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Abstract In the last decades, model-checking techniques have
been adapted and extended to models that are widely used
Counterexamples for probabilistic reachability in in performance and dependability analysis such as discrete
Markov chains are sets of paths that all reach a goal state time and continuous-time Markov chains. Temporal log-
and whose cumulative likelihood exceeds a threshold. Thisics have been defined that allow the specification of well-
paper is concerned with the issue of how to convenientlyknown performance and performability measures and effi-
represent these sets. Experiments, partially substatiat cient — both numerical and simulative techniques — algo-
with combinatorial arguments, show that the cardinality rithms have been developed and culminated into dedicated
of such sets may be excessive. To obtain compact repretools, such agrism[25] andMRMC [23], as well as exten-
sentations of counterexamples we suggest to use regulasions of existing tools such as Great, SPIN, PEPAWork-
expressions. We present a simple algorithm to generatebench,SMART, and SATEMATE. In contrast to traditional
minimal regular expressions and adopt a recursive schememodel-checking techniques, the support for diagnostid-fee
to determine their likelihood. Markov chain reduction back in case a property is violated is rather limited; e.g.,
prior to counterexample generation may yield even shorter when the probability to reach a set of goal states (via legal
regular expressions. The feasibility of the approach is paths) within 1,000 steps, say, exceeds the required thresh
illustrated by means two protocols: leader election and the old “at most 0.87", typically the feedback is just a list of
Crowds protocol. states for which this is true, possibly accompanied with a
curve showing the probability vs. the number of steps. Itis
left to the user to interpret these results, and to obtairemor
1. Introduction useful information about the cause of this refuting behavio

Model checking is a successful and widely applied tech-  One of the main reasons of this restricted form of feed-
nigue for the automated verification of properties of system back has been the absence of a clear notion of a counterex-
designs. Its popularity is witnessed by the rapidly increas ample in the probabilistic setting. Whereas it is clear that
ing interest of industries to apply model checking to both in case of a traditional safety property (e.g., always 0
hardware systems, as well as software products. Modelfor variablex), a single finite path that ends in a state where
checking is based on a systematic check of the validity of z < 0 suffices, this is no longer true for reachability prob-

a system property, typically formulated in a temporal lgpgic abilities. In fact, to show that the probability to reach a
in each state of a model of the system under considerationgoal state exceeds 0.87setof paths is needed that all end
The power of model checking is, however, not exhaustive in a goal state and whose total probability mass is larger
verification, but its capability to generate useful diagnos than 0.87. In line with shortest counterexamplesin classic
tic feedback in case a violation of the property is encoun- model checking, preferably this set is as small as possible.
tered. Due to this feature, model checking is seen as anHan and Katoen [15] have shown that the computation of
effective and powerful bug-hunting technique: it does not the smallest set of paths that can act as a counterexample
only indicate that a property is refuted, but also indicates can be carried out using (small amendmentsieghortest
why. In fact, this also motivates recent developments suchpath algorithms [13][21], i.e., algorithms that compute

as bounded model checking that consider paths up to a cerpaths consisting of the shortest path, the one-but-stiortes
tain maximum length only. Although these techniques just path, and so forth. These results have been recently general
search a fragment of the state space and thus cannot guaized tocTmc counterexamples[16], and have been adopted
antee the absence of flaws, their potential to find refuting to steer the refinement phase in a counterexample-guided
behavior is considered of vital importance. abstraction refinement framework fapps [19], as well as



