Efficient CTM C Model Checking of
Linear Real-Time Objectives

Benoit Barbot?, Taolue Chen?, Tingting Han',
Joost-Pieter Katoen'-? and Alexandru Mereacre!

'MOVES, RWTH Aachen University, Germany
2 ENS Cachan, France
3 FMT, University of Twente, The Netherlands

Abstract. This paper makes verifying continuous-time Markov chains (CTMCs)
against deterministic timed automata (DTA) objectives practical. We show that
verifying 1-clock DTA can be done by analyzing subgraphs of the product of
CTMC C and the region graph of DTA A. This improves upon earlier results
and allows to only use standard analysis algorithms. Our graph decomposition
approach naturally enables bisimulation minimization as well as parallelization.
Experiments with various examples confirm that these optimizations lead to sig-
nificant speed-ups. We also report on experiments with multiple-clock DTA ob-
jectives. The objectives and the size of the problem instances that can be checked
with our prototypical tool go (far) beyond what could be checked so far.

1 Introduction

For more than a decade, the verification of continuous-time Markov chains, CTMCsfor
short, has received considerabl e attention, cf. the recent survey [7]. Due to unremitting
improvements on algorithms, (symbolic) data structures and abstraction techniques,
CTMC model checking has emerged into a valuable analysis technique which — sup-
ported by powerful software tool s— has been adopted by various researchersfor systems
biology, queueing networks, and dependability.

The focus of CTMC model checking has primarily been on checking stochastic
versions of the branching temporal logic CTL, such as CSL [6]. The verification of LTL
objectives reduces to applying well-known algorithms [20] to embedded discrete-time
Markov chains (DTMCs). Linear objectives equipped with timing constraints, have just
recently been considered. This paper treats linear real-time specifications that are given
as deterministic timed automata (DTA). These include, e.g., properties of the form:
what is the probability to reach a given target state within the deadline, while avoiding
“forbidden” states and not staying too long in any of the “dangerous’ states on the way.
Such properties can neither be expressed in CSL nor in dialects thereof [5, 14]. Model
checking DTA objectives amounts to determining the probability of the set of paths
of CTMC C that are accepted by the DTA A4, i.e., Prob(C = A). We recently showed
in [12] that this equals the reachability probability in a finite piecewise deterministic
Markov process (PDP) that is obtained by a region construction on the product C ® \A.
This paper reports on how to make this approach practical, i.e., how to efficiently realize
CTMC model checking against DTA objectives.

As afirst step, we show that rather than taking the region graph of the product
C ® A, which is a somewhat ad-hoc mixture of CTMCs and DTA, we can apply a
standard region construction on DTA A prior to building the product. This enables ap-
plying a standard region construction for timed automata. The product of this region
graph with CTMC C yields the PDP to be analyzed. Subsequently, we exploit that for
1-clock DTA, the resulting PDP can be decomposed into subgraphs—each of which is
a CTMC [12]. In this case, Prob(C [= A) is the solution of a system of linear equa-
tions whose coefficients are transient probability distributions of the (slightly amended)
subgraph CTMCs. We adapt the algorithm for lumping [13,19] on CTMCs to our set-
ting and prove that this preserves reachability probabilities, i.e., keeps Prob(C = A)
invariant. As the graph decomposition naturally enables parallelization, our tool imple-
mentation also supports the distribution of computing transient probabilities over mul-
tiple multi-core computers. Finally, multi-clock DTA objectives —for which the graph
decomposition does not apply— are supported by a discretization of the product PDP.

Three case studies from different application fields are used to show the feasibility
of this approach. The first case study has been taken from [3] which considers 1-clock
DTA astime constraints of until modalities. Although using a quite different approach,
our verification results coincide with [3]. The running time of our implementation (with-
out lumping and parallelization) is about three orders of magnitudefaster than[3]. Other
considered case studies are a randomly moving robot, and a real case study from sys-
tems biology [15]. Bisimulation quotienting (i.e., lumping) yields state space reduction
of up to one order of magnitude, whereas parallelizing transient analysis yiel ds speed-
ups of up to a factor 13 on 20 cores, depending on the number of subgraphs in the
decomposition.

The discretization approach for multi-clock DTA may give rise to large models:
checking the robot example (up to 5,000 states) against a two-clock DTA yields a 40-
million state DTMC for which simple reachability probabilities are to be determined.

Related work. Thelogic asCSL [5] extends CSL by (time-bounded) regular expressions
over actions and state formulas as path formulas. CSL™ [14] allows 1-clock DTA as
time constraints of until modalities; this subsumes acCSL. The joint behavior of C and
DTA A isinterpreted as a Markov renewal process. A prototypical implementation of
this approach has recently been reported in [3]. Our algorithmic approach for 1-clock
DTA is different, yields the same results, and is —as shown in this paper— significantly
faster. Moreover, lumping is not easily possible (if at al) in [3].

In addition, it naturally supports bisimulation minimization and parallelization. Bi-
simulation quotientingin CSL model checking hasbeen addressedin [18]. Theworks[4,
9] provide a quantitative interpretation to timed automata where delays of unbounded
clocks are governed by exponential distributions. Brazdil et al. present an algorithmic
approaches towards checking continuous-time stochastic games (supporting more gen-
eral distributions) against DTA specifications [11]. To our knowledge, tool implemen-
tations of [4, 9, 11] do not exist.

Organization of the paper. Section 2 provides the preliminaries and summarizes the
main results of [12]. Section 3 describes our bisimulation quotienting algorithm. Sec-
tion 4 reports on the experiments for 1-clock DTA objectives. Section 5 describes the

discretization approach and gives experimental results for multi-clock DTA. Finally,
Section 6 concludes. (Proofs are omitted and can be found in the full version available
at http://moves.rwth-aachen.de/i2/han.)

