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Abstract The quest for correctness of stochastic real-time systems
such as CTMCs mainly focuses on checking time-bounded
This paper proposes a technique to synthesize parametreachability properties—is the probability to reach a fail
ric rate values in continuous-time Markov chains that en- state within the deadline at most 1
sure the validity of bounded reachability properties. Rate A disadvantage of the traditional approaches to model
expressions over variables indicate the average speed ofchecking is that they can only check the validity of prop-
state changes and are expressed using the polynomials ovegrties under the assumption that all parameter values are
reals. The key contribution is an algorithm that approxi- known. This means that concrete values of e.g., timing pa-
mates the set of parameter values for which the stochasticrameters, branching probabilities, costs, and so fortegne
real-time system guarantees the validity of bounded reacha to be explicitly given. Although this might be appropriate
bility properties. This algorithm is based on discretizjveay for the a posteriori verification of concrete system realiza
rameter ranges together with a refinement technique. Thistions, for design models at a higher level of abstractios thi
paper describes the algorithm, analyzes its time complex-is less adequate. In earlier design phases, such exphcit in
ity, and shows its applicability by deriving parameter con- formation about model parameters is mostly absent, and in-
straints for a real-time storage system with probabiligte stead, only the ranges of parameter values, or the relation-
ror checking facilities. ship between parameters is known (if at all). For models
that incorporate aspects of a random nature, the need for
concrete parameter values is, in fact, a significant hurdle,
1 Introduction as mostly precise information about the random variables is
known after extensive experimentation and measurements

Model checking aims at checking a property, typically ©nly. This is, e.g., witnessed by the fact that fitting —
stated in some temporal logic, against a given concreteroughly speaking, the attempt to find an appropriate and
model. For real-time systems whose timing is subject to a@ccurate distribution to actual measurements— is an active
random influences, efficient model-checking algorithms [3] field of research in model-based performance analysis [22].
and accompanying tools such as PRISM [13] have been In practical system design, one is not interested in check-
developed, and have been applied to case studies from &g a concrete instance, but rather, often in deriving param
broad application area such as, e.g., performance and deter constraints that ensure the validity of the propertyasnd
pendability analysis, and systems biology. A prominent consideration. Typical examples are failure-repair syste
model for stochastic real-time systems is continuous-timesuch as multi-processor systems and modern distributed
Markov chains (CTMCs, for short). In these stochas- storage systems, in which components (such as memories
tic transition systems, state delays are exponentially dis Or processors) may fail and where only lower- and upper
tributed, and successor states are picked randomly wheréounds on repair times are known. Rather than determin-
the branching probabilities are determined by the resi- ing whether for a certain combination of failure and repair
dence time distributions. CTMC model checking has re- rates, a property holds, one would like to synthesize the set
ceived considerable attention in the last decade and has beeof pairs of rates for which the validity of the property is
adopted by various classical performance analysis tools.guaranteed.
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of state changes. They are expressed using the polynomia2 Parametric CTMCs

ring over reals, allowing rate expressions sucB@g; and

a®—a-3. We show that checking whether time-bounded parameters and constraints. For a sett’ of m variables

reachability probabilities meet certain thresholds anteun (or parametersyy, ..., z.,, expressions in the polynomial

to solving a polynomial function over the rate parameters. ring R[X] over the real® are formed by the grammar:

The main contribution of this paper is an algorithm that ap-

proximates the synthesis region, i.e., the set of rate param az=clr|atalaa,

eter values for which the validity of an a priori given time-

bounded reachability property is guaranteed. Syntheasizin b L .

these values is done by a (grid) discretization of the parame and- are add't'f)n and multlpl|cat|(_)n, -respectlvely.VAIu-

ter ranges together with a refinement technique. This paperat'o_n is a functionv : X — R assigning a real value to. a

describes the details of this approach fortiive-parameter varlaple. _We assume that all variables havg a closed inter-

setting. The time complexity of our algorithm is quadratic val with finite bounds as the range of possmle values, i.e.,

in the number of states in the parametric CTMC, linear in v(z) € [li, ui] andl;, u; € H§ forl < i< m. The set

the grid discretization parameter, and polynomial in the ex of all valuat_|0n functions 'R ) O‘[v.] o!enotes the valuation

pected number of discrete steps taken before reaching th@f Polynomiala: € R[] by instantiatinge; € X' by v(z;).

deadline. Note.that_we do not restrlct to I_mear expressions as this wil
The feasibility of the proposed technique is shown by no;sm;;ﬂﬁy_matteri n ct)ur sfetLtlngft; (as explameg later).

synthesizing the parameter ranges for a storage systenﬂq{[ X]n :qo;m?zozs:mgf ;)n d Ce eorﬁr{pa chz'n\gvtrziﬁ?si

that incorporates error checking, i.e., after each opmrat con'ljnction of é?émi’(:/constraints A valuatiensatisfies

