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Abstract

This paper proposes a technique to synthesize paramet-
ric rate values in continuous-time Markov chains that en-
sure the validity of bounded reachability properties. Rate
expressions over variables indicate the average speed of
state changes and are expressed using the polynomials over
reals. The key contribution is an algorithm that approxi-
mates the set of parameter values for which the stochastic
real-time system guarantees the validity of bounded reacha-
bility properties. This algorithm is based on discretizingpa-
rameter ranges together with a refinement technique. This
paper describes the algorithm, analyzes its time complex-
ity, and shows its applicability by deriving parameter con-
straints for a real-time storage system with probabilisticer-
ror checking facilities.

1 Introduction

Model checking aims at checking a property, typically
stated in some temporal logic, against a given concrete
model. For real-time systems whose timing is subject to
random influences, efficient model-checking algorithms [3]
and accompanying tools such as PRISM [13] have been
developed, and have been applied to case studies from a
broad application area such as, e.g., performance and de-
pendability analysis, and systems biology. A prominent
model for stochastic real-time systems is continuous-time
Markov chains (CTMCs, for short). In these stochas-
tic transition systems, state delays are exponentially dis-
tributed, and successor states are picked randomly where
the branching probabilities are determined by the resi-
dence time distributions. CTMC model checking has re-
ceived considerable attention in the last decade and has been
adopted by various classical performance analysis tools.

∗This research is partially funded by the DFG research training group
1295 Algosyn, the NWO project QUPES and the EU FP7 project QUASI-
MODO.

The quest for correctness of stochastic real-time systems
such as CTMCs mainly focuses on checking time-bounded
reachability properties—is the probability to reach a fail
state within the deadline at most 10−6?

A disadvantage of the traditional approaches to model
checking is that they can only check the validity of prop-
erties under the assumption that all parameter values are
known. This means that concrete values of e.g., timing pa-
rameters, branching probabilities, costs, and so forth, need
to be explicitly given. Although this might be appropriate
for the a posteriori verification of concrete system realiza-
tions, for design models at a higher level of abstraction this
is less adequate. In earlier design phases, such explicit in-
formation about model parameters is mostly absent, and in-
stead, only the ranges of parameter values, or the relation-
ship between parameters is known (if at all). For models
that incorporate aspects of a random nature, the need for
concrete parameter values is, in fact, a significant hurdle,
as mostly precise information about the random variables is
known after extensive experimentation and measurements
only. This is, e.g., witnessed by the fact that fitting —
roughly speaking, the attempt to find an appropriate and
accurate distribution to actual measurements— is an active
field of research in model-based performance analysis [22].

In practical system design, one is not interested in check-
ing a concrete instance, but rather, often in deriving parame-
ter constraints that ensure the validity of the property under
consideration. Typical examples are failure-repair systems
such as multi-processor systems and modern distributed
storage systems, in which components (such as memories
or processors) may fail and where only lower- and upper
bounds on repair times are known. Rather than determin-
ing whether for a certain combination of failure and repair
rates, a property holds, one would like to synthesize the set
of pairs of rates for which the validity of the property is
guaranteed.

This paper studies a parametric version of CTMCs, a
novel variant of CTMCs in which rate expressions over
variables (with bounded range) indicate the average speed
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of state changes. They are expressed using the polynomial
ring over reals, allowing rate expressions such as3α·β and
α3−α·β. We show that checking whether time-bounded
reachability probabilities meet certain thresholds amounts
to solving a polynomial function over the rate parameters.
The main contribution of this paper is an algorithm that ap-
proximates the synthesis region, i.e., the set of rate param-
eter values for which the validity of an a priori given time-
bounded reachability property is guaranteed. Synthesizing
these values is done by a (grid) discretization of the parame-
ter ranges together with a refinement technique. This paper
describes the details of this approach for thetwo-parameter
setting. The time complexity of our algorithm is quadratic
in the number of states in the parametric CTMC, linear in
the grid discretization parameter, and polynomial in the ex-
pected number of discrete steps taken before reaching the
deadline.

The feasibility of the proposed technique is shown by
synthesizing the parameter ranges for a storage system
that incorporates error checking, i.e., after each operation
(read/write), there is a possibility to check whether an error
occurred [4]. The first question in this case study is to de-
termine the error check probability, i.e., at which frequency
should errors be checked, such that the probability of a fatal
system shutdown within a given deadline, is low. Secondly,
we determine the sets of values for service time and error
checking time (for given error check probabilities) such that
a shutdown rarely happens in time.

Related work.Although some work has been done on (sym-
bolic) parameter synthesis for timed systems [11, 23, 1], pa-
rameter synthesis of probabilistic models has received scant
attention with the notable extensions of [6, 15]. Lanotte
et al. [15] consider parametric discrete-time Markov chains
(DTMCs), and establish minimal (and maximal) parame-
ter values for simple reachability probabilities. For the two-
parameter case, they show the decidability if parameter con-
straints are linear expressions. Our setting is rather differ-
ent as we consider a continuous-time model, time-bounded
properties, and rather than focussing on decidability issues
we attempt to come up with an approximation algorithm.
Daws [6] also considers DTMCs and uses regular expres-
sions to do PCTL model checking over DTMCs where cer-
tain transition probabilities are unknown.

