
Time-abstracting Bisimulation for Probabilistic Timed Au tomata

Taolue Chen
CWI

PO Box 94079, 1090 GB Amsterdam, The Netherlands
chen@cwi.nl

Tingting Han Joost-Pieter Katoen
MOVES, RWTH Aachen University, Germany
FMT, University of Twente, The Netherlands

{tingting.han, katoen}@cs.rwth-aachen.de

Abstract

This paper focuses on probabilistic timed automata
(PTA), an extension of timed automata with discrete prob-
abilistic branchings. As the regions of these automata of-
ten lead to an exponential blowup, reduction techniques are
of utmost importance. In this paper, we investigate prob-
abilistic time-abstracting bisimulation (PTAB), an equiva-
lence notion that abstracts from exact time delays.PTAB
is proven to preserve probabilistic computational tree logic
(PCTL). The region equivalence is a (very refined)PTAB.
Furthermore, we provide a non-trivial adaptation of the tra-
ditional partition-refinement algorithm to compute the quo-
tient underPTAB. This algorithm is symbolic in the sense
that equivalence classes are represented as polyhedra.

1 Introduction
Digital technology has been widely deployed in safety-

critical situations and real-life environments, which leads to
increased interests in computer systems expressed in terms
of quantitative timing constraints. Timed automata (TAs,
[2]) are a prominent and well-established formalism for
modeling, analysis and verification of suchreal-time sys-
tems, which have received much attention both in terms of
theoretical and practical developments.

Traditional approaches to the formal description of real-
time systems usually express the system model purely in
terms of nondeterminism. However, many real-life sys-
tems, such as multimedia equipment, communication pro-
tocols and networks, exhibitrandombehaviors, thus it may
be desirable to refer to thelikelihood of certain properties
satisfied by the real-time system. This notion is particularly
important when the fault-tolerance aspect of systems is con-
cerned. This suggests the study ofprobabilisticmodels.

In this paper, we investigateprobabilistic timed au-
tomata(PTAs) [8], which are a probabilistic extension of
timed automata. As inTAs, in the research ofPTAs, the no-
tion of region graphsplays an essential role, see e.g. [8].
However, it is well recognized that albeit being a very use-
ful tool for theoretical purposes, the region graph is too

large to be of any practical interest: its size is exponential
in the number of clocks of the system as well as the size
of the constants in the time constraints. To overcome this
explosion, inspired by [12], we proposeprobabilistic time-
abstracting bisimulations(PTAB) for PTAs, where the pas-
sage of arbitrary time is abstracted by aτ transition. This
equivalence is usually much coarser than the region equiva-
lence, therefore, in practice, it induces a much smaller state
space partition. In particular, the region equivalence con-
stitutes a (very fine) probabilistic time-abstracting bisimu-
lation. Thebisimulation quotientis a finite-state Markov
decision process (MDP), where the states are equivalence
classes oversymbolic states(a set of states) with eitherτ or
discrete probabilistic transitions.

PTAB is particularly useful when the desired properties
do not involve time constraints, which are prevalent in prac-
tice, i.e., safety, reachability, etc. Those properties can be
well captured by theprobabilistic computation tree logic
(PCTL) [6], which is proven to be preserved under PTABs.
In this case, the existing tools and algorithms forMDPs w.r.t.
PCTL [7] can thus be applied forPTAs.

To obtain a minimal PTAB quotient, our algorithm
works in thepartition-refinementfashion [11]. We start
from an initial partition that respects state labeling, andpro-
ceed by refining each block till it contains only bisimilar
states. Due to the fact thatPTAs involve an interweaving
of time, nondeterminism and probability distributions, the
minimization has thus to deal with the following difficul-
ties: When taking aτ transition, it must guarantee that time
traverses continuously, e.g., time cannot jump from0 to 2
without traversing1. Thus, we introduce thetimed prede-
cessorset as a splitter, as in [12]. Moreover, since a discrete
transition results in one or more probability distributions,
the splitter of only one block in [12] is, however, not ap-
plicable. Our algorithm instead, adopts the idea ofmutual-
refinetechnique in [3], which maintains a state partition and
a distribution partition. In each refinement iteration, thedis-
tribution partition is used to refine a state partition and vice
versa. The algorithm in [3], unfortunately, cannot be ap-
plied in our setting in a straightforward way, as the number
of symbolic states in a block may grow in each iteration

1

when time comes into play. As a result, the symbolic state
space and the distribution set vary in each iteration, let alone
their partitions. To solve this problem, anExpandoperator
is introduced, recalculating the symbolic states in a block
as well as the distribution set before the mutual-refine tech-
nique is applied. This algorithm is symbolic, namely, equiv-
alence classes are symbolic states and set-theoretic opera-
tors are used to compute the set of (time) predecessor states
of a symbolic state.

Related works. [3, 5] present algorithms for the proba-
bilistic bisimulation and simulation for discrete probabilis-
tic systems. [10] investigates weak probabilistic bisimula-
tion for PTAs with a decision procedure, however, the algo-
rithm is region based, which is tried to be avoided in the
current paper. [8] presents a comprehensive exposition for
PTAs and model checking algorithms forPTAs. [9] gives a
symbolic algorithm for model checking, however, the prob-
lem of deciding time-abstracting bisimulations is not con-
sidered.

Structure of the paper. Section 2 presents basic defini-
tions regardingPTAs. Section 3 defines probabilistic time-
abstracting bisimulation. Section 4 presents the bisimula-
tion minimization algorithm and constitutes the core of this
paper. Section 5 shows that bisimulation preservesPCTL

formulae. This paper is concluded in Section 6.