2 Préiminaries

2.1 Continuous-time Markov chains

Definition 1 (CTM C). A (labeled) continuous-timeMarkov chain (CTMC) isatuple
C = (S,AP,L,«a,P, E) where S isafinite set of states; AP isafinite set of atomic
propositions;, L : S — 2AP isthe labeling function; o € Distr(S) is the initial
distribution; P : S x S — [0, 1] isa stochastic matrix; and £/ : S — R isthe exit
rate function.

Here, Distr(S) is the set of probability distributions on set .S. The probability to exit
state s in ¢ time unitsisgivenby [E(s)-e~#(*)7dr. The probability to take the transi-
tions — s int time unitsis P(s, s')- [} E(s)e”Z(*)7dr. The embedded DTMC of C
is(S,AP, L, o, P). A (timed) pathin CTMC C isasequencep = sg 2+ s s 55 - - -
suchthat s; € S andt; € R-o. Let Paths® bethe set of pathsin C and p[n] := s,, be

the n-th state of p. The definitions of a Borel space on paths through CTM Cs,and the
probability measure Pr follow [20, 6].

a,1 <z <2 {z}

(8 Anexample CTMC (b) Anexample DTA
Fig. 1. Example CTMC and DTA

Example 1. Fig.1(a) showsan example CTMC with AP = {a, b, ¢} andinitial state s,
i.e, a(s) = 1iff s = sg. Theexit ratesareindicated at the states, whereasthe transition
probabilities are attached to the edges. An examplepathisp = s 22 5 14 59 2

s1 2" 5 - - - With p[2] = s and p[3] = s;.

Definition 2 (Bisimulation). Let C = (S,AP, L,«, P, E) bea CTMC. Equivalence
relation R on S isa (strong) bisimulation on C if for s1Rs,:

L(Sl) = L(Sg) and P(Sl, C) = P(SQ, C) for all C'in S/R and E(Sl) = E(Sg).
Let 51 ~ s9 if there exists a strong bisimulation R on C with s1R.ss.

The quotient CTMC under the coarsest bisimulation ~ can be obtained by partition-
refinement with time complexity O(m logn) [13]. A simplified version with the same
complexity is recently proposed in [19].

2.2 Deterministic timed automata

Clock variables and valuations. Let X = {z,...,z,} beaset of clocksinR>(. An
X-valuation (valuation for short) is afunctionn : X — R; 0 is the valuation that
assigns 0 to al clocks. A clock constraint g on X hastheform z < ¢, or g’ A g”, where
x € X, <€ {<,<,> >} and c € N. Diagonal clock constraints like z—y i ¢ do
not extend the expressiveness [8], and are not considered. Let CC(X") denote the set of
clock constraints over X'. An X'-valuation r satisfies constraint ¢, denoted as 7 |= g if
n(z) > ¢ for g of theformz i ¢, 0rp = g’ An = ¢” for g of theform g’ A ¢”’. The
reset of n w.rt. X C X, denoted n[X := 0], isthevaluation n’ withVz € X. n/(z):=0
andvVx ¢ X. n'(x):= n(z). For 6 € Rxg, n+4 isthevaluation n” such that Vz € X.
" ()= n(z) + 0.

Definition 3 (DTA). Adeterministictimed automaton (DTA) isatupleA = (X, X, Q,
90, Qr,—) where X isafiniteaphabet; X isafiniteset of clocks;, @ isanonempty
finite set of locations;, ¢ € Q istheinitial location; Qr C Q is a set of accept-
ing locations; and — € (Q \ Qp)xIxCC(X)x2¥xQ satisfies: ¢ —22% ¢/ and
q 22X g with g #£ ¢ impliesgN g’ = .

We refer to ¢ —22X, ¢/ as an edge, where a € X is the input symbol, the guard
g is a clock constraint on the clocks of A, X C X isaset of clocks and ¢,q’ are
locations. The intuition is that the DTA A can move from location g to ¢’ on reading
the input symbol « if the guard g holds, while resetting the clocksin X on entering ¢ .
By convention, we assume g € @ r to beasink, cf. Fig. 1(b).

Paths. A finite (timed) path in A is of theform § = qq Mﬂh C g “n—%»qnﬂ
with ¢; € Q,t; > 0anda; € X (0 < ¢ < n). The path 6 is accepted by A if
0li] € Qr forsome 0 < i < |f] and foral 0 < j < 4, it holds that o = 0,
ni+t; = g; andnjp1 = (n;+t;)[X; := 0], wheren; isthe clock valuation on entering
q; and g; the guard of ¢; — ¢;+1. Theinfinite path p = sg -2+ s; 2. in CTMC

C is accepted by A if for somen € N, sg 2551 ---5,_; In-1, ¢ induces the DTA

path p = go 280kt g g,y Llen=tama 0 \which is accepted by A. The set
of CTMC paths accepted by a DTA is measurable[12]; our measure of interest is given
by:

Prob(C = A) = Pr{ p € Paths® | pisaccepted by DTA A }.

Regions. Regionsare sets of valuations, often represented as constraints. Let Re(X') be
the set of regionsover X. For regions©, ©’ € Re(X), ©' isthe successor regionof O if
forall n = O thereexists§ € R suchthatn+4d = @' andVd’ < 6.n+6" =OVEO'.
The region © satisfies a guard g, denoted © = g, iff Vi E 6.1 | g. The reset
operationon region @ isdefined as O[X := 0] := {n[X := 0] | n = O}.

