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Abstract

Counterexamples for probabilistic reachability in
Markov chains are sets of paths that all reach a goal state
and whose cumulative likelihood exceeds a threshold. This
paper is concerned with the issue of how to conveniently
represent these sets. Experiments, partially substantiated
with combinatorial arguments, show that the cardinality
of such sets may be excessive. To obtain compact repre-
sentations of counterexamples we suggest to use regular
expressions. We present a simple algorithm to generate
minimal regular expressions and adopt a recursive scheme
to determine their likelihood. Markov chain reduction
prior to counterexample generation may yield even shorter
regular expressions. The feasibility of the approach is
illustrated by means two protocols: leader election and the
Crowds protocol.

1. Introduction

Model checking is a successful and widely applied tech-
nique for the automated verification of properties of system
designs. Its popularity is witnessed by the rapidly increas-
ing interest of industries to apply model checking to both
hardware systems, as well as software products. Model
checking is based on a systematic check of the validity of
a system property, typically formulated in a temporal logic,
in each state of a model of the system under consideration.
The power of model checking is, however, not exhaustive
verification, but its capability to generate useful diagnos-
tic feedback in case a violation of the property is encoun-
tered. Due to this feature, model checking is seen as an
effective and powerful bug-hunting technique: it does not
only indicate that a property is refuted, but also indicates
why. In fact, this also motivates recent developments such
as bounded model checking that consider paths up to a cer-
tain maximum length only. Although these techniques just
search a fragment of the state space and thus cannot guar-
antee the absence of flaws, their potential to find refuting
behavior is considered of vital importance.

In the last decades, model-checking techniques have
been adapted and extended to models that are widely used
in performance and dependability analysis such as discrete-
time and continuous-time Markov chains. Temporal log-
ics have been defined that allow the specification of well-
known performance and performability measures and effi-
cient – both numerical and simulative techniques – algo-
rithms have been developed and culminated into dedicated
tools, such asPRISM [25] andMRMC [23], as well as exten-
sions of existing tools such as GreatSPN, SPIN, PEPAWork-
bench,SMART, and STATEMATE. In contrast to traditional
model-checking techniques, the support for diagnostic feed-
back in case a property is violated is rather limited; e.g.,
when the probability to reach a set of goal states (via legal
paths) within 1,000 steps, say, exceeds the required thresh-
old “at most 0.87”, typically the feedback is just a list of
states for which this is true, possibly accompanied with a
curve showing the probability vs. the number of steps. It is
left to the user to interpret these results, and to obtain more
useful information about the cause of this refuting behavior.

One of the main reasons of this restricted form of feed-
back has been the absence of a clear notion of a counterex-
ample in the probabilistic setting. Whereas it is clear that
in case of a traditional safety property (e.g., alwaysx > 0
for variablex), a single finite path that ends in a state where
x ≤ 0 suffices, this is no longer true for reachability prob-
abilities. In fact, to show that the probability to reach a
goal state exceeds 0.87, asetof paths is needed that all end
in a goal state and whose total probability mass is larger
than 0.87. In line with shortest counterexamples in classical
model checking, preferably this set is as small as possible.
Han and Katoen [15] have shown that the computation of
the smallest set of paths that can act as a counterexample
can be carried out using (small amendments of)k-shortest
path algorithms [13][21], i.e., algorithms that computek
paths consisting of the shortest path, the one-but-shortest
path, and so forth. These results have been recently general-
ized toCTMC counterexamples [16], and have been adopted
to steer the refinement phase in a counterexample-guided
abstraction refinement framework forMDPs [19], as well as
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for counterexample generation forcpCTL, a variant ofPCTL

with means to reason about conditional probabilities [5]. An
alternative approach proposed by Aljazzar and Leue [3] is
to characterize counterexamples by rooted graphs, basically
fragments of Markov chains where all paths from root to a
leaf reach a goal state. Heuristic search algorithms are em-
ployed to generate counterexamples, see [2][3].

To be more precise, the shortest-path characterization
in [15] yields a minimal counterexample for which there
does not exist another equally-sized counterexample with
higher probability mass. This paper reports on experi-
ments to generate these so-called smallest counterexamples,
and suggests to use regular expressions to represent them
succinctly. Using the well-studied Itai and Rodeh’s syn-
chronous leader election protocol [20], we show that the
size of a smallest counterexample, i.e., the minimal number
of paths it contains, may be exponential in the input pa-
rameters of the protocol like the number of processes and
the number of rounds. In order to obtain a better insight in
this phenomenon, we provide a short mathematical analy-
sis. The resulting closed-form expression confirms the dou-
ble exponential growth of the size of counterexamples for
this protocol.

In order to obtain a more comprehensible representation
that may act as diagnostic feedback to the end-user, we pro-
pose to represent these counterexamples by regular expres-
sions. The advantage of regular expressions is that they are
commonly known, are easy to understand, and may yield
very compact representations. In addition, they can be ob-
tained by simple algorithms whose correctness is trivially
checked. The idea is to represent aDTMC by a determinis-
tic finite-state automaton (DFA, for short) and obtain regular
expressions of sets of paths by applying state elimination.
To obtain compact regular expressions, we adopt a recently
proposed heuristic by Han and Wood [17] that determines
the order in which states are eliminated. (Obtaining the op-
timal order is NP-hard.) This results in a simple algorithm
for determining the minimal regular expression, i.e., an ex-
pression from which the elimination of any subexpression is
not a counterexample. The probability of a regular expres-
sion is obtained using (a small amendment of) the approach
advocated by Daws [10] for parametric model checking of
DTMCs. This recursive evaluation is guaranteed to be exact
(i.e., no rounding errors), provided the transition probabili-
ties are rational. We provide the details of our approach and
show its result when applied to Itai and Rodeh’s leader elec-
tion protocol, as well as the Crowds protocol [30], a pro-
tocol for anonymous web browsing that has been adapted,
among others, to Bluetooth [32] and wireless Internet [4].
These examples show (as expected) that model reduction
prior to counterexample generation may obtain even shorter
regular expressions.