for counterexample generation fqecTL, a variant ofPCTL 1) experiments with smallest counterexample generation; 2
with means to reason about conditional probabilities [5). A advocating the use of regular expressions for counterexam-
alternative approach proposed by Aljazzar and Leue [3] is ples; 3) a simple algorithm to generate minimal counterex-
to characterize counterexamples by rooted graphs, bgsical amples, and 4) the application of this approach to two pro-
fragments of Markov chains where all paths from root to a tocols.
leaf reach a goal state. Heuristic search algorithms are em- The paper is organized as follows. Section 2 introduces
ployed to generate counterexamples, see [2][3]. the preliminaries. Section 3 presents experimental i®sult
To be more precise, the shortest-path characterizationfor the leader election protocol together with a brief combi
in [15] yields a minimal counterexample for which there natorial analysis. Section 4 details the use of regulares¢pr
does not exist another equally-sized counterexample withsions for counterexamples and is the core of the paper. Sec-
higher probability mass. This paper reports on experi- tion 5 reports on counterexample generation for the Crowds
ments to generate these so-called smallest counterexampleprotocol. Section 6 concludes the paper with future work.
and suggests to use regular expressions to represent them
succinctly. Using the _well—studied Itai and Rodeh’s syn- 2. Preliminaries
chronous leader election protocol [20], we show that the
size of a smallest counterexample, i.e., the minimal numberpefinition 1 (pTMc) A discrete-time Markov chain
of paths it contains, may be exponential in the input pa- (pTmc) D is a triple (S, P, 3) with S a finite set of states,
rameters of the protocol like the number of processes andp . § x § — [0,1] a stochastic matrix, and the initial
the number of rounds. In order to obtain a better insight in state.
this phenomenon, we provide a short mathematical analy-
sis. The resulting closed-form expression confirms the dou- A state s is absorbing ifP(s,s) = 1, ie., if s
ble exponential growth of the size of counterexamples for only has a self-loop. A finite patlr in D is a state
this protocol. sequencesg s; . ..s, such thatP(s;,s;11) > 0, for
In order to obtain a more comprehensible representation0 < ¢ < n. The probability ofo, denotedP(c) =
that may act as diagnostic feedback to the end-user, we proP(so, s1)-P(s1, s2) - - - P(sn—1, $n). We denoter[i] as the
pose to represent these counterexamples by regular expregé + 1)-st state orr; |o| the total number of transitions (or
sions. The advantage of regular expressions is that they arsteps, or hops) of andlast (o) to be the last state an Let
commonly known, are easy to understand, and may yield Paths® (s) denote the set of all finite paths i that start
very compact representations. In addition, they can be ob-in states. Paths® is the set of all finite paths i®. The
tained by simple algorithms whose correctness is trivially superscrip® will be omitted if is clear from the context.
checked. The idea is to represermamc by a determinis-
tic finite-state automatomg€a, for short) and obtain regular . . o
expressions of sets of paths by applying state eIimination.Pmbab'“_StIC (bou_n.dgd) reachability ‘We are malnly in-
To obtain compact regular expressions, we adopt a recentl)}eres‘t,ed |rpr0bab|I|st[c (bounded) reachabﬂ@properues,
proposed heuristic by Han and Wood [17] that determines -+ 9IVen a goal statee 5, _does th_e probability of reaCh'
the order in which states are eliminated. (Obtaining the op- Ing ¢ me_et the thresholg with or without a _constra|_ntAon
timal order is NP-hard.) This results in a simple algorithm the maximal nu_mbeh of steps (or hOpS.) t.'" reachmg?
for determining the minimal regular expression, i.e., an ex In temporg}L ng|cs, such asCTL [18], this is formalized
pression from which the elimination of any subexpression is as Pogp (O=71), th,fqpq € {<.5,>, 2, O. < p < 1
not a counterexample. The probability of a regular expres-* € NU{cc} and(:=" ¢ denotes the reachability ofwithin
sion is obtained using (a small amendment of) the approacr{l Oops. ] o <hia o
advocated by Daws [10] for parametric model checking of Ve define a set of finite patffaths™ (5,1) to be{o €
pTMcs. This recursive evaluation is guaranteed to be exact?@ths(3) | [o] < h A last(o) = LA Vi < lol. oli] #}. In
(i.e., no rounding errors), provided the transition prdfiab ~ Words, for each path € Paths™ (As,t)., tis the Ias<ths'5ate
ties are rational. We provide the details of our approach and@nd the only goal state an A states satisfiesP.q, (¢~ 1),
show its result when applied to Itai and Rodeh's leader elec-denoteds = P, (GS" 1), iff P(Paths<"(3,1)) >a p. Note
tion protocol, as well as the Crowds protocol [30], a pro- thatP(Paths~"(5,1)) = 3¢ pune<n (s P(0), Which is
tocol for anonymous web browsing that has been adaptedqye to the fact that paths are disjointfaths <" (3, ), thus
among others, to Bluetooth [32] and wireless Internet [4]. p js well-defined. In the rest of the paper, we will fo-
These examples show (as expected) that model reductiorys on formulas of the formPe, (O<"1). We will dis-
prior to counterexample generation may obtain even shortergss theP_, (<" 1) case later in Section 4. For the other
regular expressions. pcTL formulas, refer to [15] for the reduction to the form
Summarizing, the main contributions of this paper are: ng(ogh t).



The weight of a finite path igp is the sum of all the
edge weights on it. A-th shortest {-t) path has the:-th
least path weight than othé#f paths, fork € N+ and if
such paths exist. It is not necessarily unique. The same
applies tok-th most probable paths iRR. Now:

Proposition 1 [15] For any patho € Pathsgh(if) in
DTMC D andk € Nyg: o is a k-th most probable path
in D iff o is a k-th shortest path igjp.

Figure 1. An example DTMC

Counterexample generation. For the violation of the

2 o If s <h{), then a strongest evidence can be
formulaP,(¢S" #) in the initial states, we have: 5 7 P<pOT) g

found by applying a shortest path (SP) algorithmas.
Similarly, a smallest counterexample can be determined by
k-SP algorithms that allovk to be determined on-the-fly.
The time complexity of the first algorithm @(m+n logn)

and that of the second @(m+nlog n+k), wheren = | 5|
andm = |P| is the number of non-zero entriesk For
bounded until, hop-constrained SP (HSP) &rdSP algo-
rithms can be applied to compute the strongest evidences
and smallest counterexamples, respectively. For details,
cf.[13, 21, 15]. We have implemented the above algorithms
and will report on some experimental results below.

SEP(OSM) iff P(Paths<"(3,1)) > p.

S0, P, (&S is refuted by states if the probability
of all -f paths of at mosh hops exceeds. This indi-
cates that a counterexample Bk, ({S" 7) is a subset of
Paths<"(3,1). Recall thatr ends at the first state it meets.