Roadmap of this paper.Section 2 introduces parametric
CTMCs. Section 3 defines uniformization of such mod-
els, and shows that time-bounded reachability probabilities
can be determined by solving a polynomial function over
the rate parameters. Section 4 presents the core of the pa-
per and describes the approximate parameter synthesis al-
gorithm along with its time complexity. Section 5 presents
the results for the above mentioned case study, and Section
6 concludes.

2 Parametric CTMCs

Parameters and constraints. For a setX of m variables
(or parameters)x1, ..., xm, expressions in the polynomial
ring R[X ] over the realsR are formed by the grammar:

α ::= c | x | α + α | α·α,

whereα ∈ R[X ], c ∈ R andx ∈ X . The operations+
and· are addition and multiplication, respectively. Avalu-
ation is a functionv : X → R assigning a real value to a
variable. We assume that all variables have a closed inter-
val with finite bounds as the range of possible values, i.e.,
v(xi) ∈ [li, ui] and li, ui ∈ R, for 1 6 i 6 m. The set
of all valuation functions isRX . α[v] denotes the valuation
of polynomialα ∈ R[X ] by instantiatingxi ∈ X by v(xi).
Note that we do not restrict to linear expressions as this will
not simplify matters in our setting (as explained later).

An atomic constraintis of the formα ⊲⊳ c, whereα ∈
R[X ], ⊲⊳ ∈ {<, 6, >, >} and c ∈ R. A constraint is a
conjunction of atomic constraints. A valuationv satisfies
the constraintα ⊲⊳ c if α[v] ⊲⊳ c. A regionζ ⊆ R

X is a set
of valuations satisfying a constraint.

Definition 1 (CTMCs) A continuous-time Markov chain
C is a triple (S,R, s0) with S a finite state space,R :
S × S → R>0 the rate matrix ands0 ∈ S the initial state.

States is absorbingif R(s, s′) = 0 for all s′ 6= s. Given
n the cardinality ofS, E = [E(s1), ..., E(sn)] is the vector
of exit rates, whereE(si) =

∑

s′∈S R(si, s
′). The vector

π(t) = [π1(t), ..., πn(t)] gives thetransient probabilityof
the CTMC, i.e., the probability of being in statesi (16i6n)
at timet. The Chapman-Kolmogorovequations describe the
evolution of the transient probability distribution over time:

dπ(t)

dt
= π(t)Q,

n
∑

i=1

πi(t0) = 1, (1)

whereπ(t0) is the initial condition andQ = R− diag(E)
is the infinitesimal generatorof CTMC C anddiag(E) is
the diagonal matrix constructed fromE.

Definition 2 (pCTMCs) A parametric CTMCover the set
X of parameters is a tripleC(X ) = (S,R(X ), s0), whereS

and s0 are as before, andR(X ) : S × S → R[X ] is the
parametric rate matrix.

The parametric infinitesimal matrixQ(X ) and the exit rate
vectorE(X ) are defined in a similar way asR(X ).

Definition 3 (Instance CTMCs) For pCTMC C(X ) and
valuationv, C(X )[v] (or simplyC[v] whenX is clear from
the context) is theinstance CTMCof C(X ) obtained by in-
stantiatingxi ∈ X byv(xi).
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Figure 1. pCTMCs and related concepts

For apCTMC C(X ) = (S,R(X ), s0) over the set of pa-
rametersX = {x1, ..., xm}, the initial region ζ0 satisfies
the following constraint:

m
∧

i=1

li 6 xi 6 ui ∧
∧

s,s′∈S

R(X )(s, s′) > 0, (2)

where
∧m

i=1 li 6 xi 6 ui is the range constraintof
the parameters and

∧

s,s′∈S R(X )(s, s′) > 0 the rate con-
straint ruling out the negative rates. The regions satisfy-
ing the range and rate constraints are calledrange region
(ζrange) and rate region (ζrate ), respectively. Note that
ζ0 = ζrange ∩ ζrate .

Example 1 In Fig. 1(a), we illustrate apCTMC over
{x1, x2} with the range constraint:0 6 x1 6 2.5 and
0 6 x2 6 2. The rate constraint is as follows:

2x1+4 > 0 ∧ 2−x2 > 0 ∧ x2−x1+1 > 0 ∧ x2
1−x2 > 0.

ζrange is the rectangular area in Fig. 1(b), whileζrate is
the area between the two curves. The initial regionζ0 is
the shaded area. Any point inζ0 will induce an instance
CTMC, e.g., for the valuationv(x1) = 1.5, v(x2) = 1, the
instanceCTMC is shown in Fig. 1(c).

3 Time-bounded reachability

We are mainly interested inprobabilistic time-bounded
reachabilityproperties, i.e., given a goal statesg, does the
probability of reachingsg within time t lie in the interval
[pl, pu]? In temporal logics, such as CSL [3], this is for-
malized asP[pl,pu](♦

6t sg), where0 6 pl 6 pu 6 1 and
♦6t sg denotes the reachability ofsg within t time units.

Note that the interval[pl, pu] may also be open, or half-
open.

