I = (S, Act,→,R, s0) whereS andR are as before,→⊆ S × Act× S is a transition
relation ands0 ∈ S is the initial state.

The semantic model of I2MC represents the time-dependent variant of IMC [14].

Process algebra forI2MC. Originally developed by Hoare and Milner (see [20, 16]),
process algebras have been developed as a compositional framework for describing
the functional behavior of the system. It allows for modeling complex systems in a
component-wise manner by offering a set ofoperatorsto combine component models.
Actions are the most elementary notions. The combination ofseveral actions using the
operators forms aprocess. We extend this framework by stochastic timing facilities.

Definition 3. Let X be a process variable,λ(t) ∈ IR≥0 with t ∈ IR≥0, A ⊆ Act
anda ∈ Act. The syntax of inhomogeneous interactive Markov language(I2ML) for
I2MCs is defined as follows:

P ::= 0 | a.P | λ(t).P | P + P | P‖AP | P \ A | X.

Process variables are assumed to be defined by recursive equations of the formX := P ,
whereP is an I2ML term. Thenull process0 is the deadlock process and cannot perform
any action. The prefix operators area.P andλ(t).P for actions and rates, respectively.
ThechoiceoperatorP +Q chooses between processesP or Q. ProcessP‖AQ denotes
theparallel compositionof processesP andQ where synchronization is required only
for actions inA; actions not inA are performed autonomously. The processP \ A
behaves likeP except that all actions inA become unobservable to other processes;
this is established by relabelinga by the distinguished actionτ ∈ Act. The operational
semantics of I2ML terms is defined by the inference rules in Table 1 where for the sake
of conciseness symmetric rules are not shown.

A few remarks concerning time-prefix and choice are in order.The processλ(t).P
evolves intoP within ∆t time units with probability:

Prλ(t).P,P (t, ∆t) =

∫ ∆t

0

λ(t + τ)e−
R

τ

0
λ(t+ℓ)dℓdτ = 1 − e−

R

∆t

0
λ(t+ℓ)dℓ,

given thatλ(t).P is enabled at the global timet. The above relation can be easily proven
from (6) by takingi = λ(t).P , j = P , Ri,j(t + τ) = λ(t + τ) andEs(t + ℓ) =
λ(t + ℓ). The processλ(t).P + µ(t).Q can evolve intoP if the time delay gener-
ated by a stochastic process with rateλ(t) is smaller than that generated by a differ-
ent stochastic process with rateµ(t). By a symmetric argument it may evolve intoQ.
Therefore, from (3) it follows that the distribution of timeuntil a choice is made is



a.P
a

−→P

P
a

−→P ′ and Q
a

−→Q′

P‖AQ
a

−→P ′‖AQ′
(a ∈ A)

λ(t).P
λ(t)
−→P

P
λ(t)
−→P ′

P\A
λ(t)
−→P ′\A

P
a

−→P ′

P+Q
a

−→P ′

P
a

−→P ′

P‖AQ
a

−→P ′‖AQ
(a /∈ A)

P
λ(t)
−→P ′

P+Q
λ(t)
−→P ′

E[X:=E/X]
λ(t)
−→E′

X:=E
λ(t)
−→E′

P
a

−→P ′

P\A
a

−→P ′\A
(a /∈ A)

P
a

−→P ′

P\A
τ

−→P ′\A
(a ∈ A)

P
λ(t)
−→P ′

P‖AQ
λ(t)
−→P ′‖AQ

E[X:=E/X]
a

−→E′

X:=E
a

−→E′

Table 1. Inference rules for the operational semantics of I2ML.

Pr{W (t) ≤ ∆t} = 1− e−
R

∆t

0
λ(t+τ)+µ(t+τ)dτ . For a choice between|J | processes (J

is a finite index set), the distribution of the waiting time becomesPr{W (t) ≤ ∆t} =

1 − e−
R

∆t

0

P

i∈J λi(t+τ)dτ . If the ratesλi(t) in the process
∑

i∈J λi(t).Pi are constant
(λi(t) = λi), then the waiting time is exponentially distributed with the sum of the rates
λi i.e. Pr{W (t) ≤ ∆t} = 1 − e−

P

i∈J λi∆t. This corresponds to the interpretation of
choice in Markovian process algebras [15]. It is important to note that whenPi = P
for all i ∈ J , the process

∑

i∈J λi(t).P will evolve intoP with rate
∑

i∈J λi(t).