Summarizing, the main contributions of this paper are:

1) experiments with smallest counterexample generation; 2)
advocating the use of regular expressions for counterexam-
ples; 3) a simple algorithm to generate minimal counterex-
amples, and 4) the application of this approach to two pro-
tocols.

The paper is organized as follows. Section 2 introduces
the preliminaries. Section 3 presents experimental results
for the leader election protocol together with a brief combi-
natorial analysis. Section 4 details the use of regular expres-
sions for counterexamples and is the core of the paper. Sec-
tion 5 reports on counterexample generation for the Crowds
protocol. Section 6 concludes the paper with future work.

2. Preliminaries

Definition 1 (DTMC ) A discrete-time Markov chain
(DTMC) D is a triple (S,P, ŝ) with S a finite set of states,
P : S × S → [0, 1] a stochastic matrix, and̂s the initial
state.

A state s is absorbing if P(s, s) = 1, i.e., if s
only has a self-loop. A finite pathσ in D is a state
sequences0 s1 . . . sn such thatP(si, si+1) > 0, for
0 6 i < n. The probability ofσ, denotedP(σ) =
P(s0, s1)·P(s1, s2) · · ·P(sn−1, sn). We denoteσ[i] as the
(i + 1)-st state onσ; |σ| the total number of transitions (or
steps, or hops) ofσ andlast(σ) to be the last state onσ. Let
Paths

D(s) denote the set of all finite paths inD that start
in states. Paths

D is the set of all finite paths inD. The
superscriptD will be omitted if is clear from the context.

Probabilistic (bounded) reachability We are mainly in-
terested inprobabilistic (bounded) reachabilityproperties,
i.e., given a goal statêt ∈ S, does the probability of reach-
ing t̂ meet the thresholdp with or without a constraint on
the maximal numberh of steps (or hops) till reachinĝt?
In temporal logics, such asPCTL [18], this is formalized
asP⊲⊳p(♦

6h t̂), where⊲⊳ ∈ {<, 6, >, >}, 0 6 p 6 1,
h ∈ N∪{∞} and♦6h t̂ denotes the reachability oft̂ within
h hops.

We define a set of finite pathsPaths
6h(ŝ, t̂) to be{σ ∈

Paths(ŝ) | |σ| 6 h ∧ last(σ) = t̂ ∧ ∀i < |σ|. σ[i] 6= t̂}. In
words, for each pathσ ∈ Paths

6h(ŝ, t̂), t̂ is the last state
and the only goal state onσ. A stateŝ satisfiesP⊲⊳p(♦

6h t̂),
denoted̂s |= P⊲⊳p(♦

6h t̂), iff P
(

Paths
6h(ŝ, t̂)

)

⊲⊳ p. Note
that P

(

Paths
6h(ŝ, t̂)

)

=
∑

σ∈Paths6h(ŝ,t̂) P(σ), which is

due to the fact that paths are disjoint inPaths
6h(ŝ, t̂), thus

P is well-defined. In the rest of the paper, we will fo-
cus on formulas of the formP6p(♦

6h t̂). We will dis-
cuss theP<p(♦

6h t̂) case later in Section 4. For the other
PCTL formulas, refer to [15] for the reduction to the form
P6p(♦

6h t̂).
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Figure 1. An example DTMC

Counterexample generation. For the violation of the
formulaP6p(♦

6h t̂) in the initial statês, we have:

ŝ 2 P6p(♦
6ht̂) iff P

(

Paths
6h(ŝ, t̂)

)

> p.

So, P6p(♦
6h t̂) is refuted by statês if the probability

of all ŝ-t̂ paths of at mosth hops exceedsp. This indi-
cates that a counterexample forP6p(♦

6h t̂) is a subset of
Paths

6h(ŝ, t̂). Recall thatσ ends at the first̂t state it meets.

Definition 2 (Evidence) Anevidencefor the violationŝ 6|=
P6p(♦

6h t̂) is a finite pathσ ∈ Paths
6h(ŝ, t̂). A strongest

evidenceis an evidenceσ′ such thatP(σ′) > P(σ) for any
evidenceσ.

Definition 3 (Counterexample) A counterexamplefor the
violation ŝ 6|= P6p(♦

6h t̂) is a setC of evidences such that
P(C) > p. C′′ is a smallest counterexampleif |C′′| 6

|C| for all counterexamplesC andP(C′′) > P(C′) for any
counterexampleC′ with |C′| = |C′′|.

The intuition is that a smallest counterexample exceeds
the required probability bound the most given that it has the
smallest number of paths.