The aim of model checking is to check for a given
state (typically the initial states0) of the CTMC whether
P[pl,pu](♦

6t sg) holds. The computation of reachability
probabilities boils down to computing transient probabili-
ties. Formally,

Lemma 4 ([3]) Given aCTMC C = (S,R, s0), andsg ∈
S an absorbing state:

Prob(s0,♦
6tsg) = πsg

(t), (3)

whereProb(s0,♦
6t sg) is the reachability probability of

sg from s0 within t time units andπsg
(t) is the transient

probability of statesg at timet.

This lemma also applies topCTMCs in the sense that every
valuationv ∈ ζ0 will induce an instance CTMC, for which
this lemma applies. Thus in the rest of this section, we focus
on deriving an expression forπsg

(t) with parameters inX .
This is done by uniformization. The expression forπsg

(t)
(equals the reachability probability) is the basis of solving
the synthesis problem in Section 4.

Uniformization in CTMCs. Uniformization (a.k.a.
Jensen’s method or randomization) [12] is a well-known
method for computing the vectorπ(t) of transient prob-
abilities. Uniformization is attractive because of its good
numerical stability and the fact that the computational error
is well-controlled and can be specified in advance.

For CTMC C = (S,R, s0), let q > maxi{E(si)}, and
define the matrixP = I + Q

q
, whereI is the identity matrix

of cardinality|S|. π(t) is then computed as:

π(t) = π(0)·

∞
∑

i=0

e−qt (qt)i

i!
Pi. (4)

The infinite summation problem is solved by introducing a
required accuracyε, so that‖π(t)−π̃(t)‖6ε, where‖v‖ =
∑

i |vi| is the norm,̃π(t) = π(0)·
∑kε

i=0 e−qt (qt)i

i! Pi is the
ε-approximation ofπ(t), andkε is the number of terms to
be taken in Eq. (4), which is the smallest value satisfying:

kε
∑

i=0

(qt)i

i!
>

1 − ε

e−qt
= (1 − ε)·eqt. (5)

If qt is large,kε tends to be of the orderO(qt).

In the rest of this section, we show how to apply this
technique topCTMCs.

Computing uniformization rate q. Given pCTMC
C(X ) = (S,R(X ), s0) with the setX of parameters and ini-
tial regionζ0, the uniformization rateq is at least the largest
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number that an exit rate can take inζ0. Formally,

q > max16i6n

{

maxv∈ζ0

{

E(X )(si)[v]
}}

(6)

Note thatq is a constant. It suffices to first maximize
each expressionE(X )(si) (each is an objective function)
within the closed regionζ0 (the innermax), and then take
the maximum out ofn candidates (the outermax), where
n = |S|. Typically, we take the minimal value ofq that ful-
fills Eq. (6). Let us now discuss how a solution to Eq. (6)
can be obtained. First we give an example:

Example 2 For thepCTMC in Fig. 1(a) and the initial re-
gion ζ0 in Fig. 1(b), the exit rate ofs0 and s1 is given
by the expressionsg0(x1) := 3 − x1 and g1(x1, x2) :=
x2

1 +2x1−x2 +4, respectively. The maximal value ofg0 in
ζ0 is 3 and13.75 for g1. Therefore, we take the uniformiza-
tion rateq = 13.75. The uniformizedpCTMC for this rate
is shown in Fig. 1(d).

In general, determining the inner max in Eq. (6) boils
down to solving anonlinear programming(NLP) prob-
lem [2], where the constraints are provided by the initial
region. Note that both the objective functionE(X )(si) and
the constraints (Eq. (2)) are polynomial expressions. For
some special cases, e.g., one parameter or linear expression
rates, the NLP problem can be simplified. Fig. 2 summa-
rizes the techniques that can be applied. The highest de-
gree of the objective function and constraints is indicated
along they-axis, whereas the number of variablesxi of the
objective function and constraints is indicated along thex-
axis. Each dot represents a combination. We partition the
x-y plane into 5 areas (indicated (I) through (V)) by dashed
lines, where the dots in the same area can be solved by the
techniques specified in the graph. In details:

• For the case of one parameter and degree at most4
(area (I) in Fig. 2), the maximal value can be obtained
by first deriving a closed-form expression and then
solving the expression. For polynomials of higher de-
gree, this isimpossibleas proven by Galois [21].

• For the case of one parameterx and the degree at least
5 (area (II) in Fig. 2), standardroot-finding algorithms
can be applied. To be more precise, the roots of the
first derivative of the polynomial are to be found as
the extreme values, among which together with the
boundary values ofx we can obtain the maximal val-
ues of the polynomial. The prevailing techniques are
Newton’s method[8], Sturm’s method[10], Laguerre’s
method[14], to name a few.

• For the case of more than one parameter and degree
one (area (III) in Fig. 2), it boils down to solving alin-
ear programming problem[18], where, amongst oth-
ers, thesimplex algorithm[5] and theinterior point
method[16] are well-known solution techniques and
quite efficient.

• For the case of more than one parameter and de-
gree from 2 to 20 (area (IV) in Fig. 2), the resultant-
based techniques or Gröbner bases methods [7] per-
form better than branch-and-bound techniques (see be-
low). Note that 20 is an estimation due to performance
considerations.

• The remaining cases (area (V) in Fig. 2) are general
NLP problems and can be solved numerically by, say,
thebranch-and-bound techniques[9].