Parallel composition.When considering just actions the asynchronous parallel com-
position has the same functionality as that from basic process calculi. On the other
hand when considering stochastic delays the composition ismore involved. Consider
P := λ(t).P ′ andQ := µ(t).Q′. They can evolve intoP ′ andQ′ after a time delay
governed by a distribution with rateλ(t) andµ(t), respectively. Since the waiting time
in any state is memoryless (4), we can show the way by which processesP andQ are
composed (see diagram below).

P‖Q

P ′‖Q P‖Q′

P ′‖Q′

λ(t)

µ(t)

µ(t)

λ(t)

First consider that when both processes start their execution in
initial stateP‖Q (the shadowed state) they probabilistically select
a time delay, say,∆tλ for P and∆tµ for Q. If ∆tλ < ∆tµ then
P finishes its execution first and evolves intoP ′. The same applies
to Q when∆tµ < ∆tλ. By intuition we could think that when it
is already inP ′‖Q, ∆tλ = 0 and the remaining delay for process
Q until it finishes its execution is∆tµ −∆tλ. What really happens

is that on entering stateP ′‖Q both delays are set to zero i.e.,∆tλ = ∆tµ = 0. As
P ′ has no transitions,∆tλ remains0 but for Q its delay is initialized to a new value
which might be different from∆tµ − ∆tλ due to a probabilistic selection. Due to the
memoryless property, however, the remaining delay forQ is fully determined byµ only.

Example 1.Consider two hardware components described by the equationsP := λ1(t)
.0+λ2(t).use.P andQ := µ1(t).0+µ2(t).use.Q, respectively. Each of the components
may fail with rateλ1(t) andµ1(t), respectively. As a result of the failure they evolve
into process0. On the other hand, the components may move to the working state with
the rateλ2(t) andµ2(t), respectively, where they canusesome resources. If one of
them fails then the entire system fails. Both components canuse the resources at the
same time if the system is working properly. Figure 1 depictsthe I2MC of P‖{use}Q.



4 Strong and Weak Bisimulation

In order to compare the behavior of ICTMCs (and their interactive variants) we exploit
the well-studied and widely accepted notion of bisimulation [3, 20, 14].

P‖{use}Q

0‖{use}Q P‖{use}use.Q P‖{use}0

λ1(t)

µ2(t)

µ1(t)

use.P‖{use}use.Q

0‖{use}0

0‖{use}use.Q use.P‖{use}0

use

µ2(t) λ2(t) λ2(t)

use.P‖{use}Q

µ2(t)

µ1(t)

λ2(t)

λ1(t)

µ1(t) λ1(t)

Fig. 1.P‖{use}Q.

A classical bisimulation re-
lation requires equivalent
states to be able to mutually
mimic their stepwise be-
havior. In the probabilistic
setting this is interpreted as
requiring equivalent states
to have equal cumulative
rates to move to any equiv-
alence class. Bisimulation
is considered as a natural
notion of equivalent behav-

ior, is equipped with quotienting algorithms, and has a clear correspondence to equiv-
alence in terms of logical behavioral specifications. In this section, we will define
strong bisimulation for I2MC starting from a similar notion on ICTMCs. Some alge-
braic and probabilistic properties of bisimulation are investigated. The same applies to
weakbisimulation that allows for the abstraction of internal, i.e.,τ actions.

Bisimulation forICTMCs.

Definition 4 (ICTMC strong bisimulation). An equivalenceR ⊆ S × S is a strong
bisimulation whenever for all(P, Q) ∈ R, t ∈ IR≥0 andC ∈ S/R:

R(P, C, t) = R(Q, C, t),

whereR(P, C, t) =
∑

i{|λ(t)|P
λ(t)
→i P ′, P ′ ∈ C|}. P andQ are strongly bisimilar,

denotedP ∼ Q, if (P, Q) is contained in some strong bisimulationR.