Definition 2 (Evidence) Anevidenceor the violations =
P, (&SP ) is afinite patho € Paths<"(3,1). Astrongest
evidences an evidence’ such thatP(¢’) > P(o) for any

evidencer. L

3. Motivation
Definition 3 (Counterexample) A counterexampléor the Smallest counterexamples may contain an excessive
violation s [~ P, (<" 1) is a setC' of evidences such that  number of evidences, which is illustrated by the violation
P(C) > p. C” is asmallest counterexampie|C”| < of 5 = P<o.0090(¢ £) in the followingbTMC. The small-
|C| for all counterexample€’ andP(C”) > P(C’) forany  est counterexample consists of the evidenes)uf, ...,
counterexampl€” with |C’| = |C"]. 8(us)k1ui, where(us)‘ is a short form of traversing the

loop sus for ¢ times andk is the smallest integer such that

1—-0.99%=1 > 0.9999 holds. As a result, the smallest coun-

terexample has = 689 evidences. In fact, the large num-

ber of evidences degrades the significance of each evidence.
1

The intuition is that a smallest counterexample exceeds
the required probability bound the most given that it has the
smallest number of paths.

Example 1 Consider thepT™mc in Fig. 1 for which ini- e.a 0.01 e‘ 1
tial state s vioIates7><%(<> t). Evidences, among others, 599 {a
are: o1 = §8183£, o9 = §818284£, and o3 = §8283tA,

o4 = §s15284f, andos = 3sas4f. Their respective prob- To illustrate that such phenomena also occur in real-life
abilities are 0.2, 0.2, 0.15, 0.12, and 0.09. Strongest evi- €aS€; We consider the generation of counterexamples for a

dences are paths; andos. The setC; = {o; o5} more practical case study -synchronous leader election
N - AR 8] .

with P(C}) = 0.76 is a counterexample, but not a smallest Protocol [20]. In this protocol, N processes are arranged
one, as the removal from either or o also yields a coun- 1N & unidirectional ring to .elect.a Ie_ader. For this purpose,
terexample.Cy = {o1, 02,05} is a smallest counterexam- they rapdomly sc_elec_t an identity (id, for short) according

; _ to a uniform distribution o1, ..., K'}. We call each such
ple withP(Cs) = 0.55. . : .

selection by all processesanfiguration By means of syn-
In the sequel, we assume w.l.0.g. that goal state chronous message passing, processes send their ids around

absorbing. To compute the strongest evidence and smallthe ring till every process sees all the ids of the others, and
est counterexample, thetmc D is transformed into a  can thus determine whether a leader (the one with the high-

weighted digrapttip = (V, E,w), whereV and E are fi- estuniqueid) can be elected. If yes, the protocol term#ate
nite sets of vertices and edges, respectivélyequals the  if no, a new round will be started.

state space of thetmc, i.e.,V = S and(v,v') € F iff We intend to find a counterexample for the following for-
P(v,v’) > 0, andw(v,v") = log(P(v,v")~!). Multiplica- mula: P, (< leader_elected), whereleader_elected char-

tion of transition probabilities is thus turned into the add acterizes the global state of the protocol in which a leader
tion of edge weights along paths. has been selected. It is clear that a leader will be elected



N =4,K =2

. L . #Evidences Prob. mass Per-Evi mass Cum.Pr.
Synchronous leader election — Probability vs. #evidences
10 rR1t 8 0.5 0.0625 0.5
: R2t 64  0.25 0.0039063 0.75
R3t 512 0.125 0.00024414 0.875
0.8 Rat 4096 0.0625 1.52588-107 9% 0.9375
E 06 N=4K=4
F 0.
g #Evidences Prob. mass Per-Evi mass Cum.Pr.
S 0.4
a R1t 216 0.84375 0.0039063 0.84375
0.2 R2t 8640  0.13184 1.52588-107 95  0.97559
: R3t 345600  0.020599 5.96046-10-98  0.99619
00 | R4 1.3824 - 1097 0.0032187 2.32831-10— 10 0.99940
10° 10! 102 10? 10* 10° 108 N=4K=8
#evidences #Evidences Prob. mass Per-Evi mass Cum.Pr.
_ _ _ _ R1t 3920  0.95703 2.4414-1079%  0.95703
K=2 K=4 e K=8 oo K=12 R2™ 689920  0.041122 5.9605 - 1008 0.99815
; . . R3™ 1.2143 - 1098 0.0017669 1.4552 .10~ 11 0.99992
Figure 2. Probability vs. number of evidences Ri—  2.1871-1010  7.5025.10-95 3.5527.10~15 1
for leader election (N = 4) N4k — 12
#EVI Prob. mass Per-Evi mass Cum.Pr.
. . . o5
eventually. What interests us, is the number of evidences rit 20328 0.98032 482251095 0.98032

R2™ 8.2938 .- 1006 0.019289 2.3257 10799 0.99961

needed to converge to probability 1. Especially, We are in- rs—  s.3s30-109°  3.79525.10-041.1216-10~ 18 0.09909
terested in the relationship between the number of evidence _R___1:3306 10" 7467510709 54088 10718 1

and the boung andR, whereR is the round number. Start-

ing a new round means that each process re-selects an id and
repeats the procedure.