(read/write), there is a possibility to check whether anerr the Jconstrainu ba ¢ if afv] 53 c. A régiong C RY is a set

occurred [4]. The first question in this case study is to de- fvaluati tisfyi 't int =

termine the error check probability, i.e., at which freqeen of valuations satisfying a constraint.

should errors be checked, such that the probability of & fata

system shutdown within a given deadline, is low. Secondly,

we determine the sets of values for service time and error

checking time (for given error check probabilities) sucatth

a shutdown rarely happens in time. States is absorbingif R(s,s’) = 0 for all s # s. Given

n the cardinality ofS, E = [E(s1), ..., E(sy)] is the vector
Related workAlthough some work has been done on (sym- ¢ ot rates, wheréf(s;) = 3., R(si,s'). The vector

bolic) parameter synthesis for timed systems [11, 23, 1], pa 7(t) = [m1(1), .., 7 (1)] gives thetransient probabilityof
rameter synthesis of probabilistic models has receiventsca ho'cTMC ie. the probability of being in state(1<i<n)
attention with the notable extensions of [6, 15]. Lanotte attimet. The Chapman-Kolmogorov equations describe the

et al.[15] consider parametric discrete-time Markov chains o,6|,tion of the transient probability distribution ovéne:
(DTMCs), and establish minimal (and maximal) parame-

ter values for simple reachability probabilities. For tive1 dr(t) n

parameter case, they show the decidability if parameter con i 7(t)Q, Z mi(to) = 1, 1)
straints are linear expressions. Our setting is ratheeiff =1

ent as we consider a continuous-time model, time-boundedyherer (¢,) is the initial condition andQ = R — diag(E)
properties, and rather than focussing on decidabilityssu s theinfinitesimal generatoof CTMC C and diag(E) is
we attempt to come up with an approximation algorithm. the diagonal matrix constructed fraf.

Daws [6] also considers DTMCs and uses regular expres-

sions to do PCTL model checking over DTMCs where cer- Definition 2 ()CTMCs) A parametric CTMQver the set
tain transition probabilities are unknown. X of parameters is a tripl€(¥) = (S, R(¥) s4), whereS
and s are as before, an®R(¥) : § x S — R[X] is the
parametric rate matrix.

wherea € R[X], ¢ € R andz € X. The operations-

Definition 1 (CTMCs) A continuous-time Markov chain
C is a triple (S, R, sp) with S a finite state spaceR :
S x S — Ry the rate matrix ands, € S the initial state.

Roadmap of this paperSection 2 introduces parametric

CTMCs. Section 3 defines uniformization of such mod-
els, and shows that time-bounded reachability probatsliti  The parametric infinitesimal matri@(*) and the exit rate
can be determined by solving a polynomial function over vectorE*) are defined in a similar way & ().

the rate parameters. Section 4 presents the core of the pa-

per and describes the approximate parameter synthesis aPefinition 3 (Instance CTMCs) For pCTMC C(¥) and

gorithm along with its time complexity. Section 5 presents valuationv, C(¥)[v] (or simplyC[v] whenX is clear from

the results for the above mentioned case study, and Sectiothe context) is thinstance CTMCof C(*) obtained by in-
6 concludes. stantiatingz; € X byv(z;).
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Figure 1. pCTMCs and related concepts

For apCTMC C*) = (S, R(*), s) over the set of pa-
rameters¥ = {x1,...,z,,}, theinitial region ¢, satisfies
the following constraint:

m
=1

where A", I;
the parameters anf

< A /\ R(X)(S,SI) >0,
s,8’€S

(@)

< z; < wuy is therange constraintof

sses R (s, 8") > 0 therate con-

straint ruling out the negative rates. The regions satisfy-

ing the range and rate constraints are cait@uge region
(Crange) and rate region (Craze), respectively. Note that
CO = Crange N Crate-

Example 1 In Fig. 1(a), we illustrate apCTMC over
{x1,z2} with the range constraint0 < x; < 2.5 and
0 < 29 < 2. The rate constraint is as follows:

200+4 > 0AN2—29 2 0Ax9—21+1 =20 A x%—xg > 0.
Crange IS the rectangular area in Fig. 1(b), whilg.. is
the area between the two curves. The initial reg{gns
the shaded area. Any point ify will induce an instance
CTMC, e.g., for the valuation(z1) = 1.5, v(x2) = 1, the

instanceCTMC is shown in Fig. 1(c).

3 Time-bounded reachability

We are mainly interested iprobabilistic time-bounded
reachabilityproperties, i.e., given a goal statg, does the
probability of reachings, within time ¢ lie in the interval
[p1,pu]? In temporal logics, such as CSL [3], this is for-
malized asPy, .1 (¢<" sy), where0 < p; < p, < 1and
Sts, denotes the reachability af, within ¢ time units.

Note that the intervalp;, p,] may also be open, or half-
open.