Example 1 Consider theDTMC in Fig. 1 for which ini-
tial states violatesP6 1

2
(♦ t̂). Evidences, among others,

are: σ1 = ŝs1s3t̂, σ2 = ŝs1s2s4t̂, and σ3 = ŝs2s3 t̂,
σ4 = ŝs1s2s4t̂, andσ5 = ŝs2s4t̂. Their respective prob-
abilities are 0.2, 0.2, 0.15, 0.12, and 0.09. Strongest evi-
dences are pathsσ1 and σ2. The setC1 = {σ1, . . . , σ5}
with P(C1) = 0.76 is a counterexample, but not a smallest
one, as the removal from eitherσ1 or σ2 also yields a coun-
terexample.C2 = {σ1, σ2, σ3} is a smallest counterexam-
ple withP(C2) = 0.55.

In the sequel, we assume w.l.o.g. that goal statet̂ is
absorbing. To compute the strongest evidence and small-
est counterexample, theDTMC D is transformed into a
weighted digraphGD = (V, E, w), whereV andE are fi-
nite sets of vertices and edges, respectively.V equals the
state space of theDTMC, i.e., V = S and(v, v′) ∈ E iff
P(v, v′) > 0, andw(v, v′) = log(P(v, v′)−1). Multiplica-
tion of transition probabilities is thus turned into the addi-
tion of edge weights along paths.

The weight of a finite path inGD is the sum of all the
edge weights on it. Ak-th shortest (̂s-t̂) path has thek-th
least path weight than other̂s-t̂ paths, fork ∈ N>0 and if
such paths exist. It is not necessarily unique. The same
applies tok-th most probable paths inD. Now:

Proposition 1 [15] For any path σ ∈ Paths
6h(ŝ, t̂) in

DTMC D and k ∈ N>0: σ is a k-th most probable path
in D iff σ is ak-th shortest path inGD.

If ŝ 6|= P6p(♦
6h t̂), then a strongest evidence can be

found by applying a shortest path (SP) algorithm toGD.
Similarly, a smallest counterexample can be determined by
k-SP algorithms that allowk to be determined on-the-fly.
The time complexity of the first algorithm isO(m+n logn)
and that of the second isO(m+n log n+k), wheren = |S|
andm = |P| is the number of non-zero entries inP. For
bounded until, hop-constrained SP (HSP) andk-HSP algo-
rithms can be applied to compute the strongest evidences
and smallest counterexamples, respectively. For details,
cf. [13, 21, 15]. We have implemented the above algorithms
and will report on some experimental results below.

3. Motivation
Smallest counterexamples may contain an excessive

number of evidences, which is illustrated by the violation
of ŝ |= P60.9999(♦ t̂) in the following DTMC. The small-
est counterexample consists of the evidencesŝ(uŝ)0ut̂, ...,
ŝ(uŝ)k−1ut̂, where(uŝ)i is a short form of traversing the
loop ŝuŝ for i times andk is the smallest integer such that
1−0.99k−1 > 0.9999 holds. As a result, the smallest coun-
terexample hask = 689 evidences. In fact, the large num-
ber of evidences degrades the significance of each evidence.

ŝ u t̂
0.01

1

0.99 {a}
1

To illustrate that such phenomena also occur in real-life
case, we consider the generation of counterexamples for a
more practical case study —synchronous leader election
protocol [20]. In this protocol,N processes are arranged
in a unidirectional ring to elect a leader. For this purpose,
they randomly select an identity (id, for short) according
to a uniform distribution on{1, . . . , K}. We call each such
selection by all processes aconfiguration. By means of syn-
chronous message passing, processes send their ids around
the ring till every process sees all the ids of the others, and
can thus determine whether a leader (the one with the high-
est unique id) can be elected. If yes, the protocol terminates;
if no, a new round will be started.

We intend to find a counterexample for the following for-
mula: P6p(♦ leader elected), whereleader elected char-
acterizes the global state of the protocol in which a leader
has been selected. It is clear that a leader will be elected
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for leader election (N = 4)

eventually. What interests us, is the number of evidences
needed to converge to probability 1. Especially, we are in-
terested in the relationship between the number of evidences
and the boundp andR, whereR is the round number. Start-
ing a new round means that each process re-selects an id and
repeats the procedure.

3.1. Experimental results

To find the number of evidences contained in a coun-
terexample, we used thePRISM-model of the protocol [1]
and ran the counterexample generation using our imple-
mented algorithm. The results for a fixedN (N = 4)
and varyingK are depicted in Fig. 2 and partly in Table 1.
In Fig. 2, the Y-axis is the accumulated probability and
the X-axis (log-scale) is the number of evidences that are
contained in a counterexample. The discontinuities in the
curves correspond to the start of a new round, i.e., a new
election, in the protocol. Due to the fact that the proba-
bility of all evidences in one round is the same, the curves
in Fig. 2 are actually piecewise linear if the X-axis were
not log-scale. The curves shift more to the right whenK
increases since there are more possible configurations and
thus more evidences. The largerK, the more quickly the
probability of the counterexample approaches 1. This is due
to the fact that it is less probable that no process selects a
unique id. All curves approach 1, which indicates that even-
tually a leader will be elected. The number of evidences in
a counterexample, however, grows drastically to millions.

Table 1 shows some detailed numbers. The results in
those+-marked rounds are obtained from our experiments.
The−-marked rounds run out of memory and the numbers
in this case are obtained from our mathematical analysis
(see below). Note that in each round, the probability of
having elected a leader (Prob. mass) decreases drastically,
while the number of evidences increases rapidly, thus the
probability per-evidence decreases tremendously.

N = 4, K = 2

#Evidences Prob. mass Per-Evi mass Cum.Pr.