Table 1. Number of evidences and probability
mass per round

3.2. Mathematical analysis

3.1. Experimental results To obtain more insight into this rapid growth of the size

of a counterexample, we carry out a brief combinatorial
analysis. Let us first consider the number of possibilities
(denotediW (N, K)) of putting N labeledballs into K la-
beledboxes such that each box contains at least two balls.
Actually, W (N, K) characterizes the number of possibili-
ties of assignings ids to N processes such that each id is
assigned to more than one process, in which case a leader is

To find the number of evidences contained in a coun-
terexample, we used tierism-model of the protocol [1]
and ran the counterexample generation using our imple-
mented algorithm. The results for a fixed (N = 4)
and varyingK are depicted in Fig. 2 and partly in Table 1.
In Fig. 2, the Y-axis is the accumulated probability and
the X-axis (log-scale) is the number of evidences that are , ., selectedW (N, K) can be solved by using the “associ-
contained in a counterexample. The d|scont|nU|_t|es in the ated Stirling number of the second kinghj” [9]:
curves correspond to the start of a new round, i.e., a new

election, in the protocol. Due to the fact that the proba- min(|N/2),K)
bility of all evidences in one round is the same, the curves W(N, K) = E : S5(N, ) G
in Fig. 2 are actually piecewise linear if the X-axis were (K —j)!

j=1
not log-scale. The curves shift more to the right whién ’
increases since there are more possible configurations andvhereSy(N, K) = K-So(N — 1, K) + (N — 1)-S3(N —
thus more evidences. The largkr, the more quickly the 2 K — 1) indicates the number of ways to pivt labeled
probability of the counterexample approaches 1. This is dueballs into K unlabeledooxes. Obviously, it makes no sense
to the fact that it is less probable that no process selects ao have more thanN/2| boxes, or else it would be im-
unique id. All curves approach 1, which indicates that even- possible to allocate all the balls in the right way. The fac-
tually a leader will be elected. The number of evidences in tor (KL—;)' expresses that there ak& ways to permute the
a counterexample, however, grows drastically to millions.  poxes (including the empty ones); for these empty boxes the

Table 1 shows some detailed numbers. The results inorder does not matter, so we divide @y — j)!.
those™-marked rounds are obtained from our experiments.  The non-recursive equation f&k (N, K) is:
The ~-marked rounds run out of memory and the numbers . s o
e e et et ssvao=3 (V) (S Uy ) o

. , probability of i UK —i—j)!

having elected a leader (Prob. mass) decreases drastically
while the number of evidences increases rapidly, thus the For each round in the leader election protocol, the number

probability per-evidence decreases tremendously. of possibilities for a process to choose an id<i§’. Thus,

i=0 j=0



§_a_new _round

Figure 4. bTMC D and its DFA Ap

sions. A major difference with usual regular expressions is
Figure 3. Abstract leader election model that we need to keep track of the transition probabilities.
To tackle this, we adopt the approach proposed by Daws
[10]. He uses regular expressions to represent sets of paths
and calculates thexact rational valueof the probability
W(N, K) R-1 poN _ W(N, K) measure imTMC model checki_ng. We adapt this approach
T) —xN 3) to qbt_am cpmpact rgpresentatlons of counterexamples. The
main idea is to consider a counterexample as a set of proba-
ble branches (sub-expressions) that go from the initié sta

the probability thatV processes witli ids elect a leader in
roundR, denoted byP(N, K, R), is:

P(N,K,R) = <

R—1
Where(%) is the probability that a leader is not to the goal state and to provide a function to evaluate the
elected in the firs{ R—1) rounds andw indi- probability measure of those expressions.

cates the probability that a leader is elected in ftxh

round. 4.1. FrombTmMmcs to automata

We now calculate the probabilities of each evidence per
round using equation (3). The model of the synchronous
leader election protocol is depicted in Fig. 3. When we
starta_newround, there areK™ possible configurations,
among whichW (N, K) (square statesinsuccessful) con-
figurations no unique id will be selected. For these states,
we start thenextround, while in K¥ —W (N, K) (round-
angle statessuccessful) configurations a unique id will be
selected with deaderelected Thus:

For bTMC D = (S,P,3) and property»<", let de-
terministic finite automatonofFa) Ap = (5, %,5,6,1),
where:

e S/ = SU{s}is the state space;

e X C [0,1] x S'is the finite alphabet;

e C S x X x S is the transition relation such
that 0 (s1, (p, s2)) = so, if P(s1,s2) = p and