Computing π̃(t). Recall that̃π(t) is theε-approximation
of the transient probability vectorπ(t). The reachability
probability tosg within time t equalsπsg

(t), and thus can
beε-approximated bỹπsg

(t). Similarly, we truncate the in-
finite sum ofπ(t) to obtainπ̃(t). Since the truncation point
kε in Eq. (5) is independent of the ratesin the CTMC, it
coincides with the non-parametric case. The transient prob-

ability vectorπ̃(t) = π(0)·
∑kε

i=0 e−qt (qt)i

i! (P(X ))
i

can be
computed by vector-matrix multiplication. For givenq and

t, e−qt (qt)i

i! is constant, while(P(X ))
i

contains parameters.
Let degxi

(P(X )) denote the maximal degree of parameter
xi in all expressions inP(X ). For instance,degx1

(P(X )) =

2 anddegx2
(P(X )) = 1 for thepCTMC in Fig. 1(a). Note

thatdegxi
(P(X )) = degxi

(R(X )). The degree of a polyno-

mial is the sum of the degrees of all its variables.
(

P(X )
)kε

has degree at most̂kε, wherek̂ε =
∑m

i=1 kε· degxi
(P(X )).

Givenq andt, the transient probabilitỹπsg
(t) is a polyno-

mial function over the parametersx1, ..., xm, i.e.,

f(x1, ..., xm) =
∑

j=(i1,...,im) aj·x
i1
1 ·...·xim

m , (7)

whereiℓ 6 kε·degxℓ
(P(X )) (1 6 ℓ 6 m), andaj ∈ R.

The degree off is at mostk̂ε, which is of orderO(mqtr),
wherer := maxxi∈X degxi

(P(X )) is the maximal degree
of the polynomial expressions appearing in thepCTMC.
Note thatkε is usually much larger thandegxi

(R(X )) and
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thus the degree of the polynomial expression in Eq. (7) is
not much affected if we would restrict rate expressions in
pCTMCs to be linear.

4 Parameter synthesis

The parameter synthesis problem is to determine all the
values that parameters can take such that the satisfaction of
the propertyP[pl,pu](♦

6t sg) is ensured in the derived in-
stance model. We define thesynthesis regionζsyn ⊆ ζ0 to
be the set of valuations, such that each valuation (or point)
v = (x′

1, ..., x
′
m) therein induces an instance CTMCC[v],

for which f(x′
1, ..., x

′
m) ∈ [pl, pu]. The aim is to find the

(approximate) synthesis regionζsyn . To enable easy visual-
ization, we restrict topCTMCs with at most two param-
eters. Our techniques can be applied to more-parameter
cases, however, the computational complexity will grow
drastically.

Synthesis regions. Given the pCTMC C(x1,x2) and
propertyP[pl,pu](♦

6t sg), the transient probabilityz =
f(x1, x2) defines a surface, see Fig. 3(a) for an (artificial)
example. Forz ⊲⊳ p (⊲⊳ ∈ {<, 6, >, >}, p ∈ [0, 1] a
constant), the projection of the surface on thex1x2-plane
z = p (in particular in regionζrange ) is a regionζ⊲⊳p with
boundary curve∇p. ζ⊲⊳p is the set of points(x1, x2) such
that f(x1, x2) ⊲⊳ p. The boundary curve∇p is given by
f(x1, x2) − p = 0. The regionζ[pl,pu] is the intersection of
ζ>pl

andζ6pu
, wherepl andpu are the probability bounds

on the reachability property♦6t sg. As an example, the
shaded areas in Fig. 3(b) and 3(c) depict the regionζ>pl

andζ6pu
derived from the projection of the surface in Fig.

3(a) onz = pl andz = pu. The intersectionζ>pl
∩ ζ6pu

(Fig. 3(d)) is the synthesis regionζ[pl,pu], givenζrange the
rectangular area.

Note that in general it is impossible to get the exact shape

Algorithm 1 Framework for obtaining approximate synthe-
sis regions.

Require: pCTMC C(x1,x2), formulaP[pl,pu](♦
6t sg)

Ensure: approximate synthesis regionζsyn (a set of polygons)
1: computeζ∗

syn := ζ6pu ∩ ζ>pl
∩ ζrange ;

1.1: discretizeζrange onx1x2-plane by grid steps∆i(i=1,2);
1.2: compute all intersection points (short as int. pts.)

of grid lines with boundary curves∇pl
,∇pu ;

1.3: identify to which polygon each int. pt. belongs;
1.4: if necessary, refine the grid with∆′

i(<∆i); goto Step 1.2;
1.5: connect certain int. pts. to form approximate polygons;

2: computeζsyn := ζ∗

syn ∩ ζrate ;
2.1: discretizeζrate onx1x2-plane with the same grid;
2.2: intersectζ∗

syn andζrate grid by grid;

of the boundary curvef(x1, x2) − p = 0 (asf(x1, x2) is
a high-degree polynomial) as well as the exact synthesis re-
gion. As a result, we usea set of linear line segmentsto ap-
proximate the boundary curves, thus the approximate syn-
thesis region isa set of polygons. This will be explained in
more detail in Section 4.2.

A high-level algorithm to obtain an approximate synthe-
sis region is given in Alg. 1. The algorithm proceeds in two
steps: in Step 1 we obtain a first approximationζ∗syn of the
synthesis region while ignoring the rate constraintζrate ; in
Step 2, we computeζsyn = ζ∗syn ∩ ζrate as the final synthe-
sis region such that all the points that will induce a negative
rate (thus not a CTMC at all) are removed. Steps 1.1 and
2 are based on the discretization techniques of Section 4.1.
Steps 1.2-1.5 will be explained in more detail in Section 4.2
and 4.3 as the SRA algorithm (Alg. 2).