The aim of model checking is to check for a given
state (typically the initial state,) of the CTMC whether
P[pl_,pu](ogt sg) holds. The computation of reachability
probabilities boils down to computing transient probabili
ties. Formally,

Lemma 4 ([3]) Given aCTMC C = (S,R, s¢), ands, €
S an absorbing state:

Prob(so, Qgtsg) =7, (t), 3)
where Prob(sg, S s,) is the reachability probability of
s4 from sq within ¢ time units andr, (t) is the transient

probability of states, at timet.

This lemma also applies #@€CTMCs in the sense that every
valuationv € ¢, will induce an instance CTMC, for which
this lemma applies. Thus in the rest of this section, we focus
on deriving an expression far,, (¢) with parameters int'.
This is done by uniformization. The expression fqr (t)
(equals the reachability probability) is the basis of swdvi
the synthesis problem in Section 4.

Uniformization in CTMCs. Uniformization (a.k.a.
Jensen’s method or randomization) [12] is a well-known
method for computing the vecter(t) of transient prob-
abilities. Uniformization is attractive because of its oo
numerical stability and the fact that the computationaderr
is well-controlled and can be specified in advance.

For CTMCC = (S, R, s9), letq > max;{E(s;)}, and
define the matri®® = | + %, wherel is the identity matrix
of cardinality|.S|. 7 (¢) is then computed as:

oo

O)-Ze‘qt(qi—t')iP
i=0 '

The infinite summation problem is solved by introducing a
required accuracy, so that||m(¢) — ~( )||<e, where||v|| =

>, il is the norm (1) = 7(0)- S5 e~ 4L pi s the
e-approximation ofr(t), andk. is the number of terms to
be taken in Eq. (4), which is the smallest value satisfying:

(4)

ke

(%)

=0
If ¢t is large k. tends to be of the ord&P(qt).

In the rest of this section, we show how to apply this
technique tpCTMCs.

Computing uniformization rate ¢. Given pCTMC
C*) = (S, R 50) with the sett’ of parameters and ini-
tial region(y, the uniformization rate is at least the largest
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Figure 2. Methods for maximizing polynomi-
als under constraints
number that an exit rate can take(in Formally,
q = maxi<i<n {maxvego {E(X)(si)[v]} } (6)

Note thatg is a constant It suffices to first maximize
each expressio®(*)(s;) (each is an objective function)
within the closed regiog (the innermax), and then take
the maximum out ofx candidates (the outenax), where

n = |S|. Typically, we take the minimal value gfthat ful-
fills Eq. (6). Let us now discuss how a solution to Eq. (6)
can be obtained. First we give an example:

Example 2 For thepCTMC in Fig. 1(a) and the initial re-
gion (y in Fig. 1(b), the exit rate ofsy and s; is given
by the expressiongy(z1) := 3 — x1 and g1 (z1,x2) :
2?2 + 221 — 1o + 4, respectively. The maximal valuegfin

(o is3 and13.75 for g;. Therefore, we take the uniformiza-
tion rateq = 13.75. The uniformizeg CTMC for this rate

is shown in Fig. 1(d).

In general, determining the inner max in Eq. (6) boils
down to solving anonlinear programming(NLP) prob-
lem [2], where the constraints are provided by the initial
region. Note that both the objective functiéi®)(s;) and
the constraints (Eq. (2)) are polynomial expressions. For

some special cases, e.g., one parameter or linear exp’ressi(& andde

rates, the NLP problem can be simplified. Fig. 2 summa-
rizes the techniques that can be applied. The highest de
gree of the objective function and constraints is indicated
along they-axis, whereas the number of variablesof the
objective function and constraints is indicated alongithe
axis. Each dot represents a combination. We partition the
x-y plane into 5 areas (indicated (I) through (V)) by dashed

lines, where the dots in the same area can be solved by the

techniques specified in the graph. In detalils:

e For the case of one parameter and degree at ost
(area (l) in Fig. 2), the maximal value can be obtained
by first deriving a closed-form expression and then
solving the expression. For polynomials of higher de-
gree, this ismpossibleas proven by Galois [21].

e For the case of one parameteand the degree at least
5 (area (Il) in Fig. 2), standamdot-finding algorithms
can be applied. To be more precise, the roots of the
first derivative of the polynomial are to be found as
the extreme values, among which together with the
boundary values of we can obtain the maximal val-
ues of the polynomial. The prevailing techniques are
Newton’s methofB], Sturm’s methodtl0], Laguerre’s
method14], to name a few.

For the case of more than one parameter and degree
one (area (lll) in Fig. 2), it boils down to solvinglia-

ear programming problerfil8], where, amongst oth-
ers, thesimplex algorithm[5] and theinterior point
method[16] are well-known solution techniques and
quite efficient.

For the case of more than one parameter and de-
gree from 2 to 20 (area (IV) in Fig. 2), the resultant-
based techniques or Grobner bases methods [7] per-
form better than branch-and-bound techniques (see be-
low). Note that 20 is an estimation due to performance
considerations.