Definition 4 (Region graph [2]). Let A = (X, X,Q, g0, Qr,—) bea DTA. There-
gion graph G(A) of A is (X, W, wo, Wg,--+) with W = @ x Re(X) the set of
states; wo = (qo, 0) the initial state; Wr = Qr x Re(X) the set of final states;
and--»C W x (¥ x 2%¥)w{d}) x W the smallest relation such that:

(¢,0) 2, (¢, @) if © isthe successor region of ©; and
(4,0) 25 (¢,0")if3g € CC(X) st. ¢ 225/ With© = g and O[X := 0] = O’

Product. Our aimisto determine Prob(C = A). This can be accomplished by comput-
ing reachability probabilities in the region graph of C ® A where ® denotes a product
construction between CTMC C and DTA A [12]. To ease the implementation, we con-
sider the product C ® G(A).

Definition 5 (Product). The product of CTMC C = (S,AP, L, «, P, E) and DTAre-
giongraphG(A) = (X, W, wo, Wg, --+), denoted C® G(A), isthetuple (V, o', Vi, A,
—=)withV =8 x W, d/(s,wy) = a(s), Vp =S x W, and

- = CV x(([0,1] x 2¥) w{é}) x V isthe smallest relation such that:

° (s,w)&(s,w’)iﬂ?w—i w'; and
, L(s),X
o (s,w)‘iﬁf(s',w’)iffp:P(s,s’),p>O,andw s w'.

— AV — Ry isthe exit rate function where:
i BX ’o
Als, w) = E(s) if (s,w) < (s',w’) for some (s, w') € V
0 otherwise.

The (reachable fragment of the) product of CTMC C in Fig. 1(a) and the region graph of
DTA AinFig. 1(b) isgivenin Fig. 2. It turnsout that C ® G(.A) isidentical to G(C ® A),
the region graph of C ® A as defined in [12].

Theorem 1. For any CTMC C andany DTA A, C® G(A) = G(C ® A).

Asacorollary [12], it follows that Prob(C = A) equals the reachability probability of
the accepting statesin C ® G(.A). Inaddition, C @ G(A) isaPDP.

2.3 Decomposition for 1-clock DTA

Let A beal-clock DTA and {cq,...,cm} CNwWith0 =cy < ¢ < -+ < ¢, thecon-
stants appearing in its clock con- _—
straints. Let A¢; = Cit1—C; for 0 < v:smq«>~0<w<1 d S0, 0, 1<<2
i < m. The product C ® G(A) can % ‘
be split into m+1 subgraphs, denoted 1()0-5>1<sa, 05 ..,
G; for 0 < i < m, such that any ,slﬁq(,,0<z<l}—{s—{sl,qu‘lgw<2‘

state in G; has a clock valuation in o
[Ci,ci+1) for0 < 7 < m and in 04,0] resat02 Vs, T2 V6, T2

[em,00) for i = m. Each columnin [sa0<ect]2umacecr| 2l e >2 |

Fig. 2 constitutes such subgraph. Sub- . L
graph G, thus capturesthejoint behav- LI vs:0
ior of CTMC C and DTA A inthein- s 1<o<2 |2
terval [c;, ¢;+1). All transitions within

G, are probabilistic; delay-transitions, Fig. 2. ExampleC ® G(A
i.e., 5-labeled transitions, yield a state 9.2 ExampleC © G(A)

S2,q1,T =2 H

inG;11, whereas a clock reset (of the only clock) yields astatein G. In fact subgraph
G; isaCTMC. To take the effect of “reset” transitions into account, define the CTMC
C; with state space V; U V;, with all edgesfrom V; to 1}, all edges between V;-vertices,
but no outgoing edges from V-vertices.

Definition 6 (Augmented CTMC).LetG =C®G(A) = (V, o, Vp, A, —). Subgraph
G; of G inducesthe CTMC C; = (V; U Vo, AP;, L;, o, P¢, E;) with:

_ AP — {6p |v € Viga} U{Rsty, |v eV} ifi<m
‘ {Rst, |v e Vot U{F} ifi =m

— L;(v) = {0y }ifv <, o and L;(v) = {Rsty }ifv i v fori <m;
L,,(v) ={F}ifveVpnNV,;
— ap = a,andfor 0 < i < m, a;41 isthetransient distribution of C; at Ac;;
p if v, eV /\1)137—%1)’ oo veV, ANV el /\vlzﬁfv’
-P{vv)=31 if v=v e
0 otherwise.
— E;(s,w) = E(s) where E isthe exit-rate function of CTMC C.

State v in CTMC C; is labeled with Rst,. if aclock reset in v yields v’; similarly
it is labeled with ¢, if a delay results in state v in the successor CTMC C;41. These
labels are relevant for bisimulation quotienting as explained later. The proposition F'
indicatesthe “final” CTMC statesin the CTMC C,,,.

The matrix P¢ can be split into the matrices P; and 15;.‘ where P; contains only
(probabilistic) transitionsinside V; whereas f’,‘; contains transitions from V; to V5. The
transient probability matrix for C; is defined as the solution of the equation T1¢(x) =
[y Epem B P-II¢ (x—T)dr + e~ P+, The matrices II; and II¢ can be defined in a
similar way asP. Let A; := ITy-II; -...-TI; for 0 < i < m—1andB; := 1% if i = 0
andB; = A;_; - f[;‘ + B;_1 if 1 <i < m. We can now define the linear equation
systemx - M = f with

In — B7 —1 1&7 —1 .
M= < 0 an] |I'rtm iP'rﬂ) and f(U) - {1 N V”l NETE L77l(v)

0 othewise
Here I,, denotes the identity matrix of cardinality n. For details, consult [12].