4.1 Discretization

Given the parameter setX = {x1, x2} andζrange , we
specify a discretization step∆i ∈ R>0 for each parameter
xi (i = 1, 2), such thatui − li = Ni∆i. Thus, the range
[li, ui] of values that variablexi can take is partitioned into
Ni subintervals:

[li,li+∆i] , (li+∆i,li+2∆i],...,(li+(Ni − 1)∆i,li+Ni∆i].

The valuesli + j∆i (0 6 j 6 Ni) are assigned indices
0, 1, ..., Ni. We obtain a2-dimensional grid, where thegrid
pointsare of the formgp = (j1, j2) for 0 6 ji 6 Ni with
the valuation(l1 + j1∆1, l2 + j2∆2) and agrid cell is a
smallest rectangle with grid points as its four vertices. The
regionζrange consists of at most(N1 + 1)(N2 + 1) grid
points and each pointgp induces an instance CTMCC[gp]

by the valuation ofgp. The transient probabilityπC[gp]
sg (t)

is computed by standard methods for computing transient
probabilities in CTMCs. It is important to realize that this
yields a discretization in the sense that instead of checking
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each point in the dense regionζrange , we only check the
discrete grid points as “samples”.

Example 3 Given the shaded range regionζrange formed
by [l1, u1] and [l2, u2], the grid discretization is as in Fig.
4(a), where∆1 = ∆2. The grid indices are marked with a
star to distinguish them from the ones on the axes.

It is usually convenient to choose a global∆ (i.e.,
∆=∆1=∆2) so that the approximation error is the same
in each dimension. Since the grid points near the curves are
much more important, it is possible to use anon-uniform
grid, e.g., smaller grid steps near the curve and larger grid
steps away from the curve.

4.2 Approximating the synthesis region

As a next step, we characterize the regionζ∗syn by ap-
proximating its boundary curves∇pl

,∇pu
by a set of poly-

gons. A grid pointgp be positive if π
C[gp]
sg (t) ∈ [pl, pu]

andnegativeotherwise. Two grid pointsgp = (i, j) and
gp′ = (i′, j′) areadjacentif |i − i′| + |j − j′| = 1. The
main idea is to find all intersection points of the bound-
ary curves∇pl

,∇pu
with the grid lines. These intersection

points are then connected to approximate the curves∇pl

and∇pu
. The resulting area bounded by the approximate

curves is a set of polygons (polyhedra, in case of more than
2 parameters). This idea is illustrated by Fig. 4(b) and 4(c),
where the white area in Fig. 4(b) is the accurate synthesis
regionζ∗syn , the circle-marked grid points are positive, and
the intersection points are marked withX . The approximate
synthesis region is the white polygon in Fig. 4(c).

Let us explain the algorithm in more detail. We represent
the polygonζ by a tree, such that one (positive) grid point
gp insideζ is picked as theroot and all other (positive) grid
points inζ areinternal nodes, while the intersection points
areleaf nodes. This terminology will be used interchange-
ably in the rest of the section. Since the synthesis region
may consist of more than one polygon (tree), we need a
root tag to indicate to which tree a leaf or an internal node
belongs. A leaf or an internal node without a root tag is
called anorphan. The approximate synthesis regionζ∗syn is
represented by a set of polygons, i.e., sets of line segments.

The sketch of the synthesis region approximation (SRA)
algorithm is shown in Alg. 2.

Algorithm 2 Synthesis Region Approximation (SRA)
Require: f(x1, x2), [li, ui], ∆i (i = 1, 2), ∆min

Ensure: polygon approximate synthesis regionζ∗

syn

/∗ initialization∗/
1: find all int. pts. between∇pl

,∇pu with the grid lines;
/∗ label intersection and grid points with root tags∗/

2: while (there exists a positive orphan grid pointgp) do
3: makegp the root of a new tree;

gp is set as an unexplored tree node;
4: while (treegp has unexplored nodecurt ) do
5: curt is set to be explored;
6: for each (curt ’s adjacent nodeadj ) do
7: if (adj is positive∧ adj is orphan∧

#IntPts(curt ,adj )=0) then
8: let adj have the same root ascurt ;
9: adj is set as an unexplored tree node;

10: elseif( (adj is pos.∧#IntPts(curt ,adj ) > 0) ∨
(adj is negative))

11: find the leaf nodelp closest tocurt;
makelp’s root the same ascurt ’s root;

12: end if
13: end while
14: end while

/∗ refine the discretization steps, if necessary∗/
15: if min{∆1, ∆2} > ∆min then
16: for each (gc with (#leaves(gc) > 4) or

(#leaves(gc)=2 ∧ #PosVtx(gc)=0, 4))
17: refine the nine grids withgc in the middle;

/∗ connect the intersection points to form polygons∗/
18: for each (lp1, lp2 with the same root in the same grid)
19: add line segmentlp1-lp2 as one side of a polygonζ∗

syn ;
20: return ζ∗

syn ;