The remaining cases (area (V) in Fig. 2) are general
NLP problems and can be solved numerically by, say,
thebranch-and-bound techniqu3j.

Computing 7(t). Recall thatr(¢) is thes-approximation

of the transient probability vectar(¢). The reachability
probability tos, within time ¢ equalsr,, (¢), and thus can
becs-approximated byt (¢). Similarly, we truncate the in-
finite sum ofr (¢) to obtainz (¢). Since the truncation point
ke in Eq. (5) isindependent of the rataa the CTMC, it
coincides with the non-parametric case. The transient-prob

ability vector# (t) = m(0)- Yk | e=et ) (P())' can be

1=

u
computed by vector-matrix multiplication. For giverand

t, e~ 714 s constant, whilgP(*)) contains parameters.
Let degwi(PW)) denote the maximal degree of parameter
z; in all expressions ilP(*). For instancedeg,, (P(Y)) =

g,, (P¥)) = 1 for thepCTMC in Fig. 1(a). Note
thatdeg, (P*)) = deg, (R(¥)). The degree of a polyno-
mial is the sum of the degrees of all its variabl(aB.(X))kE

has degree at mokt, wherek. = 37" | k.- deg,, (P(*)).
Giveng andt, the transient probability,, () is a polyno-
mial function over the parametetrs, ..., z,,, i.e.,

.pbm
Lm

(7)

f(x1, ey ) = Zj:(il,...,im) a;ath...

)

wherei; < ke-deg,, (PY)) (1 < ¢ < m), anda; € R.
The degree of is at mostk., which is of orderO(mgtr),
wherer := max;,cx deg, (P(*)) is the maximal degree
of the polynomial expressions appearing in #&TMC.
Note thatk. is usually much larger thadeg, (R(*)) and
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Figure 3. An example synthesis region

thus the degree of the polynomial expression in Eq. (7) is

not much affected if we would restrict rate expressions in
pCTMCs to be linear.

4 Parameter synthesis

Algorithm 1 Framework for obtaining approximate synthe-
sis regions.

Require: pCTMC C"-*2), formulaPy,, .1 (" sg)
Ensure: approximate synthesis regigg,. (a set of polygons)
1 CompUteCs*yn = Cépu N C?Pl N C’!unge;
1.1: discretiz& ange ONz122-plane by grid stepa;(i=1,2);
1.2: compute all intersection points (short as int. pts.)
of grid lines with boundary curves,,, V,.,;
identify to which polygon each int. pt. belongs;
1.4: if necessary, refine the grid witk (<A;); goto Step 1.2;
1.5: connect certain int. pts. to form approximate polygons
2: computelsyn = Coyn N Crate;
2.1: discretiz& . ONx122-plane with the same grid;
2.2: intersect;,,, and(raz. grid by grid;

1.3:

of the boundary curvg (z1,22) — p = 0 (s f(x1,z2) IS
a high-degree polynomial) as well as the exact synthesis re-
gion. As a result, we usaset of linear line segments ap-
proximate the boundary curves, thus the approximate syn-
thesis region ia set of polygonsThis will be explained in
more detail in Section 4.2.

A high-level algorithm to obtain an approximate synthe-
sis region is given in Alg. 1. The algorithm proceeds in two

The parameter synthesis problem is to determine all theSteps: in Step 1 we obtain a first approximat{gp, of the
values that parameters can take such that the satisfadtion oSynthesis region while ignoring the rate constraint.; in

the propertyP[pl_,pu](Qgt sg4) is ensured in the derived in-
stance model. We define tisgnthesis regioq,,, C (o to

Step 2, we comput&,, = (5, N Crate AS the final synthe-
sis region such that all the points that will induce a negativ

be the set of valuations, such that each valuation (or point)rate (thus nota CTMC at all) are removed. Steps 1.1 and

v = (z4,...,z,,) therein induces an instance CTMTu],

for which f (2}, ....z.,) € [pi,p.]. The aim is to find the
(approximate) synthesis regidr,,,. To enable easy visual-
ization, we restrict toCTMCs with at most two param-

2 are based on the discretization techniques of Section 4.1.
Steps 1.2-1.5 will be explained in more detail in Section 4.2
and 4.3 as the SRA algorithm (Alg. 2).

eters. Our techniques can be applied to more-parameted.1 Discretization

cases, however, the computational complexity will grow
drastically.

Synthesis regions. Given the pCTMC C(*#2) and
propertyP[m_’pu](Q@ sg), the transient probability =
f(x1,22) defines a surface, see Fig. 3(a) for an (artificial)
example. Forz <1 p (< € {<,<,>, 2}, p € [0,1] a
constant), the projection of the surface on the-plane

z = p (in particular in regior,qnge) is a region(.q, with
boundary curvév,,. (., is the set of point§x1, z2) such
that f(z1,z2) > p. The boundary curv&, is given by
f(w1,22) — p = 0. The region(y,, ,,.; is the intersection of
(>p, and(s,,,, wherep; andp,, are the probability bounds
on the reachability property)<ts,. As an example, the
shaded areas in Fig. 3(b) and 3(c) depict the redigy)
and(,, derived from the projection of the surface in Fig.
3(a) onz = p; andz = p,. The intersectio>,, N (<p,,
(Fig. 3(d)) is the synthesis regiaf,, ,,], 9iven (range the
rectangular area.