6(5,(1,8)) = 3
Proposition 2 The number of evidences that can reach the ~ ® ¢ S is the starting state;
stateleader_elected in round R is: e tis the accepting state.
#Evi(N,K,R) = W(N,K)* ' (KN - W(N,K)) . 5 is a new starting state idp connecting to the initial

states of D with a transition labeled witfi1, ). Different

from [10], for transitions; - s, we add the target state
so together with the probability as the symbolp, s2) to
3. The transition probabilities are needed to calculate the
probability of the paths (see Def. 4), while the target tate
are needed for keeping track of the visited states. The latte
The number of evidences thus grows extremely fast. Thisis required as a regular expression only records the labels
results in two problems. First, it leads to the storage prob-on the transitions, but not the states, which are, however,
lem as counterexamples may simply get too large to be keptimportant for evidences. For the rest of the paper, the prob-
in memory. Secondly, and more importantly, counterexam- ability labelp is sometimes omitted for simplicity wheris
ples will be incomprehensible to the user. We therefore of minor importance. The maximal cardinality of the alpha-
need to find ways to reduce the number of evidences in apet ism-+1, wherem = |P| and1 is due tos. Since there is
counterexample, and to obtain a compact and user-friendlyomy one transition from state to so, § (s1, (p, s2)) = 2,

representation. To that purpose we suggest toregelar the derived automaton is deterministic.
expressions

Proposition 2 shows that the number of evidences is ex-
ponential inR. Note thatiW (N, K) is exponential inV
and K, which makes# Fvi(N, K, R) doubly exponential.
These results coincide with Table 1, where theounds are
computed by the above closed form expression.

) Example 2 Fig. 4 (left) depicts an abstract example of a
4. Regular expressions for counterexamples pTMC D with initial state § = s; and goal state = s,

This approach is inspired by classical automata theory@nd itsbFa Ap (right). The new starting state is = so,
and is based on representing sets of paths by regular expredvhich has a transition equipped with symigol s, ).



4.2. Evaluation of regular expressions 4.3. From automata to regular expressions

The setR(X) of regular expressions over the finite al-  The equivalence afrFAs and regular expressions, as well
phabet® is the set of expressions containing the elementsas convertingFAs to regular expressions has been widely
of 3, the empty worde, and which is closed under union studied. Several techniques are known, e.g., the tra@sitiv

(]), concatenation) and Kleene star). closure method [24], Brzozowski’s algebraic method [7][6]
Let £(r) denote the regular language (a set of words) or the state removal method [12][28]. The state removal ap-
described by the regular expressiore R(X) and £(X) proach identifies patterns within the automaton and removes

denote the regular language that can be generated by angtates one by one, while building up regular expressions
regular expression over. For a wordw, |w| denotes the  along each transition. It is suitable for manual inspection
number of symbols inu. We sometimes omitand write  but less straightforward to implement. The transitive clo-
r.r’ asrr’ for short. Note that in our setting, contains  sure method gives a clear and simple implementation but
elements of the fornip, s1) wherep € [0, 1] ands; € 5" tends to create very long regular expressions. The algebrai
method is elegant and generates reasonably compact regu-

Definition 4 ([10]) The regular expressions can be evalu- |ar expressions. For a more detailed comparison, we refer
ated by the functional : R(X) — R as: to [29]. In our setting, in order to obtain a minimal coun-
terexamplen-the-fly the state elimination method is taken.

— 7\ /
val(e) =1 wal(rlr') = val(r) + val(r’) To be more precise, the algebraic method will not terminate

val((p,s)) =p wal(r.r') =val(r) x val(r') before it generates the whole regular expression, however,
. it is possible that a regular expression has mauogs (like

val (r*) = { 1, 1 gtﬁzlrgici)se: 1 in the leader election example shown below) and thus takes

I—val(r)’ much longer time to terminate. On the other hand, the state

elimination method can be terminated after each state elim-

If we limit the transition probabilities to be rational val- ="' -
tination and be resumed if moreuss are needed.

ues, then we will obtain exact values. It can be proven tha
val(r) = P(Pathsy" (3,1)), for h = oo [10]. _
4.4. Regular expressions as counterexamples

Definition 5 r; is a maximal union subexpressigqmus) By using regular expressions for representing counterex-

of a regular expressionif r =y | r, modulo(R1)-(Rs3), amples, we will, instead of obtaining evidences one by one,

for somer; € R(X), where: derive a larger number of evidences at a time, which hope-
(R1) ro= rle fully yields a quick convergence to the required probapilit
(Rz) rifre = raln threshold and a clear explanation of the violation. As a re-
(Ra) rif(rafrs) = (ril|r2)|rs sult, we will not insist on obtaining the smallest counterex

1 is maximal because it is at the topmost level of a ample but would instead prefer finding the branchasgs)

union operator. Note that if the topmost level operator is With large probabilities and short length. In other words,
not union, then, = r (cf. R1). A regular expression rep- three properties of the regular expressions are preferred:
resents a set of paths and eachs can be regarded as a

. L : 1. shorter (wrt. the number of symbols it contains), to im-
main branch from the initial state to the accepting state.

prove comprehensibility;

Example 3 A regular expression for the automatoty in 2. more probable, such that it is more informative and the