Here,{| . . . |} denotes a multiset. It follows that∼ is the largest strong bisimulation, i.e.,
it contains any strong bisimulation. To be able to compare ICTMCs by bisimulation, let
us equip an ICTMC with an initial states0 ∈ S. Two ICTMCsCP = (SP ,RP , s0

P ) and
CQ = (SQ,RQ, s0

Q) are bisimilar, denotedCP ∼ CQ, iff their initial states are bisimilar,
i.e.,s0

P ∼ s0
Q. The quotient of an ICTMC under∼ is defined in the following way.

Definition 5 (Bisimulation quotient). For the ICTMC C = (S,R, s0) and ∼, the
quotientC/∼ is defined byC/∼= (S/∼,R∼, s0

∼) wheres0
∼ = [s0]∼ andR∼ is defined

by: R∼([P ]∼, [P ′]∼, t) = R(P, [P ′]∼, t) for all t ∈ IR≥0.

Note thatC is strongly bisimilar toC/∼. An important property of strong bisimulation
is that it preserves transient probabilities; in particular, this means that there is a strong
relationship between the transient probabilities in an ICTMC and its quotient.



Theorem 2. Let C = (S,R, s0) be anICTMC. For everyC ∈ S/∼, the transient
probability distributionπC(t) of the stateC in the quotient chainC/∼ is:

πC(t) =
∑

s∈C

πs(t) for all t ∈ IR≥0,

whereπs(t) is the transient probability distribution of states ∈ S in C.

From Theorem 2 we may conclude that the steady state probability distribution (if it
exists) is also preserved.

Corollary 1. Let C = (S,R, s0) be anICTMC. For everyC ∈ S/∼, the steady-state
probability distributionπC of the stateC in the quotient chainC/∼ is:

πC = lim
t→∞

πC(t) = lim
t→∞

∑

s∈C

πs(t) =
∑

s∈C

πs,

whereπs is the steady-state probability distribution of states ∈ S.

In many cases it is reasonable to assume that two processesP andQ are equal up
to timeT . For this case we propose thefinite-horizon bisimulation.

Definition 6. An equivalenceR ⊆ S × S is a finite-horizon bisimulation whenever for
all (P, Q) ∈ R, t ∈ [0, T ] (T ∈ IR≥0) andC ∈ S/R: R(P, C, t) = R(Q, C, t). P
andQ are finitely-horizon bisimilar, denotedP ∼T Q, if (P, Q) is contained in some
finite-horizon bisimulationR.

Notice that the definition of finite-horizon bisimulation∼T is the same except that the
timet lies in the interval[0, T ]. It is easy to see that finite-horizon bisimulation preserves
the transient distribution up to timeT .

Proposition 1. For 0 < · · · < T < · · · < ∞ it holds:∼0⊆ · · · ⊆ ∼T · · · ⊆ ∼ .

Thus ,P ∼ti Q implies P ∼tj Q for everytj < ti. It follows that for tj < ti, the
quotient under∼tj is coarser than under∼ti .

Bisimulation forI2MCs. So far, we have presented bisimulation for ICTMCs. In order
to define bisimulation for I2MCs, unobservable actions (i.e.,τ ) require special care.
Consider four states such thatP1 ∼ P2 ∼ Q1 ∼ Q2 (see diagram below).

P0 P1

P2

2λ(t)

∼τ

Q0 Q1

Q2

λ(t)

∼
λ(t)

At first sight, it seems natural thatP0 ∼ Q0 as
R(P0, C, t) = R(Q0, C, t) = 2λ(t). But, stateP0 can do
something more. There is a transitionP0

τ
→ P2 which con-

sumes no time since aτ -action is an internal one and is
not prevented by the environment (maximal progress as-

sumption). The probability that transitionP0
2λ(t)
−→ P1 will be taken in0 time units

is PrP0,P1
(t, 0) =

∫ 0

0
2λ(t + τ)e−

R

τ

0
2λ(t+ℓ)dℓdτ = 0. Thus, we may conclude that

P0 ≁ Q0. When specifying the definition of bisimilarity we have to treat immediate
actions (τ ) in a special way. LetS be the state-space of an I2MC.



P + 0 = P a.P + a.P = a.P (P + Q) + R = P + (Q + R)

P + Q = Q + P λ(t).P + τ.Q = τ.Q λ(t).P + µ(t).P = (λ(t) + µ(t)).P

Table 2.Sound and complete axioms for∼ on the I2ML sequential fragment.