Theorem 2 ([12]). For CTMC C with initial distribution o, 1-clock DTA A and linear
equation systemx - M = f with solution U, we havethat Prob(C = A) = o - U.

Algorithm 1 summarizes the main steps needed to model-check a CTMC against a 1-
clock DTA, where as an (optional) optimization step, in line 7 all augmented CTMCs
are lumped by the adapted lumping a gorithm as explained bel ow.

3 Lumping

It is known that bisimulation minimization is quite beneficial for CSL model checking
as experimentally showed in [18]. Besides yielding a state space reduction, it may yield

Algorithm 1 Verifyinga CTMC against a 1-clock DTA

Require: aCTMC C withinitial distr. «, a 1-clock DTA A with constants co, ..., cm
Ensure: Pr(C E A)

1. G(A) := bui | dRegi onG aph(A);

2: Product := bui | dPr oduct (C,G(A)); {C®G(A)}

3: subGraphs {G; }o<i<m := partiti onProduct (Product);

4: for each subGraph G; do

5. C; := bui | dAugnent edCTMCZ(G,); {build augmented CTMC cf. Definition 6}
6: end for
7
8
9
10

: {Ci}o<i<m := 1 unpG oupCTMCs ({C; }o<i<m); {lump agroup of CTMCs, see Alg. 2}
: for each CTMCC; do TransProb; := conput eTr ansi ent Pr ob(C;, Ac;); end for
: linearEqSystem := bui | dLi near Syst en({TransProb; }o<i<m); {cf. Theorem 2}
. probVector := sol veLi near Syst em(linearEqSystem);
11: return « - probVector;

substantial speed-ups. The decomposition of the product C ® G(A) into the CTMCs(;
naturally facilitates a bisimulation reduction of each C; prior to computing the transient
probabilities in C;. In order to do so, an amendment of the standard lumping algo-
rithm [13,19] is needed as the CTMCs to be lumped are connected by delay and reset
transitions. Initial statesin CTMC C; might be the target states of edges whose source
states are in adifferent CTMC, C;, say, with ¢ # j. The partitioning of the target states
in C; will affect the partitioning of the source states in C;. For delay edges, i=j+1
while for reset transition, i=0. The intra CTMC edges thus cause a “cyclic affection”
between partitions among all sub-CTMCs. From the state labeling (cf. Def. 6), it fol-
lows that for any two states v, v’ € C;, if their respective successor statesin C;,1 (or
Co) can be lumped, then v and v’ might be lumped. Thisimpliesthat any refinement on
the lumping blocks in C; 11 might affect the blocksin C;. Similarly, refining Cy might
affect any C;, viz., the CTMCs that have areset edgeto Cy.

We initiate the lumping a gorithm (cf. Alg. 2) for CTMC C; = (V; U Vo, AP;, L;,
a;, P¢, E;) by taking as initia partition the quotient induced by {(v1,v2) € (V; U
Vo)? | Li(v1) = L;(vo)}. Thisinitia partition is successively refined on each C; by the
standard approach [13, 19], see lines 5-6. We then use the blocksin C ;11 to update AP;
in C; and use blocks in Cy to update AP; in al the affected C;'s, cf. lines 7-11. As a
result, the new AP;” may be coarser than the old AP;:

APQ = {RS"’[v]o | Rst, € AP,'} U {(5[1,] | Oy € APi}.

i@l
Here, [v]; is the equivalence classin CTMC C; containing state v, and ¢ ® 1 = i+1 if
i <mandm @& 1 =m.Withthenew AP;’, this approach (cf. while-loop) is repeated
until all CTMC partitions are stable.

Example2. Let v, 3, v} and vy KX vh betwo delay transitionsfrom CTMCC; toC; 1.
Then L(vy) = d, and L(vy) = dy;- Since vy and v, arelabeled differently, they cannot
be in one equivalence class. However, if in C; it turns out that v; and v} are in one
equivalence class, then we can update AP; to AP; such that now L(v1) = L(vz) = b,/
In this case, v; and v, can be lumped together.

Algorithm 2 LumpGroupCTMCs
Require: aset of CTMCsC; with AP; for0 < i < m
Ensure: aset of lumped CTMCsC; suchthat C; ~ C;
1: notSable := true;
2: while notStable do
3. notSable := falsg;

4. fori=mto0do

5: oldAPSze:= |AP;|;

6: (Ci, AP;) := 1 unpCTMC(C;, AP;) ; {lump C; dueto AP; and update C;, AP;}

7 if ldAPSze > |AP;| then {some states have been lumped in C; }
8: notSable := true;

9: ifi=0 then

10: for j =1tom do updat eReset Edge(APo, AP;) ; {update AP;}
11: else updat eDel ayEdge(AP;, AP;_1) ; {update AP;_; according to AP;}

12: return the new set of CTMCs lumped by the newest AP;

If some states have been updated in C; and AP; has been updated (line 7), there are
two cases: if i=0, thenweupdateall AP;, j # 0 that have areset edgeto C (line 9-10);
otherwise, we update its directly predecessor AP, _; which hasadelay edgeto C; (line
11). This procedureis repeated until all AP,;’s are stable.

Theorem 3. The transient probability distribution in C; and its quotient C;, obtained
by Alg. 2 are equal.

As a corollary, it follows that the reachability probabilities of the accepting states in
C ® G(.A), and its quotient obtained by applying Alg. 2 coincide.