Fig. 4 (right) is: algqrithm will terminate with less usg; N .
3. minimal, where a counterexample nisinimal if the
7o = 51535354 | $1(52[535352)(55535352)" 85535354 . omission of any of itsuss would no longer result
1 ra in a counterexample.
r1 and ry are the muss of r with val(ry) = 1 x However, it has been recently proven that the size of a
0.3 x =55 x 03 = 0.8 and val(rz) = 0.82.  shortest regular expression of a givera cannot be effi-
We can distribute| over . in r, and obtain two more  ciently approximated (ib£PsPACB [14]. Therefore, it is
MUss instead: r3; = si1s2(s5s35352)"sss3sisa and  not easy to, e.g., by state elimination, compute an optimal
Ty = $1535352(85535352) 85838584, 11, 73 and ry removal sequence for state elimination in polynomial time

characterize all paths froms; to s4, which fall into [17]. We could adapt the heuristics proposed in e.g. [17][11
the above three branches. Note that cannotbe  togetabetter orderto eliminate states. For 2), we coulel tak

written as sys3s4, since from the full form ofr, = the advantage of the-SP ork-HSP algorithms as well as
(1,51)(0.3, 53)(0.5, 53)7(0.3,54), the probability of the  the model-checking results. The states on the more proba-
first s3 is different from that of3. ble evidences should be eliminated first.



We take the following iterative strategy: In each itera- continues (i.e., eliminates,) to find moremuss, till rq is
tion, we take the strongest evidenge-53s; - - -sjf in the found. Note that is longer thanrs, and thus less intu-
remaining automaton — recall that this amounts to an SPitive to comprehend. The cyclegandsssys; are however
problem — and eliminate all the intermediate statesson indicated.

(i.e.,s1,...,s;) one by one according to an order thatisre-  Let us pick dess probable evidenes=sgs153s4 to be
cently proposed in [17]. After eliminating each state, it is eliminated in the first iteration. After eliminating, the re-
possible that a newus ry, is created and itsal(r;) can sulting expression is; =s1 s3s5s4. Thenr; is removed from

be calculated, wheré muss have been created so far. If the automaton and the strongest evidence in the remaining
Zle val(r;) > p, then the algorithm terminates; else the automaton isrs=sgs1s25554. After eliminatingss, s5, we
transition labeled withr;, is removed from the automaton obtain the regular expressions, as in Example 3. The fi-
and either the next state is to be eliminated or a new evi-nal regular expression is agairn, and the same analysis as
dence is to be found. The removalwf is to concentrate  in the last case applies.

on the rest of the automaton that has not been explored yet.

The sketch of the algorithm is shown in Algorithm 1. Proposition 3 The regular expression counterexample gen-

erated by Alg. 1 is minimal.

Algorithm 1 RegExpCEAp, p): Calculate the regular ex-

pres.sjion counterexample _ _ _ The above proposition is due to the fact that Alg. 1 termi-
Require: automatonAp, probability boundp, initial states, ac- nates immediately when the cumulative probability exceeds
cepting state the threshold.

Ensure: aregular expressionwith val(r) > p

1 A= Ap: pre—0; Priority queue; — & k = 1: To summarize, we usually obtain a better regular expres-

sion if we pick the most probable path first and eliminate

2: while pr < p do \* the termination criterior\ - Ao

3 o := the strongest evidence j; the states on that path according to some known heuristics.
4: forall ' € o\ {3,5,i}do g.enqueue(); endforall; Note that the regular expression representation is not-appl
5 while ¢ # @ do cable for formulae with nested probabilistic operatorg,,e.

6: A :=eliminate¢.dequeue()); 7 := the createdius; Pepr (O P<ps (¢ £)). However, it is not a real constraint

7 pr:= pr+val(ry); A :=eliminate(s); in practice, since those formulas are rarely used. Whereas
8: if (pr > p) thenbreak; elsek :=Fk +1; in [15], formulas with a strict probability bound such as

9:  endwhile; P, (&S"1) could not be treated as they may lead to in-
10: endwhile; finite counterexamples, this restriction does not apply any
1 reum i, .. Tk more due to the Kleene star.

Note_ th_atq is a priority queue thse elements are stqtes 4.5. Bounded reachability

to be eliminated in the current iteration. The order in which

states are dequeued franis defined by the heuristics pro- For bounded reachability formula<"#, a regular ex-
vided in [17]. The function “eliminate]” can both elimi- ~ pression, e.g: = r|r3, may not be valid because it is pos-
nate states and regular expressions, where the latter is simsible that the length of the words generated-byr the ex-
ply the deletion of the transitions labeled with the regular pansion ofr, exceeds:. Thus,val(r) might be larger than
expressions. the actual probability. In order to obtain a precise vahrati
we extend the regular expressionscmnstrained regular

Example 4 Consider again Fig. 4. We suppose the for- : . .
P g g PP expressionsand extend the valuation to these expressions.

mula is P<o.7({ s4) and apply the algorithm onAp.
In the first iteration, oy=sgs1s2555354 IS found as the
strongest evidence. Suppose the order to eliminate thessstat Definition 6 (Constrained regular expressions)For r €

by [17] is ss5, s2,s3, then we get the regular expression R(X)andh € N, L(r[h]) = {w € L(r) | |w| < h}.
r5=51(83|525583)(83]825583)*s4 With val(rs)=1. Since

the states are eliminated and the thresh@ldis exceeded, In fact, £L(r[h]) C L(r) and r[h] can be expressed
the algorithm terminates. This expression gives a clear rea equivalently by a union of possible enumerations, namely
son that infinitely many times traversing the cycigsor r[h] = r{0)|r(1)|---|r(h), wherer(i) denotes the set of

$28583 exceed$).7. words generated byand having exactly symbols.