Definition 7 (I2MC strong bisimulation). An equivalenceR ⊆ S × S is a strong
bisimulation whenever for all(P, Q) ∈ R, t ∈ IR≥0, a ∈ Act andC ∈ S/R:

– P
a

−→ P ′ impliesQ
a

−→ Q′ for someQ′ and(P ′, Q′) ∈ R.
– Q

a
−→ Q′ impliesP

a
−→ P ′ for someP ′ and(P ′, Q′) ∈ R.

– P
τ
9 (or Q

τ
9) impliesR(P, C, t) = R(Q, C, t).

P andQ are strongly bisimilar, denotedP ∼ Q, if (P, Q) is contained in some strong
bisimulationR.

Example 2.Consider theI2MC from Fig. 1 (c) andλ1(t) = µ1(t), λ2(t) = µ2(t). Its
quotient under bisimulation is depicted in Fig. 2. The equivalence classesC1, C2 and
C3 contain the following statesC1 =

{

0‖{use}Q, P‖{use}0
}

, C2 =
{

P‖{use}use.Q,

use.P‖{use}Q
}

andC3 =
{

0‖{use}use.Q, use.P‖{use}0, 0‖{use}0
}

.

P‖{use}QC1

2λ1(t)

use.P‖{use}use.QC3

use

C2

λ2(t)

2λ2(t)

λ1(t) + λ2(t)

Fig. 2.Bisimulation quotient.

In a similar way as for ICTMCs, one can
consider the quotient of an I2MC. The compo-
sitional nature of I2MC, however, allows in prin-
ciple for obtaining such quotient in a component-
wise manner, e.g., the quotient ofP‖AQ can be
obtained by first constructing the quotients ofP
andQ, then combine them, and quotienting the

composition. The necessary requirement that∼ needs to fulfill is that it is acongru-
encerelation. The relation∼ is a congruence whenever for processesP andQ it holds:
P ∼ Q implies C[P ] ∼ C[Q] whereC[·] is any context. (A context is basically a
process term containing a hole that may be filled with any process.)

Theorem 3. ∼ is a congruence with respect to all operators inI2ML.

Finite-horizon bisimulation is a congruence with one additional property.

Proposition 2. For any processesP , P ′, Q, Q′ and intervals[0, T1] and [0, T2] with
T1, T2 ∈ R≥0 we have:

P ∼T1 P ′ and Q ∼T2 Q′ implies P‖AQ ∼min(T1,T2) P ′‖AQ′ for all A ⊆ Act.

As a next step, we consider the possibility to establish bisimulation symbolically,
i.e., on the level of the syntax of the earlier introduced language I2ML. This is facilitated
by an axiomatization for∼. The soundness of these axioms ensures that any two terms
that are syntactically equal (denoted =) are bisimilar; formally, P = Q ⇒ P ∼ Q.
Whenever the axioms are complete, in addition, any stronglybisimilar processes can be
represented by the same expressions in I2ML, i.e., P ∼ Q ⇒ P = Q. Summarizing,
any bisimulation can be established syntactically, i.e., by just manipulating terms rather



than I2MCs, provided the axiom system is sound and complete. LetA∼ be the set of
axioms listed in Table 2 extended with the expansion law:

P‖AQ =
∑

i∈J1

λi(t). (Pi‖AQ) +
∑

k∈J3

µk(t). (P‖AQk) +
∑

aj=bl∈A

aj . (Pj‖AQl)+

+
∑

aj /∈A∧aj∈J2

aj . (Pj‖AQ) +
∑

bl /∈A∧bl∈J4

bl. (P‖AQl)

whereP :=
∑

i∈J1
λi(t).Pi +

∑

j∈J2
aj .Pj andQ :=

∑

k∈J3
µk(t).Qk +

∑

l∈J4
bl.Ql

with the finite index setsJ1, J2, J3 andJ4. Then the following holds:

Theorem 4. For anyP, Q ∈ RG, A∼ ⊢ P = Q if and only ifP ∼ Q.