R1+ 8 0.5 0.0625 0.5

R2+ 64 0.25 0.0039063 0.75

R3+ 512 0.125 0.00024414 0.875

R4+ 4 096 0.0625 1.52588·10−05 0.9375

N = 4, K = 4

#Evidences Prob. mass Per-Evi mass Cum.Pr.

R1+ 216 0.84375 0.0039063 0.84375

R2+ 8 640 0.13184 1.52588·10−05 0.97559

R3+ 345 600 0.020599 5.96046·10−08 0.99619

R4− 1.3824 · 1007 0.0032187 2.32831·10−10 0.99940

N = 4, K = 8

#Evidences Prob. mass Per-Evi mass Cum.Pr.

R1+ 3 920 0.95703 2.4414 ·10−04 0.95703

R2− 689 920 0.041122 5.9605 ·10−08 0.99815

R3− 1.2143 · 1008 0.0017669 1.4552 ·10−11 0.99992

R4− 2.1371 · 1010 7.5925·10−05 3.5527 ·10−15 1

N = 4, K = 12

#Evi Prob. mass Per-Evi mass Cum.Pr.

R1+ 20 328 0.98032 4.8225 ·10−05 0.98032

R2− 8.2938 · 1006 0.019289 2.3257 ·10−09 0.99961

R3− 3.3839 · 1009 3.79525·10−04 1.1216 ·10−13 0.99999

R4− 1.3806 · 1012 7.4675·10−06 5.4088 ·10−18 1

Table 1. Number of evidences and probability
mass per round

3.2. Mathematical analysis

To obtain more insight into this rapid growth of the size
of a counterexample, we carry out a brief combinatorial
analysis. Let us first consider the number of possibilities
(denotedW (N, K)) of puttingN labeledballs intoK la-
beledboxes such that each box contains at least two balls.
Actually, W (N, K) characterizes the number of possibili-
ties of assigningK ids toN processes such that each id is
assigned to more than one process, in which case a leader is
not selected.W (N, K) can be solved by using the “associ-
ated Stirling number of the second kind (S2)” [9]:

W (N, K) =

min(⌊N/2⌋,K)
∑

j=1

S2(N, j)
K!

(K − j)!
, (1)

whereS2(N, K) = K·S2(N − 1, K) + (N − 1)·S2(N −
2, K − 1) indicates the number of ways to putN labeled
balls intoK unlabeledboxes. Obviously, it makes no sense
to have more than⌊N/2⌋ boxes, or else it would be im-
possible to allocate all the balls in the right way. The fac-
tor K!

(K−j)! expresses that there areK! ways to permute the
boxes (including the empty ones); for these empty boxes the
order does not matter, so we divide by(K − j)!.

The non-recursive equation forS2(N, K) is:

S2(N,K)=

KX

i=0

(−1)i

 

N

i

! 
K−iX

j=0

(−1)j (K−i−j)N−i

j!(K−i−j)!

!

. (2)

For each round in the leader election protocol, the number
of possibilities for a process to choose an id isKN . Thus,
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the probability thatN processes withK ids elect a leader in
roundR, denoted byP (N, K, R), is:

P (N, K, R) =

(

W (N, K)

KN

)R−1
KN − W (N, K)

KN
, (3)

where
(

W (N,K)
KN

)R−1

is the probability that a leader is not

elected in the first(R−1) rounds andKN−W (N,K)
KN indi-

cates the probability that a leader is elected in theR-th
round.

We now calculate the probabilities of each evidence per
round using equation (3). The model of the synchronous
leader election protocol is depicted in Fig. 3. When we
start a newround, there areKN possible configurations,
among whichW (N, K) (square states,unsuccessful) con-
figurations no unique id will be selected. For these states,
we start thenext round, while in KN−W (N, K) (round-
angle states,successful) configurations a unique id will be
selected with aleaderelected. Thus:

Proposition 2 The number of evidences that can reach the
stateleader elected in roundR is:

#Evi(N, K, R) = W (N, K)R−1 ·
(

KN − W (N, K)
)

.

Proposition 2 shows that the number of evidences is ex-
ponential inR. Note thatW (N, K) is exponential inN
andK, which makes#Evi(N, K, R) doubly exponential.
These results coincide with Table 1, where the−-rounds are
computed by the above closed form expression.

The number of evidences thus grows extremely fast. This
results in two problems. First, it leads to the storage prob-
lem as counterexamples may simply get too large to be kept
in memory. Secondly, and more importantly, counterexam-
ples will be incomprehensible to the user. We therefore
need to find ways to reduce the number of evidences in a
counterexample, and to obtain a compact and user-friendly
representation. To that purpose we suggest to useregular
expressions.

4. Regular expressions for counterexamples
This approach is inspired by classical automata theory

and is based on representing sets of paths by regular expres-

s1
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(1, s3)
s0

(1, s1)

Figure 4. DTMC D and its DFA AD

sions. A major difference with usual regular expressions is
that we need to keep track of the transition probabilities.
To tackle this, we adopt the approach proposed by Daws
[10]. He uses regular expressions to represent sets of paths
and calculates theexact rational valueof the probability
measure inDTMC model checking. We adapt this approach
to obtain compact representations of counterexamples. The
main idea is to consider a counterexample as a set of proba-
ble branches (sub-expressions) that go from the initial state
to the goal state and to provide a function to evaluate the
probability measure of those expressions.