Let uschange the elimination orderIf the elimina- Usually a constrained regular expression is informative
tion order is s5, s3, s2, the regular expression isy = enough to show the reason for violation, because the cycle
S1835554 | S1(82]835552)(S5535552)* s5535554. Whensg information is clear. Sometimes, however, it is also us&ful
has been eliminated, the firstus r; = 51535554 IS gen- calculate the probability (or valuation) of some constealin

erated and the probability i8.18 < 0.7. The algorithm regular expression branches by the following function:



Definition 7 For r,r1,72 € R(X) and(p,t) € %, the (re- would be of smaller size. Two strategies can be utilized

cursive) evaluation functionsal(r[h]) and val(r(h)) for to slim down the model size, namelgisimulation mini-
r[h] andr(h) respectively are defined by: mizationandsccminimization Bisimulation minimization
val(r[h]) = ZUGZ(TW) [22, 26, 8] groups the bisimilar states together and hope-
=0 fully derives a smaller quotiemttMmc. Strongly-connected-
- 1, ifh=0 component $CC) minimization, instead, groupsccs to-
val(e(h)) - = { 0, otherwise gether [27]. Bisimulation minimization preserves both un-
it = bounded and bounded probabilistic reachability propgrtie
p7 | - 1 . .« s . .
val((p,t)(h) = { 0, otherwise while sccminimization only preserves the former one.
For the leader election protocol, the regular expression
l h = l h)) +wval h . . . .
val(rifra(h) U: (ra{) =+ val(ra (h)) counterexample on the bisimulation quotiemvc is:
val(rira(h)) - = Y _wal(ri(i)-val(ra(h —4)) r~(N, K) = start. (u.next.start)” .s.leader,
=0
X h . i . whereuy, . .., u; are wrapped as; s, . . ., s; ass in Fig. 3.
val(r*(h)) = wal(z(h)) + > _val(r(i)) - val(r*(h — i) Note thatr.. (N, K')| = 6 is independent oV and K. The
i=1

sccquotientbTmc is obtained by replacing the left half of
Note that the complexity of the above evaluation func- the model (arscc) by a self-loop on the initial state. The
tion is, however, very high. The following theorem regular expression counterexample is:
states that the evaluation of a regular expression obtained

scc _ * )
from DFA Ap equals the probability of the set of paths r (N, K) = start.start™ (s1] - -|s;).leader,

Pathsgh(éf) in thebTmc D. where the intuition of the self-loop is “still unsuccessful
. We can gain more if both reduction techniques are applied,
Theorem 8 Letr be the regular expression f@FA Ap = yielding:
(S,%,3,0,1) whereD = (S, P, 3) andh € N. Then,
scc _ *
val(r[h]) = ]P’(Paths%h(é, D). r2°“(N, K) = start.start”.s.leader.
4.6. Leader election example 5. Case study — Crowds protocol

Let us reconsider the leader election protocol. For the We now illustrate our techniques on a more serious ex-
original DTMC, the regular expression representation, de- @Mple. TheCrowdsprotocol [30] is aimed to provide users

notedr(N, K), where the probabilities are omitted, is: with a mechanism for anonymous Web browsing. The main
idea behind Crowds is to hide each user’s communication
start. ((u] - - - |u;) .next.start)” . (s1] - - - |s;) .leader, by routing randomly within a group of similar users. Even

if a local eavesdropper or a corrupt (or bad) group member
WhereSt(L’f’t, next andleader are the obvious short forms. observes a message being sent by a particu|ar user, it can
The regular expression lists all the unsuccessful config-never be sure whether the user is the actual sender, or is
urations, as well as the successful ones. As a result,simp|y routing another user's message.
r(N, K)| = K™ 44, where|r| denotes the number of sym-  The protocol works in the following way: 1) The sender
bols it consists of. Comgared to the number of evidencesgglects a crowd member at random (possibly itself), and
computed directly, i.e3 ;" #Evi(N, K, i), [r(N, K)|[is  forwards the message to it, encrypted by the correspond-
much shorter, but it is still exponentially long. On the athe  jng pairwise key. 2) The selected router flips a biased coin.
hand, however, the structure of N, K) clearly indicates  wjith probabilityl — PF, wherePF (forwarding probability)
the reason of ViOlation, i.e., the repeated unsuccessful co isa parameter of the system, it delivers the message @jrect]
figurations followed by a successful one. to the destination. With probabilitpF, it selects a crowd

member at random (possibly itself) as the next router in the
Model reduction.  Regular expression counterexamples path, and forwards the message to it, re-encrypted with the
are feasible when the excessive number of evidences ar@ppropriate pairwise key. The next router repeats this step
caused by traversing the same loops for different times In our experiments, we assume that 1) if a sender has
in the model, in which case the Kleene star compacts allbeen observed by the bad member twice, then it has been
those evidences to be omeus. On the other hand, the positively identified Posfor short), thus the anonymity is
large number of states may also result in a large-size regunot preserved; 2) the bad member will deliver the message
lar expression counterexample. Consequently, if the modelwith probability 1 as in [31]. This protocol is executed ev-
size is reduced prior to the counterexample generation,ery time one crowd member wants to establish an anony-
then the thus obtained regular expression counterexamplenous connection to a Web server. We call one run of the