4 Experimental Results

Implementation. We implemented our approachin approximately 4,000 lines of OCaml
code. Transient probabilities are computed using uniformization, linear equation sys-
tems are solved using the Gauss-Seidel agorithm, and lumping has been realized by
adapting [13] with the correction explained in [19]. Unreachable states (both forwards
from theinitial and backwards from the final states) are removedin C ® G(.A) prior to
the analysis, and transient probabilitiesin C; are only determined for its initial states,
i.e, itsentry points. Thetool adoptstheinput format of the MRM C model checker [17].
Thanks to the output facility of PRISM [1], the verification of PRISM modelsis possi-
ble.

Case studies. We conducted extensive experiments with three case studies. The first
case study has been taken from [3], and fecilitates a comparison with the approach
of [14]. The second case study, arandom robot, is (to our taste) a nice example showing
the need for DTA objectives. We useit for 1-clock aswell as multi-clock objectives. The
specifications of this example cannot be expressed using any other currently available
techniques. The final case study originates from systems biology and is a more realis-
tic case study. We first present experimental results using a sequential algorithm, with

and without lumping. Section4.4 presents the results when parallelizing the transient
analysis (but not the lumping). All results (one and four cores) have been obtained on
a2 x 2.33GHz Intel Dual-Core computer with 32GB main memory. The experiments
on 20 cores have been obtained using a cluster of five such computers with a GigaBit
connection. All the results are obtained with precision 10 ~8.

4.1 Cyclicpolling server

This case study facilitates a comparison with [3]. The cyclic polling server (CPS) sys-
tem [16] is a queuing system consisting of a server and N stations each equipped with
aqueue of capacity 1, cf. Fig.3for N = 3. Jobs arrive with rate A and the server polls
the stations in around-robin order with rate v. When the server is polling a station with
afull queue, it can either serve the job in the queue or it can poll the next station (both
with rate). Once the server decidesto serve ajob, it can successfully process the job
with rate 1 or it will fail with rate p. The 1-clock DTA objective (adapted from [3], see

st1 A\ —sto, true, @ —sty, true, @
—_ [
-
Y
JANS -—>
— [
—>

joarr,x < T, @ joarr,x <T,0 jarr,x <T,2

Fig.3. Cyclic polling server) .
(=%, u=0.5,7=10, p=1) Fig. 4. DTA for the polling server system (T" = 1)

Fig.4) requires that after consulting all queues for one round, the server should serve
each gqueue one after the other within 7" time units. The label st ; indicates that the sys-
tem is at station ¢; srv means that the system is serving the job in the current station
and j_arr meansanew job arrives at some station. The DTA starts from station 1 at ¢
and goes to ¢g; when polling the next station (st»). It stays at ¢; for not polling station
1 -implicitly it goes sequentially from station 2 to N—until it sees station 1 again (and
goes to state ¢2). Note that the clock is reset before going to state ¢o. From state g5 to
state gs, it specifies serving stations 1, ..., N one by one within the deadline T'. The
dashed line indicates the intermediate transitions from station st o to station sty _1.

Table1 summarizes our results, where %transient and %lumping indicate the frac-
tion of time to compute transient probabilities and to lump al CTMCs, respectively.
The computed probabilities Prob(C = A) areidentical to [3] (that contains results up
to N=7); our verification times are, however, three orders of magnitude faster. If lump-
ing is not applied, then most of the timeis spent on the transient analysis. Lumping can
save approximately 2 of the state space (ﬁ%), however, it has a major impact
on the verification times.

#queues|#HCTMC No lumping With lumping
N states |#product states|time(s) |%transient|#blocks| time(s)|%transient| %lumping
2 16 51 0 0% 21 0 0% 0%
3 48 143 001 0% 52 0.02) 0% 60%
4 128 363 0.03 60% 126 0.08 13% 65%
5 320 875 0.13| 84% 298 0.37] 16% 79%
6 768 2043 057 88% 690 175 15% 82%
7 1792 4667 26| 90% 1570 858 14% 84%
8 4096 10491 148 94% 3522 | 41920 13% 85%
9 9216 23291 120, 98% 7810 230 22% 7%
10 20480 51195 636 98% 17154 1381 25% 5%

Table 1. Experimental results for polling server system (no parall€lization)

4.2 Robot navigation

A robot moveson agridwith N x N cells, see Fig. 5. It can move up, down, left and
right with rate A\. The black squares from the grid represent walls, i.e., the robot is
prohibited to pass through them. The robot is allowed to stay in consecutive C-cellsfor
at most 74 units of time, and in the D-cellsfor at most T'5 units of time. Thereisno time
constraint on the residence times in the A-cells. The task isto compute the probability
to reach the B-cell from the A-cell labeled with . No time constraint is imposed on
reaching the target. The DTA objective is shown in Fig. 6. Intuitively, ¢ 4, g5, gc and

Cox<T,o
C,true, {z}

D,z < Ty, {z}

D, true, {z}
Fig.5. Robot on agrid (A = D,z <T», @

D) Fig.6. DTA for robot case study (71 = 3, T> = 5)

qp represent the states that the robot is in the respective cells. From g 4, g¢, and gp,
it is possible to go to the final state ¢ 3. The outgoing edges from ¢¢ and qp have the
guard z < Ty or x < Ty; while their incoming edges reset the clock .