Given the parameter sét = {x1, 22} and(ange, We
specify a discretization stefy; € R~ for each parameter
x; (i = 1,2), such thatu; — [; = N;A;. Thus, the range
[;,u;] of values that variable, can take is partitioned into
N; subintervals:

[li,li—FAi] R (lrf’Az,lz-i-?Al],,(lz-i-(Nl — 1)A1,11+N1A1]

The valued; + jA; (0 < j < N;) are assigned indices
0,1,..., N;. We obtain &-dimensional grid, where thgrid
pointsare of the formgp = (j1, j2) for 0 < j; < N; with

the valuation(l; + j1A1,ls + j2A2) and agrid cell is a
smallest rectangle with grid points as its four verticese Th
region {rqange CONSists of at mostVy; + 1)(N2 + 1) grid
points and each poinfp induces an instance CTMgp|

by the valuation ofgp. The transient probabilityrfg[g”] (t)

is computed by standard methods for computing transient
probabilities in CTMCs. It is important to realize that this

Note that in general it is impossible to get the exact shapeyields a discretization in the sense that instead of checkin
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The sketch of the synthesis region approximation (SRA)
algorithm is shown in Alg. 2.

Algorithm 2 Synthesis Region Approximatios (2 A)
Require: f(z1,x2), [li,wi], A (0 = 1,2), Amin
Ensure: polygon approximate synthesis regigf,,

LT 1* 1*

0 1* N}

0 N Uy 71

1: find all int. pts. betweelv,,, V,,, with the grid lines;
/* label intersection and grid points with root tags
Figure 4. Discretization using grids 2: while (there exists a positive orphan grid poipt) do
3:  makegp the root of a new tree;
gp is set as an unexplored tree node;

(a) discretizedrange  (b) accuratel;, , (c) apprx.Cayn

each point in the dense regi@h.,4., we only check the

¢ ] ! 4:  while (treegp has unexplored nodeurt) do
discrete grid points as “samples”. 5: curt is set to be explored;
Example 3 Given the shaded range regi@p,,,. formed Gf for each (curt's adjacent noded;) do
by [11,u1] and [la, us], the grid discretization is as in Fig. ' If (adj is positive/ adj is orpham
4(a), whereA; = A,. The grid indices are marked with a #INtPs curt,adj)=0) then
P WHISIERL = 22 9 8: let adj have the same root asirt;
star to distinguish them from the ones on the axes. 9 adj is set as an unexplored tree node;

10: elseif( (adj is pos.A#INtPt curt,adj) > 0) V
(adj is negative))
find the leaf nodép closest tacurt;
makelp’s root the same asurt’s root;

It is usually convenient to choose a global (i.e.,
A=A1=A5) so that the approximation error is the same
in each dimension. Since the grid points near the curves are

much more important, it is possible to usean-uniform 12: end if
grid, e.g., smaller grid steps near the curve and larger grid 13:  end while
steps away from the curve. 14: end while
/* refine the discretization steps, if necessafty
4.2 Approximating the synthesis region 15: if min{A1, A2} > Amin then
16:  for each (gc with (#leaveggc) > 4) or

As a next step, we characterize the regigy), by ap- (leavegge)=2 A #PosViXgc)=0,4))

proximating its boundary curvég,,, V,.. by asetof poly- " refine the nine grids withc in the middle;
. ) o Clgp] /* connect the intersection points to form polygen's

gons. A grid pointgp be positiveif ms,""(t) € [pi,pu] 18: for each (Ip1, Ip» with the same root in the same grid)
andnegativeotherwise. Two grid pointgp = (i,;) and 19:  add line segmerip;-Ip- as one side of a polygaft,,;

g’ = (i, ') areadjacentif [i —i'| + |[j — /| = 1. The 20 retum ¢3,n;
main idea is to find all intersection points of the bound-
ary curvesv,, , V,, with the grid lines. These intersection

points are then connected to approximate the cuRVgs  |njtialization.  Prior to running the main core of the algo-
andV,,. The resulting area bounded by the approximate rithm, we determine all intersection points of the boundary
curves is a set of polygons (polyhedra, in case of more thancyryesv,, andv,,, with the grid lines (cf. line 1). For each
2 parameters). This idea is illustrated by Fig. 4(b) and,4(C) grid linez; = jA, (i = 1,2 and0 < j < N;), we solve the
where the white area in Fig. 4(b) is the accurate synthesisfo|lowing system of equations:
regionc;,,,, the circle-marked grid points are positive, and
the intersection points are marked wih The approximate { f(w1,29) —p; =0 { f(z1,29) —py, =0
synthesis region is the white polygon in Fig. 4(c).