(0.333, B,.Del, i) ,—‘L (0.333, B..Del,.Pog) D@

Crowds protoco[N = 5) — Probability vs. #evidences

0.30
0.25
£ 0.20
S 0.15
E 0.10 Figure 7. A more compact automaton
0.05 sage can be forwarded &0 or G1 many times (captured
0'00100 ol 102 100 10t 107 108 by the self loops). Once a message is delivered, a new ses-
sevidences sion is assumed to be started (the transitions bac¢k &md
N o ic). Thus, a regular expression that can be generated from
Original (R = 3) Minimized (R = 3) the automaton is = roriroriry, where:
Original (R = 4) ---------- Minimized (R = 4) ------
Original (R = 5) e Minimized (R = 5) -
. . . ro = (l,ia),
Figure 5. Probability vs. number of evidences P = (0.667, Ga)(0.267, Gla.Gy.Ga) (0.4, GO4.ia)
protocol asessiorand denote the number of sessionsiby rs = (0.333, Bo.Dely.ic),
Other parameters are the number of good membeeand re = (0.667,Ga)(0.267, Gly.Ge.Ga)" (0.4, GOy.ic)
the number of corrupt membets ’ o . ’ o
re = (0.3337 BC.DE|d.POS).

We take the Crowds protocol modeled by Prism [1] and

the property isP<, (> Pog) which characterizes the proba- |t ye omit the probabilities and the subscripts and merge
bility threshold that the original sender’s id O is positive  the stuttering steps, then we obtain:
identified by the corrupt members. The relation between

the number of evidences and the probability threshold for ' = i (G.(G1.G)*G0.4)" . (B.Del.i) . (G.(G1.G)*G0.4)" . B ,

different number of sessions is shown in Fig. 5 = 5, e el

C =1, PF = 0.8), both for the original and the bisimula-

tion minimizedbTMmcCs. which is highly compact and informative in the sense that
it indicates the observation of the bad members twice with

Regular expression representation Because we manu- arbitrary number of observing the good membefan be

ally show the effect of the regular expression represamiati  further compacted if theccs are identified and replaced by

here, we choose a configuration with a small state space. Weself-loops. In this case;’ = i.i*.(B.Del.i).i*. B.

setN =2,C =1, R =2, andPF = 0.8. The bisimulation The probability ofr is val(r) = 0.274, which coin-

minimization reduces the state space from 77 to 34. Thecides with the model checking result. These probabilities

state space of the quotientmMc is shown in Fig. 6. To fit ~ depend, among others, on the parameters of the protocol

the figure on the page, we group a path of states with proba{N, C, R, PF, etc.). For instance, the probability of the

bility 1 by a square state. Statg=, B, Del, Posrepresent  strongest evidence isy<)® = (3)? = 1, which loops

bad

T . . . N+C 3/ .
initiating a new session, sending a messagegdo@d mem- 0 times atr; andrs. The probability ofro andry is
ber, to a@Bad member, a message beibglivered, aPostive % = -, whereaq is the probability of the inner loop:

result obtained, respectivelg;0 andG'1 are the two good N;w.pp.(l — x%&) = 0.267, as is shown in the interme-

members, wheré&0 is as.sumed always. to be the original djate automaton. Note that this closed-form expression can

sender when a new session sta@8.v G1 is a |umped state now be used for arbitrary parameter values.

where eitherz0 or G1 is reached. The subscriptsb, ... are

to distinguish the states in similar situations. Since thal g .

statePoscan be reached by only the gray states, the regu-6- Conclusion

lar expression (thus the automaton) only depends on those ¢ contributions of this paper are: experimental results

states. Note thdDel, andDel, denote the end of the first 16 generation of counterexamples for model-checking

session, whildel. andDel, denote the end of the second. 105 "partly substantiated with a mathematical analy-

Only the case that two messages are both delivered by thejjs  sgether with the proposal to use the regular expres-

bad member indicates a positive identification of the sender ;s 1o represent counterexamples in a compact way. The
ftAn 'Iﬂt?rmte_d'ate autoT?ton _(I_shee_ F.'tg'|7)tftae?tﬁe derived oo nterexample representation using regular expressions

ater eliminating some statés. 1he initial statef the au- 1 4 e correct, and yields promising results. Bisimu-

tomaton is also omitted. This shows the basic structure ofIation andsccminimization may be explored to slim down

the model:i, andi. are the starting points of two sessions. i ) :
The horizontal transitions indicate the observationiofby e counterexample size. Constrained regular expressions

the bad member, which lead Ros In each session, a mes- for bounded-until formulae is a topic for further study as
their valuation is expensive.
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Figure 6. State space of the quotient bTmc for the Crowds protocol (N=2,C=1, R=2, PF=0.98)
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