Table 2 presents the results. Lumping is attractive as it reduces the state space by a
factor two, and speeds-up the verification. As opposed to the polling system case, most
time is spent on building the product and solving the linear equation system. The gray
rowsin Table 1 and 2 refer to similar product size whereas the verification times differ
by two orders of magnitude (14.88 vs. 2433.31). Thisis due to the fact that there are
two and three subgraphs, respectively. The resulting linear equation system has 2 and 3
variablesaccordingly and thisinfluences the verification times. The number of blocksis
not monotonically increasing, as the robot grid (how the walls and regions C and D are
located) is randomly generated. The structure of the grid, e.g., whether it is symmetric
or not, has a major influence on the lumping time and quotient size.

#CTMC No lumping With lumping

N| states |#product states|time(s)|%transient|#blocks| time(s)|%transient| %lumping
10| 100 148 0.09] 59% 78 0.09] 43% 32%
20| 400 702 6.7 18% 380 71 14% %
30| 900 1248 32| 1% 619 26 14% 6%
40| 1600 2672 119 13% 1296 93 10% 5%
50 2500 4174 135 17% 2015 138 12% %
60| 3600 4232 309 16% 1525 261 12% 7%
70| 4900 8661 904| 12% 4212 1130 7% 3%
80| 6400 9529 1753 12% 4339 1429 14% 4%
90| 8100 9812 2433 8% 2613 1922 6% 5%
Table 2. Experimental results for the robot example (without parallelization)

4.3 Systemsbiology

The last case study stems from a real example [15] in systems biology. The goal is
to generate activated messengers. M ligands can bind with a number of receptors, cf.
Fig.7). Initially each ligand binds with a free receptor R with rate £, and it forms a
ligand-receptor (LR) By. The LR then undergoes a sequence of N modificationswith a

constant rate k,, and becomes By, .
can separate from the receptor with rate k_;. The LR By

..,By.Fromevery LR B; (0 < i < N) theligand

can link with an inactive

messenger with rate k., and then forms a new component ligand-receptor-messenger
(LRM) (thelast By inFig. 7). TheLRM can decomposeinto three separate components
in their initial forms with rate k£_1, or the messenger can separate from LRM into an

inactive (resp. active) messenger with rate k_,, (resp. kcqt)-

Inactive

@ fwd A —atpy, true, @

fwd A atp,, true, {z}

Ligand messenger
: K4 k_q ke K_q
Ad NKa O o) o
Kk, k k
‘\‘() \\"---_-‘ C}ﬂ Py H‘ﬁ Py Py 01(
|| |
| \II 'II "| ||| \ J
= [] [I
R By B, B
Free receptor Ligand-bound forms of the receptor / i

TN)
)\ Qa)
. — M
A\ kox GD:)fwdAﬂactMsg,w<T,fa
I “Keat
N By

actMsg, true, @

Activated
messenger

Signal
Fig. 7. Kinetik proof reading with a messenger [15] (#R = 900,
#lnact. msg = 10000, N = 6, ky1 = 6,7 x 1073, k_; = 0,5,
kp=0,25 ke = 1,2 x 1073, k_p = 0,01, keq: = 100)

The1-clock DTA objectiveisgivenin Fig. 8. Intuitively, it

(=)

Fig. 8. DTA for thebiol-
ogy case study (7' = 1)

reguiresatransformation

from R to LR By directly without jumping back to R inbetween and manageto activate
amessenger within 7" time units after reaching the LR B y. Inthe DTA, fwd meansthat
thelast transformation is moving forward, i.e., not jumping back to R; at 5,, meansthat
the processreaches LR By and actMsg means the active messenger is generated. In g,
the processis on theway toreach LR B . Whenit reachesLR B, the DTA goesfrom
qo t0 g1 and resetsthe clock . In ¢4, thereis no active messenger generated yet. It will
go to g2 when an active messenger is generated. Note that the time constraint x < 7' is

#CTMC No lumping With lumping
M| states |#product states| time(s)|%transient|#blocks| time(s)|%transient|%lumping
1 18 31 0 0% 13 0 0% 0%
2| 150 203 0.06] 93% 56 0.05] 58% 39%
3| 774 837 1.36] 94% 187 0.84) 64% 30%
4| 3024 2731 17.29] 97% 512 919 73% 24%
5| 9756 7579 152.54) 97% 1213 734 76% 21%
6| 27312 18643 154745 98% 2579 45735 78% 20%
7 | 68496 41743 11426.46 99% 5038 3185.6 85% 14%
8 | 157299 86656 23356.5] 99% 9200 11950.8 81% 18%
9 | 336049 169024 71079.15 99% 15906 | 38637.28 76% 22%
10| 675817 312882 205552.36| 99% 26256 | 11631441 71% 26%
Table 3. Experimental results for the biology example (no parallelization)

checked on the self-loop on ¢;. As Table 3 indicates, lumping works very well on this
example: it reduces both time and space by almost one order of magnitude.

4.4 Parallelization

Model checking a CTMC against a 1-clock DTA can be parallelized in a natural man-
ner. In this section, we present the results when parallelization is applied on the above
three case studies. We experimented on distributing the tasks on 1 machinewith 4 cores
aswell as 5 machines with 4 cores each (20 coresin total). We focused on parallelizing
thetransient analysis; aslumping is not parallelized, we determine the speedup without
lumping. For each CTMC C;, we need to compute for each state its transient probability
vector which corresponds to a column in the transient probability matrix. We distribute
the computation of different columnsto different cores (which might be on different ma-

chines). To do so, we launch N different processes and send them the rate matrix and

alist of initial states, and each process returns the transient probability vector for each
initial state. The speedup factor is computed by % . From Table 4, it follows
that parallelization mostly works well for larger models. For small models, it usually
does not pay off to distribute the computation tasks, due to overhead. For the polling

server system, as the number of stations N increases, the value of %m ap-
proximates 20/4=5. The same applies to the biology example. The parallelization does
not work well on the robot example. The performance on 20 cores might even be worse
than on 4 cores. This is due to the fact that only the transient analysis is parallelized.