4.1. From DTMCs to automata

For DTMC D = (S,P, ŝ) and property♦6h t̂, let de-
terministic finite automaton (DFA) AD = (S′, Σ, s̃, δ, t̂),
where:

• S′ = S ∪ {s̃} is the state space;
• Σ ⊂ [0, 1]× S is the finite alphabet;
• δ ⊆ S′ × Σ × S′ is the transition relation such

that δ (s1, (p, s2)) = s2, if P(s1, s2) = p and
δ(s̃, (1, ŝ)) = ŝ;

• s̃ /∈ S is the starting state;
• t̂ is the accepting state.

s̃ is a new starting state inAD connecting to the initial
stateŝ of D with a transition labeled with(1, ŝ). Different
from [10], for transitions1

p
→ s2 we add the target state

s2 together with the probabilityp as the symbol(p, s2) to
Σ. The transition probabilities are needed to calculate the
probability of the paths (see Def. 4), while the target states
are needed for keeping track of the visited states. The latter
is required as a regular expression only records the labels
on the transitions, but not the states, which are, however,
important for evidences. For the rest of the paper, the prob-
ability labelp is sometimes omitted for simplicity whenp is
of minor importance. The maximal cardinality of the alpha-
bet ism+1, wherem = |P| and1 is due toŝ. Since there is
only one transition from states1 to s2, δ (s1, (p, s2)) = s2,
the derived automaton is deterministic.

Example 2 Fig. 4 (left) depicts an abstract example of a
DTMC D with initial state ŝ = s1 and goal statêt = s4,
and itsDFA AD (right). The new starting state is̃s = s0,
which has a transition equipped with symbol(1, s1).
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4.2. Evaluation of regular expressions

The setR(Σ) of regular expressions over the finite al-
phabetΣ is the set of expressions containing the elements
of Σ, the empty wordε, and which is closed under union
(|), concatenation (.) and Kleene star (∗).

Let L(r) denote the regular language (a set of words)
described by the regular expressionr ∈ R(Σ) andL(Σ)
denote the regular language that can be generated by any
regular expression overΣ. For a wordw, |w| denotes the
number of symbols inw. We sometimes omit. and write
r.r′ asrr′ for short. Note that in our setting,Σ contains
elements of the form(p, s1) wherep ∈ [0, 1] ands1 ∈ S′.

Definition 4 ([10]) The regular expressions can be evalu-
ated by the functionval : R(Σ) 7→ R as:

val(ε) = 1 val(r|r′) = val(r) + val(r′)

val((p, s)) = p val(r.r′) = val(r) × val(r′)

val(r∗) =

{

1, if val(r) = 1
1

1−val(r) , otherwise

If we limit the transition probabilities to be rational val-
ues, then we will obtain exact values. It can be proven that
val(r) = P

(

Paths
6h
D (ŝ, t̂)

)

, for h = ∞ [10].

Definition 5 r1 is a maximal union subexpression(MUS)
of a regular expressionr if r = r1 | r2 modulo(R1)-(R3),
for somer2 ∈ R(Σ), where:
(R1) r ≡ r | ε
(R2) r1 | r2 ≡ r2 | r1

(R3) r1 | (r2 | r3) ≡ (r1 | r2) | r3

r1 is maximal because it is at the topmost level of a
union operator. Note that if the topmost level operator is
not union, thenr1 = r (cf. R1). A regular expression rep-
resents a set of paths and eachMUS can be regarded as a
main branch from the initial state to the accepting state.

Example 3 A regular expression for the automatonAD in
Fig. 4 (right) is:

r0 = s1s3s
∗

3s4
| {z }

r1

| s1(s2|s3s
∗

3s2)(s5s3s
∗

3s2)
∗
s5s3s

∗

3s4

| {z }

r2

.

r1 and r2 are the MUSs of r0 with val(r1) = 1 ×
0.3 × 1

1−0.5 × 0.3 = 0.18 and val(r2) = 0.82.
We can distribute| over . in r2 and obtain two more
MUSs instead: r3 = s1s2(s5s3s

∗
3s2)

∗s5s3s
∗
3s4 and

r4 = s1s3s
∗
3s2(s5s3s

∗
3s2)

∗s5s3s
∗
3s4. r1, r3 and r4

characterize all paths froms1 to s4, which fall into
the above three branches. Note thatr1 cannot be
written as s1s

+
3 s4, since from the full form ofr1 =

(1, s1)(0.3, s3)(0.5, s3)
∗(0.3, s4), the probability of the

first s3 is different from that ofs∗3.

4.3. From automata to regular expressions

The equivalence ofDFAs and regular expressions, as well
as convertingDFAs to regular expressions has been widely
studied. Several techniques are known, e.g., the transitive
closure method [24], Brzozowski’s algebraic method [7][6],
or the state removal method [12][28]. The state removal ap-
proach identifies patterns within the automaton and removes
states one by one, while building up regular expressions
along each transition. It is suitable for manual inspection
but less straightforward to implement. The transitive clo-
sure method gives a clear and simple implementation but
tends to create very long regular expressions. The algebraic
method is elegant and generates reasonably compact regu-
lar expressions. For a more detailed comparison, we refer
to [29]. In our setting, in order to obtain a minimal coun-
terexampleon-the-fly, the state elimination method is taken.
To be more precise, the algebraic method will not terminate
before it generates the whole regular expression, however,
it is possible that a regular expression has manyMUSs (like
in the leader election example shown below) and thus takes
much longer time to terminate. On the other hand, the state
elimination method can be terminated after each state elim-
ination and be resumed if moreMUSs are needed.