Let us explain the algorithm in more detail. We represent
the polygon{ by atree such that one (positive) grid point  which boils down to solving &ingle variablepolynomial
gp inside( is picked as theoot and all other (positive) grid ~ function, which in general can be solved by standard root-
points in¢ areinternal nodeswhile the intersection points  finding algorithms [8, 10, 17]. Since the polynomial func-
areleaf nodes This terminology will be used interchange- tion is usually of (very) high-degree, the method in [19] is
ably in the rest of the section. Since the synthesis regionmore applicable. In total, we need to soR(€V; + N + 2)
may consist of more than one polygon (tree), we need apolynomials, since we hacurves andV; +1 grid lines in
root tag to indicate to which tree a leaf or an internal node dimension:. Note that forpCTMCs with more than 2 pa-
belongs. A leaf or an internal node without a root tag is rameters, obtaining all the intersection points is morélg,os
called anorphan The approximate synthesis regiof,, is as the number of grid points increases exponentially with
represented by a set of polygons, i.e., sets of line segmentsthe number of parameters.

r; = JA; ri = jA; ’



Label grid and intersection points. We will explain the
main part of the SRA algorithm with the aid of Fig. 5(a),
where the grid points (circles for positive and squares for
negative ones) are denoteddy, ..., the intersection points
(X) are denoted by, 2, ... and grid cells are denoted by
A,B,C.... We use#IntPtggp,, gp,) to denote the num-
ber of intersection points between grid poipts andgp.
Starting from a positive grid pointurt as a root node
(say c¢), we search its four adjacent grid poinigj €
{w, n, e, s}. Some possible cases are:

e if adj is positive and orphan ang@IntPty curt, adj) =
0 (see Alg. 2, line 7), therdj should belong to the
same polygon asurt, thus share the same root tag.
This applies in Fig. 5(a) to grid pointsandn.
if adj is positive and#IntPty curt, adj)>0 (line 10,
first disjunct), thenad; and curt belong to different
polygons (trees), see e.g. grid pointandw and their
polygonsin Fig. 5(b) at the same position. In this case,
we pick the intersection poinp which is closest to
curt and label it with the same root asrt (line 11).
If adj is negative (line 10, second disjunct), then
#IntPtg curt, adj) > 0 (sincecurt is positive), see
e.g. grid points: ands or ¢ in Fig. 5(a). We deal with
this case the same as the previous one (line 11).

When each grid point in a polygon is explored (line 4)
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Figure 5. Synthesis Region Approximation

between a boundary curve and one of the grid sides, then
it will be counted twice. Note thattleaveggc) is always
even. We also define theumber of positive vertices gc,
denoted by#PosVtX gc). For instance#PosVix(H)= 2.

— its four adjacent grid points have been checked — we canlNote that#PosViX(gc) can be at most 4.

choose another root node until there are no positive orpha
grid points (line 2). The justification for taking the closes
intersection pointp is thatlp is for sure on the boundary of
the current polygon (see poiagnd5, not4).

As is typical for polygon approximation algorithms, the
algorithm is not guaranteed to find all regions correctly. We
might exclude some intersection points (e.g., only poiist
obtained for the tre¢, 2 and3 are regarded not in the same
polygon). The main cause is that the grid is too coarse. This
can be repaired by a grid refinement, as explained below.

4.3 Refinement

The above root-labeling algorithm does not guarantee to
find all regions. This, of course, depends on the granular-
ity of the grid. For instance, in Fig. 5(a), the two positive
grid points in grid cell H are in the same region, but since
they are not adjacent, they will be identified as the roots
of two different trees (and thus give rise to two polygons),
cf. Fig. 5(b). The approximation of grid cell G is also too
coarse, since intersection poi2tand3 are orphans.

A solution to find the neglected regions is by refining the
discretization steps. Letleaveggc) denote the number of
intersection points on the four sides of grid cgll For in-
stance, grid cell H in Fig. 5(a) has four leaves. If a leaf poin
Ip coincides with one ofic’s vertices or is the tangent point

"Where to refine? Let us now explain when refinement

is necessary. We list some combinations#deavesgc)
and #PosVixX gc) below, each with an example grid cell.
For the “to refine?” columnyes is clear; whereascheck
convexity indicates a conditional refinement.

#leaves | #PosVtx | ex.grid cell to refine?
2 0 A (Fig. 5(a)) yes
2 1 B (Fig. 4(b)) | check convexity
2 2 C (Fig. 4(b)) | check convexity|
2 3 D (Fig. 4(b)) | check convexity|
2 4 E (Fig. 5(a)) yes
4 0 F (Fig. 5(a)) yes
4 1 G (Fig. 5(a)) yes
4 2 H (Fig. 5(a)) yes
4 3 I (Fig. 5(a)) yes
4 4 J (Fig. 5(a)) yes

o #leaveggc) = 2 A #PosVitXgc) € {1,2,3}
In general, we have to check the convexity of the curve
in gc in order to decide whether or not to refipe In
particular, if the curve iryc is convexthen itdoes not
need to be refined; otherwise, it needs a refinement.