Initialization. Prior to running the main core of the algo-
rithm, we determine all intersection points of the boundary
curves∇pl

and∇pu
with the grid lines (cf. line 1). For each

grid linexi = j∆i (i = 1, 2 and0 6 j 6 Ni), we solve the
following system of equations:

{

f(x1, x2) − pl = 0
xi = j∆i

{

f(x1, x2) − pu = 0
xi = j∆i

,

which boils down to solving asingle variablepolynomial
function, which in general can be solved by standard root-
finding algorithms [8, 10, 17]. Since the polynomial func-
tion is usually of (very) high-degree, the method in [19] is
more applicable. In total, we need to solve2(N1 + N2 + 2)
polynomials, since we have2 curves andNi+1 grid lines in
dimensioni. Note that forpCTMCs with more than 2 pa-
rameters, obtaining all the intersection points is more costly,
as the number of grid points increases exponentially with
the number of parameters.



Label grid and intersection points. We will explain the
main part of the SRA algorithm with the aid of Fig. 5(a),
where the grid points (circles for positive and squares for
negative ones) are denoted bya, b, ..., the intersection points
(X ) are denoted by1, 2, ... and grid cells are denoted by
A,B,C.... We use#IntPts(gp1, gp2) to denote the num-
ber of intersection points between grid pointsgp1 andgp2.
Starting from a positive grid pointcurt as a root node
(say c), we search its four adjacent grid pointsadj ∈
{w ,n, e, s}. Some possible cases are:

• if adj is positive and orphan and#IntPts(curt , adj ) =
0 (see Alg. 2, line 7), thenadj should belong to the
same polygon ascurt , thus share the same root tag.
This applies in Fig. 5(a) to grid pointsc andn.

• if adj is positive and#IntPts(curt , adj )>0 (line 10,
first disjunct), thenadj and curt belong to different
polygons (trees), see e.g. grid pointsc andw and their
polygons in Fig. 5(b) at the same position. In this case,
we pick the intersection pointlp which is closest to
curt and label it with the same root ascurt (line 11).

• If adj is negative (line 10, second disjunct), then
#IntPts(curt , adj ) > 0 (sincecurt is positive), see
e.g. grid pointsc ands or e in Fig. 5(a). We deal with
this case the same as the previous one (line 11).

When each grid point in a polygon is explored (line 4)
– its four adjacent grid points have been checked – we can
choose another root node until there are no positive orphan
grid points (line 2). The justification for taking the closest
intersection pointlp is thatlp is for sure on the boundary of
the current polygon (see pointc and5, not4).

As is typical for polygon approximation algorithms, the
algorithm is not guaranteed to find all regions correctly. We
might exclude some intersection points (e.g., only point1 is
obtained for the treef , 2 and3 are regarded not in the same
polygon). The main cause is that the grid is too coarse. This
can be repaired by a grid refinement, as explained below.

4.3 Refinement

The above root-labeling algorithm does not guarantee to
find all regions. This, of course, depends on the granular-
ity of the grid. For instance, in Fig. 5(a), the two positive
grid points in grid cell H are in the same region, but since
they are not adjacent, they will be identified as the roots
of two different trees (and thus give rise to two polygons),
cf. Fig. 5(b). The approximation of grid cell G is also too
coarse, since intersection points2 and3 are orphans.

A solution to find the neglected regions is by refining the
discretization steps. Let#leaves(gc) denote the number of
intersection points on the four sides of grid cellgc. For in-
stance, grid cell H in Fig. 5(a) has four leaves. If a leaf point
lp coincides with one ofgc’s vertices or is the tangent point
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between a boundary curve and one of the grid sides, then
it will be counted twice. Note that#leaves(gc) is always
even. We also define thenumber of positive verticesof gc,
denoted by#PosVtx(gc). For instance,#PosVtx(H)= 2.
Note that#PosVtx(gc) can be at most 4.

Where to refine? Let us now explain when refinement
is necessary. We list some combinations of#leaves(gc)
and#PosVtx(gc) below, each with an example grid cell.
For the “to refine?” column,yes is clear; whereas “check
convexity” indicates a conditional refinement.

#leaves #PosVtx ex.grid cell to refine?
2 0 A (Fig. 5(a)) yes

2 1 B (Fig. 4(b)) check convexity
2 2 C (Fig. 4(b)) check convexity
2 3 D (Fig. 4(b)) check convexity
2 4 E (Fig. 5(a)) yes

4 0 F (Fig. 5(a)) yes

4 1 G (Fig. 5(a)) yes

4 2 H (Fig. 5(a)) yes

4 3 I (Fig. 5(a)) yes

4 4 J (Fig. 5(a)) yes

• #leaves(gc) = 2 ∧ #PosVtx(gc) ∈ {1, 2, 3}

In general, we have to check the convexity of the curve
in gc in order to decide whether or not to refinegc. In
particular, if the curve ingc is convex, then itdoes not
need to be refined; otherwise, it needs a refinement.

The convexity as well as#leaves(gc) = 2 ensure that
the line segment (between the two leaves) closely ap-
proximates the curve ingc. This applies to all the grid
cells in Fig. 4(b).



The nonconvexity, on the other hand, indicates that
the curve has protuberances that a line segmentcannot
sufficiently approximate, cf. grid cell K in Fig. 5(a).