4.4. Regular expressions as counterexamples

By using regular expressions for representing counterex-
amples, we will, instead of obtaining evidences one by one,
derive a larger number of evidences at a time, which hope-
fully yields a quick convergence to the required probability
threshold and a clear explanation of the violation. As a re-
sult, we will not insist on obtaining the smallest counterex-
ample but would instead prefer finding the branches (MUSs)
with large probabilities and short length. In other words,
three properties of the regular expressions are preferred:

1. shorter (wrt. the number of symbols it contains), to im-
prove comprehensibility;

2. more probable, such that it is more informative and the
algorithm will terminate with lessMUSs;

3. minimal, where a counterexample isminimal if the
omission of any of itsMUSs would no longer result
in a counterexample.

However, it has been recently proven that the size of a
shortest regular expression of a givenDFA cannot be effi-
ciently approximated (ifP6=PSPACE) [14]. Therefore, it is
not easy to, e.g., by state elimination, compute an optimal
removal sequence for state elimination in polynomial time
[17]. We could adapt the heuristics proposed in e.g. [17][11]
to get a better order to eliminate states. For 2), we could take
the advantage of thek-SP ork-HSP algorithms as well as
the model-checking results. The states on the more proba-
ble evidences should be eliminated first.
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We take the following iterative strategy: In each itera-
tion, we take the strongest evidenceσ=s̃ŝs1· · ·sj t̂ in the
remaining automaton — recall that this amounts to an SP
problem — and eliminate all the intermediate states onσ
(i.e.,s1, . . . , sj) one by one according to an order that is re-
cently proposed in [17]. After eliminating each state, it is
possible that a newMUS rk is created and itsval(rk) can
be calculated, wherek MUSs have been created so far. If
∑k

i=1 val(ri) > p, then the algorithm terminates; else the
transition labeled withrk is removed from the automaton
and either the next state is to be eliminated or a new evi-
dence is to be found. The removal ofrk is to concentrate
on the rest of the automaton that has not been explored yet.
The sketch of the algorithm is shown in Algorithm 1.

Algorithm 1 RegExpCE(AD , p): Calculate the regular ex-
pression counterexample
Require: automatonAD, probability boundp, initial states̃, ac-

cepting statêt
Ensure: a regular expressionr with val(r) > p

1: A := AD; pr := 0; Priority queueq := ∅; k := 1;
2: while pr 6 p do \∗ the termination criterion∗\
3: σ := the strongest evidence inA;
4: forall s′ ∈ σ \ {s̃, ŝ, t̂} do q.enqueue(s′); endforall;
5: while q 6= ∅ do
6: A :=eliminate(q.dequeue()); rk := the createdMUS;
7: pr := pr+val(rk); A :=eliminate(rk);
8: if (pr > p) then break; elsek := k + 1;
9: endwhile;

10: endwhile;
11: return r1, . . . , rk;

Note thatq is a priority queue whose elements are states
to be eliminated in the current iteration. The order in which
states are dequeued fromq is defined by the heuristics pro-
vided in [17]. The function “eliminate(·)” can both elimi-
nate states and regular expressions, where the latter is sim-
ply the deletion of the transitions labeled with the regular
expressions.

Example 4 Consider again Fig. 4. We suppose the for-
mula is P60.7(♦ s4) and apply the algorithm onAD.
In the first iteration, σ1=s0s1s2s5s3s4 is found as the
strongest evidence. Suppose the order to eliminate the states
by [17] is s5, s2, s3, then we get the regular expression
r5=s1(s3|s2s5s3)(s3|s2s5s3)

∗s4 with val(r5)=1. Since
the states are eliminated and the threshold0.7 is exceeded,
the algorithm terminates. This expression gives a clear rea-
son that infinitely many times traversing the cycless3 or
s2s5s3 exceeds0.7.

Let us change the elimination order. If the elimina-
tion order is s5, s3, s2, the regular expression isr0 =
s1s3s

∗
3s4 | s1(s2|s3s

∗
3s2)(s5s3s

∗
3s2)

∗s5s3s
∗
3s4. Whens3

has been eliminated, the firstMUS r1 = s1s3s
∗
3s4 is gen-

erated and the probability is0.18 < 0.7. The algorithm

continues (i.e., eliminatess2) to find moreMUSs, till r0 is
found. Note thatr0 is longer thanr5, and thus less intu-
itive to comprehend. The cycless3 ands3s2s5 are however
indicated.

Let us pick aless probable evidenceσ2=s0s1s3s4 to be
eliminated in the first iteration. After eliminatings3, the re-
sulting expression isr1=s1s3s

∗
3s4. Thenr1 is removed from

the automaton and the strongest evidence in the remaining
automaton isσ3=s0s1s2s5s4. After eliminatings2, s5, we
obtain the regular expression:r2, as in Example 3. The fi-
nal regular expression is againr0 and the same analysis as
in the last case applies.

Proposition 3 The regular expression counterexample gen-
erated by Alg. 1 is minimal.

The above proposition is due to the fact that Alg. 1 termi-
nates immediately when the cumulative probability exceeds
the threshold.

To summarize, we usually obtain a better regular expres-
sion if we pick the most probable path first and eliminate
the states on that path according to some known heuristics.
Note that the regular expression representation is not appli-
cable for formulae with nested probabilistic operators, e.g.,
P6p1

(

♦P6p2
(♦ t̂)

)

. However, it is not a real constraint
in practice, since those formulas are rarely used. Whereas
in [15], formulas with a strict probability bound such as
P<p(♦

6h t̂) could not be treated as they may lead to in-
finite counterexamples, this restriction does not apply any
more due to the Kleene star.