The convexity as well agtleaveggc) = 2 ensure that
the line segment (between the two leaves) closely ap-
proximates the curve ipc. This applies to all the grid
cells in Fig. 4(b).



The nonconvexity, on the other hand, indicates that
the curve has protuberances that a line segemiot v v
sufficiently approximate, cf. grid cell K in Fig. 5(a). ! )

However, it is quite costly to check the convexity in
each grid cell. In practice, we chooset to refine in

_ % 05 115 2 2t 05 1 15 2 2t
1 2 25 1 Xy Xy

this case. If the grid step is sufficiently small, the pro- @) Grate ®) ¢yn (©) Csyn = Crate N Cly
tuberances inside one grid cell are negligible. . . .
o #leaveggce) = 2 A #PosVixge) € {0,4} Figure 6. Example synthesis regions

A refinement is required in this case as some area is
smaller than a grid cell, see grid cells A and E, where
A has orphan leaves. For E, all the four vertices (inter-
section points) of the black trapezoid in Fig. 5(b) be-

long to the same polygon according to the algorithm
however, it is unknown how these four points are con

Construct the polygons. In case the algorithm terminates
beforeA ., is reached, it is guaranteed that there does not
exist any grid cell with more than 2 intersection points.
Hence, obtaining polygons amounts to connecting the in-
' tersection points which share the same root within the same
) " grid cell, see Fig. 4(c). Otherwisé\(,;, is reached), the
nected as sides of a (larger) polygon. igntersection poir?ts c(ar)1 be connecte((? according to )the same
o #leavegge) > 4 rules, but certain regions might not be detected. For in-
Typically, the more intersection poings has, the more  stance, the rightmost circle in grid cell L has no intersatti
possible that some locally abrupt behavior (or protu- points with any grid lines in Fig. 5(a), and thus cannot be
berances) of the curve occurs ja. Since the area  detected. These regions are only bounded in one grid cell.
of interest is usually smaller than a grid cell, the dis- Thus, given a small discretization step, the undetecteabsare
cretization is too coarse and needs a refinement. can be safely neglected within the predefined error bound.
This can be seen by all thgleaveggc) = 4 cases  Note that to obtain a more precise approximation, we can
shown in the table, where grid cells H, 1, J split one t_ake other dlscretlzgtlon technlqugs, say, adding didgona
connected region into two separated polygons, while ines as well. In this case, a cell is a triangle, where our
grid cells F and G have orphan leaves. None of those &lgorithm can be adapted easily.
grid cells yield a close approximation.

For #leaveggc) > 4, they will be refined due to the
similar reasons.

Example 4 Consider theeCTMC in Fig. 1, and let the dis-
cretization steps\; = A, = 0.01, uniformization error
bounds = 10~ and propertyP=.5()<%% s,). Given the

o #leaveggc) = 0 A #PosVixge) € {0,4} rate regionC ... as in Fig. 6(a) Z,, and(s,, are as shown
The grid cell gc is either completely outside the in Fig. 6(b) and Fig. 6(c), respectively. We omit the grid
polygon E£PosViXgc) = 0) or completely inside lines so as to make the figure readable. Since no grid cell
(#PosVtXgc) = 4). Thus, there is no need to refine- has to be refined according to our criteria, the final region
ment for this case. remains as sy,

How to refine? The table can be used as a criterion to

check whether or not a grid cell needs to be refined. Once
we hqve |_dent|f|ed the_susp|C|ous grid cetl Fhe following . Time complexity. In the worst case, the discretization
guestion is how to refine? There can be different strategies

. u1_lL . .
for refinement [20], e.g., global vs. local; with uniform or step 'SA““‘? gnd there arev; Amin i 1’.2) subinter
. i . L vals. Obtaining the closed-formed expressiory @, , z2)
non-uniform steps; how to reduce the discretization steps, o : . .
. . o T (see Eq. (7)), take®(n-qgt) time, like computing the tran-
etc. The strategies highly depend on the application, €., Sient probabilities.  For the initializatior2( Ny +Np-+2)
the structure of the polygons. P : Lt

For the sake of simplicity, we consider one strategy, polynomial equations have to be solved with precisiofi

namely, the local and bisectional refinement. To be more & |s.the bit precrls|on).A Usmg the algf)rlthm n [1?]’_”"3
exact, we will refine locally the area of 9 grid cells wgh ~ as time complexity) (kf log(k-) 1Og(ﬁke)), wherek; is

in the center. Note that it is also possible to refine more the degree of the polynomiglz;, z2) (see the end of Sec-
or fewer (than 9) grid cells as the “local area”. A new dis- tion 3). For the root tag labeling part, the time complexity
cretization with step sizéAi will be performed on those s in the order of the number of grid points, i.&(N1 Ns).
grid cells. For the new grid points, redo the SRA algo- Evaluatingf(z1,z2) at each grid point take@(l%a) time.
rithm until either the discretization step is less than thera Gathering these complexity figures we have:

definedA,,;, or there are no grids to refine due to our cri-

terion. Theorem 5 The worst case time complexity of the SRA is:

4.4 Efficiency and accuracy
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Figure 8. A storage system with probabilistic

o (ant + ke N1 Ny + k2 log(k. ) log(Bk<) (N, +N2)) , error checking, with queue capacity 5
wherel. is of the ordeiO (mqtr) with r the maximal degree The storage system Iscorrectablei.e., the system can
of the polynomial expressions in the pPCTMC. recover from a single error, but fails (stdt@ if two or more

errors occur. We suppose that all access operations (reads

Error bound. An important question is how accurate the and writes) as well as the error checking are atomic and alll
derived synthesis region is. Let us explain this by using delays involved (such as arrivals, checks, etc.) are expone
Fig. 7(a), where the accurate region is the gray area andially distributed. Access operation requesstsve with rate
its approximation is the dashed polygon. We assume that\ and areservedwith rates; the hardware/software wil&il
within any grid cell the boundary curve is convex. ldt with rate~, while theerror checkingtakes place with rate
be the distance between the line segment approximating ther. The arrived but not yet served requests are queued. We
curve and the tangent (with the same slope) to the curve inassume a queue capacity of 5. The states op@EMC
the grid celli. Letdy,.x = max;{d;} be the largest such are of the form(, j), wherei is the number of queued ac-
distance. It is, however, very costly to compute evéry  cess operation requests ahthe number of errorg(or 1);
and thusip,ax. In practice dp.x is taken to be,/A? + A2 an asterisk indicates that an error check is being performed
which is the maximal value it can take. The top-rightmost The property of interest @gp(ogt SF).
distance in Fig. 7(a) is very close to this upper bound. Typically, the probability- can belogically adjustedto

Given the approximate polygap,,, (dashed polygonin  guarantee some given specification. On the other hand,
Fig. 7(b)) anddy.x, We can construct polygon@;»* (the &, and~y can bephysically adjustedy changing the hard-
largest polygon in Fig. 7(b)) an@’;g’ (the smallest poly-  ware/software. In the following, we show the experimental
gon), where distancé,, ., is added and subtracted from the results for 1) one parameteri.e., for which error checking
boundary of(,,,, respectively. The points igia — ¢in probabilityr can we guarantee that the probability to reach
mayinduce a valid CTMC, while the points '@;gl always the fail state (within the deadline) is low, e.g., less than
induce a valid CTMC(2i" can be regarded as the “safe” 0.0075? 2) two parameterg ando, i.e., how fast should
synthesis region. read/write requests be handled and errors be checked in or-
der to obtain a low failure probability? In all computations
the error bound for uniformization is= 10~6.

5 Case study

We apply our approximation algorithm to a concrete One parameter:r. Let\ = 0.3 (0.3 access operation re-
case study from the literature. storage system with er- quests per second), = 0.5, 0 = 0.5 andy = 5 x 107°
ror checkingincorporates redundant data for discovery of (an average time of two consecutive errors is approximately
and recovery from errors caused by hardware or software5 days). The parameterhas initial rang€0, 1] and the
faults [4]. The use of redundancy enhances the reliabifity o discretization steg\ = 0.01. For the specificatiod®; =
the storage system but unavoidably degrades the system’§><0,0075(<><t sr), wheret € {100, ...,500}, the synthe-
performance because of the extra processing time requiredis region is an interval as shown in Fig. 9(a), where the
for error checking. Typically, on every request it is chaetke probability thresholdp = 0.0075 is marked by a dashed
whether an error occurre®robabilistic error checkingan line. Fort = 100, the entire range < [0, 1] is safe; in-
be applied to reduce the error checking overhead. In par-tuitively, it is less probable to fail given a small period of
ticular, each access operation will be followed by an er- time. Fort = 200, ..., 500, » approximately lies in the in-
ror checking with probability: € [0, 1], instead of almost  tervals|0.1, 1], [0.28, 1], [0.41, 1], [0.5, 1], respectively. The
surely (i.e.,- = 1). Such a storage system can be modeled larger the time bound, the higher the error checking proba-
by apCTMC as indicated in Fig. 8. bility » should be to satisfp; .
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Figure 9. Syn. regions for storage system

Two parameters: pando. LetA=0.3,y=5x10""°
andr = 0.3, 0.5 or 0.7. The parameter ranges gee
[0.1,1.1] ando € [0.1,1.1], with A, = A, = 0.01.
The initial region(, is the same rectangular aread@g,qe -

For the specificatiob, = P<g.002(OS* sr), the syn-
thesis regions are the black regions as shown in Fig. 9(b)
through 9(d) for different values of Notice that the shape

of the boundary curves is simple (i.e. without local protu-
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