From Table 1 and 2, we can see that most of the computation time is spent on tran-

sient analysis for the polling and biology examples. This explains why parallelization

works well here. In the robot example, however, the transient analysis does not domi-

nate the computation time. This yields moderate speedups. An interesting future work

isto apply parallel lumping asin [10] to our setting.

5 Multi-Clock DTA Objectives

The graph decomposition approach for 1-clock DTA fails in the multi-clock setting
as in case of a reset edge, it cannot be determined to which time point it will jump
(unlikexz = 0 inthe 1-clock case). Thesetime points, however, can be approximated by
discretization as shown below. W.l.0.9. assume there are two clocks x, y. The maximal

4 Cores 20 Cores

T : 4 Cores 20 Cores
time(s) | speedup|time(s) |speedup N [me(s) [spesdup| Time(s) [spesdi __4Cores _20Cores
0.03| 121 0.18| 0.18 - - time(s)|speedup| time(s)|speedup
30| 2359 137 | 2718 119 0= 303 oo 35
008 170 | 022 0859 ||49| 8405 142 | 8L64 147 a3l 326 241 5o

032 177 154 037 | |50 122.01) 111 | 117.17] 1.16
1.04| 2.58 2.08] 1.29 60 | 266.67| 1.16 | 26548 1.17
735 2.02 404 368 | |70| 793.48| 114 | 77869 116
40.28| 2.08 13.76| 8.73 80 (1474.88| 1.19 |1441.99 1.22

186.02| 342 | 54.97| 1158 19(% fgggi’g ‘1’51’1 1;3;722 ii
863.3| 335 |233.99 1235 L it Bl

110|4614.92| 1.32 | 5165.7| 1.18
12|3940.42| 365 | 1089 13.22
Table 4. Paraldl verification of polling (left), robot (mid), and biology example (right)

44.73| 341 15.87| 9.61
620.16| 2.50 160.58| 9.64
4142.19| 2.76 949.32| 12.04
8168.62| 2.86 | 1722.63 13.56
23865.17| 2.98 | 5457.01 13.03
7062346 291 |16699.22) 12.31

P
RPBoo~vo o n=

Boo~No o s w2

constants ¢, ¢, to which and y are compared in the DTA are discretized by h = %
for some a priori fixed N € N-(. As aresult, there are c,c,/h?> = NZc,c, areas (or
grids). The behavior of al the pointsin one grid can be regarded as approximately the
same. For grid (i, j), it can either delay to (i+1, j+1), or jumpto (0, 5) (resp. (¢,0)) by
resetting clock « (resp. y) or to (0, 0) by resetting both clocks. The following definition
originatesfrom [12].

Definition 7 (Product of CTMC and DTA). Let C = (S,AP,L,so,P,E) be a
CTMC and A = (2*P, X,Q,q,QFr,—) bea DTA. Let C ® A = (Loc, X, (o,
Locp, E,~), where Loc = S x Q; Lo = (s0,90); E(s,q) = E(s); Locr := S x QF,
and ~~ isthe smallest relation defined by:

P(s,s') >0 A ¢ L(s).9.X q

suchthat 7(s’, ¢') = P(s, s).

g
S,q ’\’/\/-\>7T

Notethat = € Distr(S x Q) isaprobability distribution. Thesymbolicedge ¢ 2= 7

with distribution 7 induces transitions of the form ¢ |LPX> ¢ withp=7n({").C® A

is a stochastic process that can be equipped with a probability measure on infinite
paths, cf. [12]. We approximate the stochastic behavior by a discrete-time Markov
chain (DTMC). This is done by discretizing clock values in equidistant step-sizes of
sizeh =1/N.

Definition 8 (Discretization). Let C ® A = (Loc, X, £y, Locg, E,~), k = |X|, C be
the largest constant in A, C = C* be a vector with all elementsequal to C, h = 1/N
for some N € N.(and h = h*. The (unlabeled) DTMC D}, = (S, sq, P) is given by
S=Locx ({i-h|0<i<CN+1}F, 50 = (£o,0) and P((¢,7), (¢',n')) isgiven
by:

e B(O)h . X)
_p'(l_lh-w) iff 02> AnEgAn =nX =0]A n#Cth;

-p (#(lﬁ —(1+ hEl(Z))e_E(e)h) iff ¢ Ig—’;(> ¢ AnEgAn'=(n+h)[X:=0]A n£C+h;
— e BEOR S =V Ay =n+hA n#CHh;

—-p iff ¢ I%é/ AnEgA 7 =n[X =0 A n=C+h;

— 0 otherwise.

The number of statesin thederived DTMCis |S|-|Q|-(C- N +1)*. Thefollowing result
states that for i approaching zero, Prob(C |= A) equals the reachability probability in
the DTMC Dy, of astate of theform (¢, -) with ¢ € Locp.

Theorem 4. Let P,? (so, OF) bethereachability probabilityintheDTM C Dy, toreach
atate (¢, -) with ¢ € Locg. Thenlimy, .o PP (so, OF) = Prob(C = A).

To illustrate the performance of the discretization technique, we add a clock y to
the robot example, where y is never reset. The time constraint y < 7', is added to all
incoming edges of ¢ 3. The results are shown in Table5 with h=5 - 10 ~2. Although the
resulting DTMC size is quite large, the computation times are still acceptable, as com-
puting reachability probabilitiesin aDTMC is rather fast. For the sake of comparison,
we applied the discretization techniqueto the polling server system with a 1-clock DTA
objective. We obtain the same probabilities as before; results are given in Table6 with
precision 0.001.