The termRG denotes the set of allregular (no parallel composition inside recursion)
andguarded(by actions or rates) expressions. WhileA∼ ⊢ P = Q means thatP = Q
can be deduced from the set of sound and complete axiom systemA∼. The axiom
λ(t).P + µ(t).P = (λ(t) + µ(t)).P is due to the fact that the sum of two Poisson
processes with ratesλ(t) andµ(t) is a Poisson process with the rateλ(t)+µ(t), whereas
the axiomλ(t).P + τ.Q = τ.Q is due to the maximal progress assumption. Notice that
A∼ also contains all standard axioms which involve hiding and recursion operators
which are standard and omitted here.

Bisimulation minimization.The previous sections have set the stage for bisimulation
minimization. Experiments have shown that in the traditional [11] as well as in the
stochastic setting [19] exponential state space savings can be achieved. Given that∼
is a congruence, individual processes can be replaced by their bisimilar quotient (un-
der∼) and the peak memory requirements can be reduced significantly. This all, how-
ever, requires an efficient bisimulation minimization algorithm. We adopt thepartition-
refinementparadigm to obtain a minimization algorithm for I2MCs. As the problem
for arbitrary rate functions is undecidable, we restrict tothree classes of rate matrices
R(t): piecewise uniform, polynomial (R(t) = tM+1RM+1 + · · · + tR2 + R1, where
Ri with i ≤ M+1 ∈ IN are constant matrices) and piecewise polynomial (each piece is
a polynomial of degree three). The same classes have been considered for the transient
probability distribution, cf. Theorem 1. Rate comparisonsand summations can easily
be realized for these classes of functions. For rate matrixR, let M + 1 denote the total
number of intervals for piecewise uniformR(t), the polynomial degree whenR(t) is
polynomial, and the number of polynomial pieces whenR(t) is piecewise polynomial.

Our bisimulation minimization algorithm for I2MCs is based on a generalization
of the algorithm for obtaining the coarsest quotient of a Markov chain under bisimula-
tion by Derisaviet al. [7], and Paige-Tarjan’s algorithm for LTS. The basic idea isto
minimize iteratively over all pieces (or degrees of the polynomials). The bisimulation
algorithm exploits an efficient data structure which groupsall states with the same out-
going rate. This is in fact a binary tree where eachnodehas four parameters:node.left
andnode.right- pointers to the left and right child, respectively,node.sum- stores the
sum of the rates andnode.S- stores all states with the samenode.sum. Using such data
structures, the time- and space complexity of bisimulationminimization for I2MCs re-
duces to:



Theorem 5. The coarsest quotient under∼ of any I2MC can be obtained in a worst-
case time complexityO (ma lg(n) + Mmr lg(n)) and space complexityO (ma + mr),
wherema andmr is the number of action-labeled and rate-labeled transitions, respec-
tively.

Recall that ICTMCs are I2MCs that contain no action-labeled transitions. As a side re-
sult, the above theorem yields that the coarsest bisimulation quotient of a time-
inhomogeneous CTMC can be obtained with time and space complexityO (Mmr lg(n))
andO (mr), respectively. (The time complexity for homogeneous Markov chains is
O (mr lg(n)) [7]). Given the results in this paper that∼ preserves transient and steady
state distributions, our algorithm can be used to minimize prior to any such analysis.

Weak bisimulation forI2MCs. Strong bisimulation requires equivalent states to sim-
ulate their mutual stepwise behavior. While preserving thebranching structure, strong
bisimulation also requires mimicking of immediate actions(τ). As immediate actions
consume no time it seems reasonable that two states will be equivalent regardless of the
number ofτ -steps in a sequence that they make. Therefore, the equivalence which will
allow for the abstraction of sequences of immediate actionswill be denoted asweak
bisimulation. Let the transition

τ
=⇒ be the reflexive and transitive closure of

τ
−→

∗
and

a
=⇒ a shorthand for

τ
=⇒

a
−→

τ
=⇒ (a 6= τ ).

Definition 8 (I2MC weak bisimulation). An equivalenceR ⊆ S × S is a weak bisim-
ulation whenever for all(P, Q) ∈ R, t ∈ IR≥0, a ∈ Act andC ∈ S/R:

– P
a

−→ P ′ impliesQ
a

=⇒ Q′ for someQ′ and(P ′, Q′) ∈ R.