4.5. Bounded reachability

For bounded reachability formula♦6h t̂, a regular ex-
pression, e.g.r = r1|r

∗
2 , may not be valid because it is pos-

sible that the length of the words generated byr1 or the ex-
pansion ofr2 exceedsh. Thus,val(r) might be larger than
the actual probability. In order to obtain a precise valuation,
we extend the regular expressions toconstrained regular
expressions, and extend the valuation to these expressions.

Definition 6 (Constrained regular expressions)For r ∈
R(Σ) andh ∈ N, L(r[h]) = {w ∈ L(r) | |w| 6 h}.

In fact, L(r[h]) ⊆ L(r) and r[h] can be expressed
equivalently by a union of possible enumerations, namely
r[h] = r〈0〉|r〈1〉| · · · |r〈h〉, wherer〈i〉 denotes the set of
words generated byr and having exactlyi symbols.

Usually a constrained regular expression is informative
enough to show the reason for violation, because the cycle
information is clear. Sometimes, however, it is also usefulto
calculate the probability (or valuation) of some constrained
regular expression branches by the following function:
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Definition 7 For r, r1, r2 ∈ R(Σ) and(p, t) ∈ Σ, the (re-
cursive) evaluation functionsval(r[h]) and val(r〈h〉) for
r[h] andr〈h〉 respectively are defined by:

val(r[h]) =
hX

i=0

val(r〈h〉)

val(ε〈h〉) =


1, if h = 0
0, otherwise

val((p, t)〈h〉) =


p, if h = 1
0, otherwise

val(r1|r2〈h〉) = val(r1〈h〉) + val(r2〈h〉)

val(r1.r2〈h〉) =
hX

i=0

val(r1〈i〉)·val(r2〈h − i〉)

val(r∗〈h〉) = val(ε〈h〉) +
hX

i=1

val(r〈i〉) · val(r∗〈h − i〉)

Note that the complexity of the above evaluation func-
tion is, however, very high. The following theorem
states that the evaluation of a regular expression obtained
from DFA AD equals the probability of the set of paths
Paths

6h(ŝ, t̂) in theDTMC D.

Theorem 8 Let r be the regular expression forDFA AD =
(S, Σ, s̃, δ, t̂) whereD = (S,P, ŝ) andh ∈ N. Then,

val(r[h]) = P
(

Paths
6h
D (ŝ, t̂)

)

.

4.6. Leader election example

Let us reconsider the leader election protocol. For the
original DTMC, the regular expression representation, de-
notedr(N, K), where the probabilities are omitted, is:

start . ((u1| · · · |ui) .next .start)
∗
. (s1| · · · |sj) .leader ,

wherestart , next andleader are the obvious short forms.
The regular expression lists all the unsuccessful config-
urations, as well as the successful ones. As a result,
|r(N, K)| = KN +4, where|r| denotes the number of sym-
bols it consists of. Compared to the number of evidences
computed directly, i.e.,

∑R
i=1 #Evi(N, K, i), |r(N, K)| is

much shorter, but it is still exponentially long. On the other
hand, however, the structure ofr(N, K) clearly indicates
the reason of violation, i.e., the repeated unsuccessful con-
figurations followed by a successful one.

Model reduction. Regular expression counterexamples
are feasible when the excessive number of evidences are
caused by traversing the same loops for different times
in the model, in which case the Kleene star compacts all
those evidences to be oneMUS. On the other hand, the
large number of states may also result in a large-size regu-
lar expression counterexample. Consequently, if the model
size is reduced prior to the counterexample generation,
then the thus obtained regular expression counterexample

would be of smaller size. Two strategies can be utilized
to slim down the model size, namely,bisimulation mini-
mizationandSCCminimization. Bisimulation minimization
[22, 26, 8] groups the bisimilar states together and hope-
fully derives a smaller quotientDTMC. Strongly-connected-
component (SCC) minimization, instead, groupsSCCs to-
gether [27]. Bisimulation minimization preserves both un-
bounded and bounded probabilistic reachability properties,
while SCCminimization only preserves the former one.

For the leader election protocol, the regular expression
counterexample on the bisimulation quotientDTMC is:

r∼(N, K) = start . (u.next.start)
∗
.s.leader ,

whereu1, . . . , ui are wrapped asu; s1, . . . , sj ass in Fig. 3.
Note that|r∼(N, K)| = 6 is independent ofN andK. The
SCC-quotientDTMC is obtained by replacing the left half of
the model (anSCC) by a self-loop on the initial state. The
regular expression counterexample is:

rSCC(N, K) = start .start∗.(s1| · · · |sj).leader ,

where the intuition of the self-loop is “still unsuccessful”.
We can gain more if both reduction techniques are applied,
yielding:

rSCC
∼ (N, K) = start .start∗.s.leader .

5. Case study – Crowds protocol
We now illustrate our techniques on a more serious ex-

ample. TheCrowdsprotocol [30] is aimed to provide users
with a mechanism for anonymous Web browsing. The main
idea behind Crowds is to hide each user’s communication
by routing randomly within a group of similar users. Even
if a local eavesdropper or a corrupt (or bad) group member
observes a message being sent by a particular user, it can
never be sure whether the user is the actual sender, or is
simply routing another user’s message.