N|CTMC sz6| DMTA Sze|DTMC sizeltime (5) NICTMC size|DMTA size DTMC sizejtime (s)
2 16 31 31031 | 15.89
10 100 105 865305 79
3 48 89 89089 | 52.66
20 400 475 3914475 | 412
4| 128 229 229229 | 152.2
30| 900 1003 8265723 | 868
5| 320 557 557557 | 407.4
40| 1600 1669 | 13754229 | 1605
6| 768 1309 1310309 | 1042
50 2500 2356 | 19415796 | 2416
7| 1792 3005 | 3008005 | 2577
60| 3600 3411 | 28110051 | 3559
8| 409 6781 6787781 | 6736
70| 4900 4850 | 39968850 | 22427
Table 5. Experimental results for the robot ex 9| 9216 1o1o1 | 15116101 | 30865
- EXp Table 6. Polling example with 1-clock DTA us-

ample with 2-clock DTA (T, = 3) ing discretization

6 Conclusion

We have presented a practical approach to verifying CTMCs against DTA objectives.
First, we showed that a standard region construction on DTA suffices. For 1-clock DTA,
we showed that the graph decomposition approach of [12] offers rather straightforward
possibilities for optimizations, viz. bisimulation minimization and parallelization. Sev-
eral experiments substantiate this claim. The main result of this paper is that it shows
that 1-clock DTA objectives can be handled by completely standard means: region con-
struction of timed automata, transient analysis of CTMCs, graph analysis, and solv-
ing linear equation systems. Our approach clearly outperforms alternative techniques
for CSL™ [3,14], and allows for the verification of objectives that cannot be treated
with other CTMC model checkers. Our prototype is available at http://moves.rwth-
aachen.de/CoDeMoC. Finally, we remark that although we only considered finite ac-
ceptance conditions in this paper, our approach can easily be extended to DTA with
Rabin acceptance conditions.

Acknowledgement We thank Verena Wolf (Saarland University) for providing us with the bi-
ology case study. Thisresearch isfunded by the DFG research training group 1295 AlgoSyn, the
SRO DSN project of CTIT, University of Twente, the EU FP7 project QUASIMODO and the
DFG-NWO ROCKS project.

References

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. PRISM website. http://www.prismmodel checker.org.
. R.Alurand D. L. Dill. A theory of timed automata. TCS, 126(2):183-235, 1994.
. E. G. Amparore and S. Donatelli. Model checking CSL™ with deterministic and stochastic

Petri Nets. In Dependable Systems and Networks (DSN), pages 605-614, 2010.

. C. Baier, N. Bertrand, P. Bouyer, T. Brihaye, and M. Grosser. Almost-sure model checking

of infinite paths in one-clock timed automata. In LICS, pages 217-226, 2008.

. C. Baier, L. Cloth, B. R. Haverkort, M. Kuntz, and M. Siegle. Model checking Markov

chains with actions and state labels. |EEE TSE, 33(4):209-224, 2007.

. C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms for

continuous-time Markov chains. |EEE TSE, 29(6):524-541, 2003.

. C.Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. Performance evaluation and model

checking join forces. Commun. of the ACM, 53(9):74-85, 2010.

. B. Bérard, A. Petit, V. Diekert, and P. Gastin. Characterization of the expressive power of

silent transitions in timed automata. Fund. Inf., 36(2-3):145-182, 1998.

. N. Bertrand, P. Bouyer, T. Brihaye, and N. Markey. Quantitative model-checking of one-

clock timed automata under probabilistic semantics. In QEST, pages 55-64, 2008.

S. Blom, B. R. Haverkort, M. Kuntz, and J. van de Pol. Distributed Markovian bisimulation
reduction aimed at CSL model checking. ENTCS, 220(2):35-50, 2008.

T. Brazdil, J. Kreal, J. Kretinsky, A. Kucera, and V. Rehak. Stochastic real-time games with
qualitative timed automata objectives. In CONCUR, LNCS, pages 207-221, 2010.

T. Chen, T. Han, J.-P. Katoen, and A. Mereacre. Quantitative model checking of continuous-
time Markov chains against timed automata specification. In LICS, pages 309-318, 2009.
S. Derisavi, H. Hermanns, and W. H. Sanders. Optima state-space lumping in Markov
chains. Inf. Process. Lett., 87(6):309-315, 2003.

S. Donatelli, S. Haddad, and J. Sproston. Model checking timed and stochastic properties
with CSL™. |EEE TSE, 35(2):224-240, 2009.

B. Goldstein, J. R. Faeder, and W. S. Hlavacek. Mathematical and computational models of
immune-receptor signalling. Nat. Reviews Immunology, 4:445-456, 2004.

B. R. Haverkort. Performance evaluation of polling-based communication systems using
SPNs. In Appl. of Petri Nets to Comm. Networks, pages 176—209, 1999.

J.-P. Katoen, E. M. Hahn, H. Hermanns, D. N. Jansen, and |. Zapreev. The ins and outs of
the probabilistic model checker MRMC. In QEST, pages 167-176, 20009.

J.-P. Katoen, T. Kemna, |. Zapreev, and D. Jansen. Bisimulation minimisation mostly speeds
up probabilistic model checking. In TACAS, LNCS 4424, pages 87-101, 2007.

A. Vamari and G. Franceschinis. Simple O(mlogn) time Markov chain lumping. In TACAS,
LNCS 6015, pages 38-52, 2010.

M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In
FOCS, pages 327-338, 1985.