– P
τ
9 impliesR(P, C, t) = R(Q′′, C, t) for someQ′′ τ

9 such thatQ
τ

=⇒ Q′′ and
(P, Q′′) ∈ R.

For Q symmetric rules apply.P andQ are weakly bisimilar, denotedP ≈ Q, if (P, Q)
is contained in some weak bisimulationR.

It seems intuitive that for the sequenceQ
τ

=⇒ Q′′ the ratesR(P, C, t) andR(Q′′, C, t)
have to be compared starting from timet′ = t + ∆t where∆t is the time needed to
make allτ in the sequenceQ

τ
=⇒ Q′′. As τ transitions take no time the result will be

the same even when the rates are compared from timet.

Example 3.Consider theI2MC from Fig. 2 and its abstraction i.e. all actions are trans-
formed into immediate ones (τ ). The quotient under≈ is depicted in Fig. 3, withC1,
C2 andC3 as in Fig. 2 andC0 = {P‖{use}Q, use.P‖{use}use.Q}. It is important to
note that after abstraction the transition labeled withuse results in an immediate tran-
sition which gives the possibility to put the statesP‖{use}Q anduse.P‖{use}use.Q in
the same equivalence class. Also note that the obtained I2MC has no transitions labeled
with actions, i.e., it is an ICTMC. This shows that weak bisimulation may be an effec-
tive mechanism to turn anI2MC into anICTMC, which may be subject to analysis as
discussed in Section 2.



a.τ.P = a.P P + τ.P = τ.P λ(t).τ.P = λ(t).P a.(P + τ.Q) + a.Q = a.(P + τ.Q)

Table 3.Sound and complete axioms for⋍ on the I2ML sequential fragment.

C0C1

2λ1(t)

C3 C2

λ1(t) + λ2(t) 2λ2(t)λ2(t)

Fig. 3.Weak bisimulation quotient.

As in the case of strong bisimulation,
weak bisimulation is also a congruence with
respect to I2ML operators. But there is an ex-
ception. Weak bisimulation is not a congru-
ence with respect to the choice (P + Q) op-
erator [20]. This is due to the fact that weak
bisimulation will equate two processes when-
ever one can do

τ
=⇒ and the other one can do

nothing. In order to cope with the choice operator one has to differentiate between
a

=⇒
and

τ
=⇒

a
−→

τ
=⇒ whena = τ as follows:

Definition 9 (Weak congruence).PandQ are weakly congruent, denoted byP ⋍ Q,
whenever for alla ∈ Act, t ∈ IR≥0 andC ∈ RG/≈:

– P
a

−→ P ′ impliesQ
τ

=⇒
a

−→
τ

=⇒ Q′ for someQ′ andP ′ ≈ Q′.
– Q

a
−→ Q′ impliesP

τ
=⇒

a
−→

τ
=⇒ P ′ for someP ′ andP ′ ≈ Q′.

– P
τ
9 (or Q

τ
9) impliesR(P, C, t) = R(Q, C, t).

Theorem 6. ⋍ is a congruence with respect to all operators inI2ML.

Consider the set of axioms from Table 2 and 3 together with axioms related to hiding
and recursion operators asA⋍. As for strong bisimulation the following also holds for
weak congruence:

Theorem 7. For anyP, Q ∈ RG, A⋍ ⊢ P = Q if and only ifP ⋍ Q.

Recall thatP andQ are regular and guarded process terms.

5 Concluding Remarks and Future Work

This paper presented a compositional formalism for time-inhomogeneous continuous-
time Markov chains (ICTMCs), a subclass of piecewise deterministic Markov pro-
cesses (PDPs). The main contributions are a full-fledged process algebra for interactive
ICTMCs, congruence results for weak and strong bisimulation, and a polynomial-time
quotienting algorithm. In addition, a new characterization of transient probabilities is
provided for rate functions that are piecewise uniform. In contrast to works on com-
municating PDPs [24, 23, 25], this paper considers weak bisimulation, congruence re-
sults and axiomatization, and, more importantly a notion ofbisimulation which respects
maximal progress. Current work consists of investigating improvements to the quotient-
ing algorithm akin to [8], model-checking algorithms [18],and simulation relations for
ICTMCs.
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