The protocol works in the following way: 1) The sender
selects a crowd member at random (possibly itself), and
forwards the message to it, encrypted by the correspond-
ing pairwise key. 2) The selected router flips a biased coin.
With probability1−PF, wherePF (forwarding probability)
is a parameter of the system, it delivers the message directly
to the destination. With probabilityPF, it selects a crowd
member at random (possibly itself) as the next router in the
path, and forwards the message to it, re-encrypted with the
appropriate pairwise key. The next router repeats this step.

In our experiments, we assume that 1) if a sender has
been observed by the bad member twice, then it has been
positively identified(Pos for short), thus the anonymity is
not preserved; 2) the bad member will deliver the message
with probability 1 as in [31]. This protocol is executed ev-
ery time one crowd member wants to establish an anony-
mous connection to a Web server. We call one run of the
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Figure 5. Probability vs. number of evidences

protocol asessionand denote the number of sessions byR.
Other parameters are the number of good membersN and
the number of corrupt membersC.

We take the Crowds protocol modeled by Prism [1] and
the property isP6p(♦Pos) which characterizes the proba-
bility threshold that the original sender’s id 0 is positively
identified by the corrupt members. The relation between
the number of evidences and the probability threshold for
different number of sessionsR is shown in Fig. 5 (N = 5,
C = 1, PF = 0.8), both for the original and the bisimula-
tion minimizedDTMCs.

Regular expression representation Because we manu-
ally show the effect of the regular expression representation
here, we choose a configuration with a small state space. We
setN = 2, C = 1, R = 2, andPF = 0.8. The bisimulation
minimization reduces the state space from 77 to 34. The
state space of the quotientDTMC is shown in Fig. 6. To fit
the figure on the page, we group a path of states with proba-
bility 1 by a square state. Statesi, G, B, Del, Posrepresent
initiating a new session, sending a message to aGood mem-
ber, to aBad member, a message beingDelivered, aPositive
result obtained, respectively.G0 andG1 are the two good
members, whereG0 is assumed always to be the original
sender when a new session starts.G0∨G1 is a lumped state
where eitherG0 orG1 is reached. The subscriptsa, b, ... are
to distinguish the states in similar situations. Since the goal
statePoscan be reached by only the gray states, the regu-
lar expression (thus the automaton) only depends on those
states. Note thatDela andDelb denote the end of the first
session, whileDelc andDelb denote the end of the second.
Only the case that two messages are both delivered by the
bad member indicates a positive identification of the sender.

An intermediate automaton (see Fig. 7) can be derived
after eliminating some states. The initial states̋ of the au-
tomaton is also omitted. This shows the basic structure of
the model:ia andic are the starting points of two sessions.
The horizontal transitions indicate the observation ofG0 by
the bad member, which lead toPos. In each session, a mes-

(1, ia)
ia ic Pos

Ga Gd

(0.333, Ba.Delb.ic) (0.333, Bc.Deld.Pos)

(0.667, Ga)(0.5 ∗ 0.8, G0a.ia) (0.667, Gd)(0.4, G0b.ic)

(0.267, G1b.Ge.Gd)(0.267, G1a.Gb.Ga)

Figure 7. A more compact automaton

sage can be forwarded toG0 or G1 many times (captured
by the self loops). Once a message is delivered, a new ses-
sion is assumed to be started (the transitions back toia and
ic). Thus, a regular expression that can be generated from
the automaton isr = r0r

∗
1r2r

∗
3r4, where:

r0 = (1, ia),

r1 = (0.667, Ga)(0.267, G1a.Gb.Ga)∗(0.4, G0a.ia),

r2 = (0.333, Ba.Delb.ic),

r3 = (0.667, Gd)(0.267, G1b.Ge.Gd)
∗(0.4, G0b.ic),

r4 = (0.333, Bc.Deld.Pos).

If we omit the probabilities and the subscripts and merge
the stuttering stepsG, then we obtain:

r
′ = i (G.(G1.G)∗G0.i)

∗

| {z }

good

. (B.Del.i)
| {z }

bad

. (G.(G1.G)∗G0.i)
∗

| {z }

good

. B
|{z}

bad

,

which is highly compact and informative in the sense that
it indicates the observation of the bad members twice with
arbitrary number of observing the good members.r′ can be
further compacted if theSCCs are identified and replaced by
self-loops. In this case,r′′ = i.i∗.(B.Del.i).i∗.B.

The probability ofr is val(r) = 0.274, which coin-
cides with the model checking result. These probabilities
depend, among others, on the parameters of the protocol
(N , C, R, PF, etc.). For instance, the probability of the
strongest evidence is( C

N+C )R = (1
3 )2 = 1

9 , which loops
0 times atr1 and r3. The probability ofr2 and r4 is

a
1−a = 4

11 , wherea is the probability of the inner loop:
1

N+C ·PF·(1 − C
N+C ) = 0.267, as is shown in the interme-

diate automaton. Note that this closed-form expression can
now be used for arbitrary parameter values.

6. Conclusion

The contributions of this paper are: experimental results
on the generation of counterexamples for model-checking
DTMCs, partly substantiated with a mathematical analy-
sis, together with the proposal to use the regular expres-
sions to represent counterexamples in a compact way. The
counterexample representation using regular expressions, is
shown to be correct, and yields promising results. Bisimu-
lation andSCCminimization may be explored to slim down
the counterexample size. Constrained regular expressions
for bounded-until formulae is a topic for further study as
their valuation is expensive.
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