However, it is quite costly to check the convexity in
each grid cell. In practice, we choosenot to refine in
this case. If the grid step is sufficiently small, the pro-
tuberances inside one grid cell are negligible.

• #leaves(gc) = 2 ∧ #PosVtx(gc) ∈ {0, 4}

A refinement is required in this case as some area is
smaller than a grid cell, see grid cells A and E, where
A has orphan leaves. For E, all the four vertices (inter-
section points) of the black trapezoid in Fig. 5(b) be-
long to the same polygon according to the algorithm,
however, it is unknown how these four points are con-
nected as sides of a (larger) polygon.

• #leaves(gc) > 4

Typically, the more intersection pointsgc has, the more
possible that some locally abrupt behavior (or protu-
berances) of the curve occurs ingc. Since the area
of interest is usually smaller than a grid cell, the dis-
cretization is too coarse and needs a refinement.

This can be seen by all the#leaves(gc) = 4 cases
shown in the table, where grid cells H, I, J split one
connected region into two separated polygons, while
grid cells F and G have orphan leaves. None of those
grid cells yield a close approximation.

For #leaves(gc) > 4, they will be refined due to the
similar reasons.

• #leaves(gc) = 0 ∧ #PosVtx(gc) ∈ {0, 4}

The grid cell gc is either completely outside the
polygon (#PosVtx(gc) = 0) or completely inside
(#PosVtx(gc) = 4). Thus, there is no need to refine-
ment for this case.

How to refine? The table can be used as a criterion to
check whether or not a grid cell needs to be refined. Once
we have identified the suspicious grid cellgc, the following
question is how to refine? There can be different strategies
for refinement [20], e.g., global vs. local; with uniform or
non-uniform steps; how to reduce the discretization steps,
etc. The strategies highly depend on the application, i.e.,
the structure of the polygons.

For the sake of simplicity, we consider one strategy,
namely, the local and bisectional refinement. To be more
exact, we will refine locally the area of 9 grid cells withgc
in the center. Note that it is also possible to refine more
or fewer (than 9) grid cells as the “local area”. A new dis-
cretization with step size12∆i will be performed on those
grid cells. For the new grid points, redo the SRA algo-
rithm until either the discretization step is less than the user-
defined∆min or there are no grids to refine due to our cri-
terion.
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Construct the polygons. In case the algorithm terminates
before∆min is reached, it is guaranteed that there does not
exist any grid cell with more than 2 intersection points.
Hence, obtaining polygons amounts to connecting the in-
tersection points which share the same root within the same
grid cell, see Fig. 4(c). Otherwise (∆min is reached), the
intersection points can be connected according to the same
rules, but certain regions might not be detected. For in-
stance, the rightmost circle in grid cell L has no intersection
points with any grid lines in Fig. 5(a), and thus cannot be
detected. These regions are only bounded in one grid cell.
Thus, given a small discretization step, the undetected areas
can be safely neglected within the predefined error bound.
Note that to obtain a more precise approximation, we can
take other discretization techniques, say, adding diagonal
lines as well. In this case, a cell is a triangle, where our
algorithm can be adapted easily.

Example 4 Consider thepCTMC in Fig. 1, and let the dis-
cretization steps∆1 = ∆2 = 0.01, uniformization error
boundε = 10−6 and propertyP>0.5(♦

60.5 sg). Given the
rate regionζrate as in Fig. 6(a),ζ∗syn andζsyn are as shown
in Fig. 6(b) and Fig. 6(c), respectively. We omit the grid
lines so as to make the figure readable. Since no grid cell
has to be refined according to our criteria, the final region
remains asζsyn .

4.4 Efficiency and accuracy

Time complexity. In the worst case, the discretization
step is∆min and there areNi = ui−li

∆min

(i = 1, 2) subinter-
vals. Obtaining the closed-formed expression off(x1, x2)
(see Eq. (7)), takesO(n2qt) time, like computing the tran-
sient probabilities. For the initialization,2(N1+N2+2)
polynomial equations have to be solved with precision2−β

(β is the bit precision). Using the algorithm in [17], this

has time complexityO
(

k̂2
ε log(k̂ε) log(βk̂ε)

)

, wherek̂ε is

the degree of the polynomialf(x1, x2) (see the end of Sec-
tion 3). For the root tag labeling part, the time complexity
is in the order of the number of grid points, i.e.,O(N1N2).
Evaluatingf(x1, x2) at each grid point takesO(k̂ε) time.
Gathering these complexity figures we have:

Theorem 5 The worst case time complexity of the SRA is:
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O
(

n2qt + k̂εN1N2 + k̂2
ε log(k̂ε) log(βk̂ε)(N1+N2)

)

,

wherek̂ε is of the orderO(mqtr) with r the maximal degree
of the polynomial expressions in the pCTMC.

Error bound. An important question is how accurate the
derived synthesis region is. Let us explain this by using
Fig. 7(a), where the accurate region is the gray area and
its approximation is the dashed polygon. We assume that
within any grid cell the boundary curve is convex. Letdi

be the distance between the line segment approximating the
curve and the tangent (with the same slope) to the curve in
the grid celli. Let dmax = maxi{di} be the largest such
distance. It is, however, very costly to compute everydi

and thusdmax. In practice,dmax is taken to be
√

∆2
1 + ∆2

2

which is the maximal value it can take. The top-rightmost
distance in Fig. 7(a) is very close to this upper bound.

Given the approximate polygonζsyn (dashed polygon in
Fig. 7(b)) anddmax, we can construct polygonsζmax

syn (the
largest polygon in Fig. 7(b)) andζmin

syn (the smallest poly-
gon), where distancedmax is added and subtracted from the
boundary ofζsyn , respectively. The points inζmax

syn − ζmin
syn

mayinduce a valid CTMC, while the points inζmin
syn always

induce a valid CTMC.ζmin
syn can be regarded as the “safe”

synthesis region.

5 Case study

We apply our approximation algorithm to a concrete
case study from the literature. Astorage system with er-
ror checkingincorporates redundant data for discovery of
and recovery from errors caused by hardware or software
faults [4]. The use of redundancy enhances the reliability of
the storage system but unavoidably degrades the system’s
performance because of the extra processing time required
for error checking. Typically, on every request it is checked
whether an error occurred.Probabilistic error checkingcan
be applied to reduce the error checking overhead. In par-
ticular, each access operation will be followed by an er-
ror checking with probabilityr ∈ [0, 1], instead of almost
surely (i.e.,r = 1). Such a storage system can be modeled
by apCTMC as indicated in Fig. 8.
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Figure 8. A storage system with probabilistic
error checking, with queue capacity 5

The storage system is1-correctable, i.e., the system can
recover from a single error, but fails (stateF ) if two or more
errors occur. We suppose that all access operations (reads
and writes) as well as the error checking are atomic and all
delays involved (such as arrivals, checks, etc.) are exponen-
tially distributed. Access operation requestsarrive with rate
λ and areservedwith rateµ; the hardware/software willfail
with rateγ, while theerror checkingtakes place with rate
σ. The arrived but not yet served requests are queued. We
assume a queue capacity of 5. The states of thepCTMC
are of the form(i, j), wherei is the number of queued ac-
cess operation requests andj the number of errors (0 or 1);
an asterisk indicates that an error check is being performed.
The property of interest isP6p(♦

6t sF ).
Typically, the probabilityr can belogically adjustedto

guarantee some given specification. On the other hand,µ,
σ, andγ can bephysically adjustedby changing the hard-
ware/software. In the following, we show the experimental
results for 1) one parameterr, i.e., for which error checking
probabilityr can we guarantee that the probability to reach
the fail state (within the deadline) is low, e.g., less than
0.0075? 2) two parametersµ andσ, i.e., how fast should
read/write requests be handled and errors be checked in or-
der to obtain a low failure probability? In all computations
the error bound for uniformization isε = 10−6.

One parameter: r. Let λ = 0.3 (0.3 access operation re-
quests per second),µ = 0.5, σ = 0.5 andγ = 5 × 10−5

(an average time of two consecutive errors is approximately
5 days). The parameterr has initial range[0, 1] and the
discretization step∆ = 0.01. For the specificationΦ1 =
P60.0075(♦

6t sF ), wheret ∈ {100, ..., 500}, the synthe-
sis region is an interval as shown in Fig. 9(a), where the
probability thresholdp = 0.0075 is marked by a dashed
line. For t = 100, the entire ranger ∈ [0, 1] is safe; in-
tuitively, it is less probable to fail given a small period of
time. Fort = 200, ..., 500, r approximately lies in the in-
tervals[0.1, 1], [0.28, 1], [0.41, 1], [0.5, 1], respectively. The
larger the time bound, the higher the error checking proba-
bility r should be to satisfyΦ1.
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Figure 9. Syn. regions for storage system

Two parameters: µ and σ. Let λ = 0.3 , γ = 5 × 10−5

andr = 0.3, 0.5 or 0.7. The parameter ranges areµ ∈
[0.1, 1.1] and σ ∈ [0.1, 1.1], with ∆µ = ∆σ = 0.01.
The initial regionζ0 is the same rectangular area asζrange .
For the specificationΦ2 = P60.002(♦

6200 sF ), the syn-
thesis regions are the black regions as shown in Fig. 9(b)
through 9(d) for different values ofr. Notice that the shape
of the boundary curves is simple (i.e. without local protu-
berances), refinement is not performed. The higher the error
checking probabilityr is, the larger the region for whichΦ2

holds. If error checking takes longer (i.e., with a low error
checking rateσ), then it is less probable to fail. This is due
to the assumption that during the error checking, no error
will occur. On the other hand, if a request is served faster
(i.e., with high service rateµ), then it is less probable to fail.
This is because faster serving causes less errors. In practice,
an error checking is preferred to be carried out fast for the
sake of efficiency. We, therefore, can adjust the combina-
tion of µ andσ to meet the specification and enhance the
efficiency.

6 Conclusion

The central question that we considered is: for a stochas-
tic real-time system with parametric random delays, can we
find sets of parameter values for which a given specifica-
tion is satisfied? This paper presented an algorithm that
yields an approximation of these values for CTMCs and
time-bounded reachability specifications. To our knowl-
edge, this is the first parameter synthesis approach in this
setting. An example from the literature showed the feasibil-
ity of our approach. Note that most of the time we will have
a very-high-degree polynomial function to solve, however
there are existing algorithms [19] to factorize such polyno-
mials efficiently. Future work will concentrate on improve-
ments of our algorithm.
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