2 Preliminaries
Definition 1 (Probability distribution) For a finite setS,
a distribution is a functionµ : S → [0, 1] such that
∑

s∈S µ(s) = 1. µ1
s denotes the unique distribution onS

with µ(s) = 1. Supp(µ) denotes thesupportof µ, i.e., the
set of statess ∈ S with µ(s) > 0. WithDistr(S) we denote
the set of all probability distributions onS.

Clocks and valuations. Let R denote the set ofnon-
negativereals and letX = {x1, · · · , xn} be a set of vari-
ables inR, called clocks. An X -valuation is a function
ν : X 7→ R assigning to each clockx a valueν(x). The
set of all valuations overX is denoted byRX . We write
0 for the valuation that assigns zero to all clocks. For a
subsetX ⊆ X , ν[X := 0] is the valuationν′ such that
∀x ∈ X. ν′(x) = 0 and∀x /∈ X. ν′(x) = ν(x). For
d ∈ R, ν + d is the valuationν′′ such that∀x ∈ X .
ν′′(x) = ν(x) + d, by which it implies that all clocks pro-
ceed at the same speed.

Hyperplanes and polyhedra. An clock constrainton X
is an expression of the formx ⊲⊳ c or x − y ⊲⊳ c or
the conjunction of any clock constraints, wherex, y ∈ X ,
⊲⊳ ∈ {<,6, >,>} andc ∈ N. An atomic constraintdoes
not contain any conjunctions. LetCC(X) andACC(X)
denote the set of clock constraints and atomic clock con-
straints overX , respectively.

An X -valuationν satisfiesa clock constraintg, denoted
asν |= g, and is defined as follows:ν |= x ⊲⊳ c iff ν(x) ⊲⊳
c, ν |= x − y ⊲⊳ c iff ν(x) − ν(y) ⊲⊳ c andν |= g1 ∧ g2 if
ν |= g1 andν |= g2.

An X -hyperplaneis a set of valuations satisfying an
atomic constraint. The class ofHX -polyhedra is de-
fined as the smallest subset of2R

X

which contains allX -
hyperplanes and is closed under set union, intersection, and
complement.

Intersection (∩), union (∪) and complement()̄ are well-
defined operations on polyhedra. Given a polyhedronZ and
a subset of clocksX ⊆ X , the operationZ[X := 0] is
defined as{ν | ν[X := 0] ∈ Z}.

Probabilistic timed automata. Let AP denote a fixed,
finite set of atomic propositions ranged over bya, b, c,

Definition 2 (Probabilistic timed automata [8]) A prob-
abilistic timed automaton(PTA) is a tuple G =
(Loc,X , ℓ0, L, inv,) where:
• Loc is a finite set oflocations;
• X is a set of clocks;
• ℓ0 ∈ Loc is the initial location;
• L : Loc → 2AP is a labeling function for the locations;
• ⊆ Loc×CC(X)×Distr(2X ×Loc) is a transition

relation;
• inv:Loc→CC(X) is an invariant-assignment function.

All invariants aredownward-closedin the sense that for any
d ∈ R, ν + d |= inv(ℓ) implies thatν |= inv(ℓ).

The system starts in locationℓ0 with all its clocks initial-
ized to 0. The values of all the clocks increase uniformly
with time. We refer toℓ

g
 η as atransition, where the

guard g is a clock constraint on the clocks ofG andη is
a distribution over the(X, ℓ) pairs withX ⊆ X a set of
clocks to be reset andℓ the successor location. The intu-
ition is that thePTA G can move from locationℓ to loca-
tion ℓ′ via two phases. In the first phase, a distributionη
is nondeterministically chosen wheng holds. In the second
phase, a successor locationℓ′ is probabilistically chosen ac-
cording toη(X, ℓ′), where the clocks inX should be reset
when enteringℓ′. The functioninv assigns to eachℓ a loca-
tion invariant that constrains the amount of time that may be
spent inℓ. In other words, locationℓ should be left before
the invariantinv(ℓ) becomes invalid. If there is no outgo-
ing transition enabled and no further progress is possible,
it is a timelock. The labeling functionL associates to each
locationℓ a set of atomic propositions that are valid inℓ.

Example 1 Fig. 1 is an examplePTA, where fromℓ1 there
are two distributions (or transitions) and thus is nondeter-
ministic. The transitions toℓ3 andℓ4 share the same guard
x > 1, since they belong to the same distribution. The tran-
sition toℓ3 resets the clock{x}. The labeling onℓ1 andℓ3

is {a}, ∅ otherwise.

ℓ1, x 6 2 {a}

ℓ3, x 6 3

{a}

ℓ2

∅

ℓ4

∅

x 6 1, 1

0.3, {x}
0.7, ∅

x 6 2, 1, ∅

0.7, ∅

0.3, {x}

x > 1

x > 2

Figure 1. An example PTA

ℓ1 ℓ2 ℓ1 ℓ2

x > 1, 3/4

x > 2, 1

3/4

x 6 2, 1/4

0 6 x < 1, 1

1/4

1 6 x 6 2

Figure 2. The encoding to a one-clock-
constraint model

Remark 1 Due to the syntax, one transition is associated
with a single clock constraint. This requirement is intuitive
and reasonable since the more-than-one clock constraint
case, see e.g., [10], can be encoded by adding more dis-
tributions. To give an example, the left in Fig. 2 is aPTA

with two clock constraints in one distribution. This can be
encoded by thePTA on the right in Fig. 2. It goes as fol-
lows: When0 6 x < 1, the transition fromℓ1 to ℓ2 is not
enabled. Thus the only possible transition is the self-loopon
ℓ1, which is normalized to probability 1. When1 6 x 6 2,
both transitions are enabled, and their probabilities remain
the same. Thex > 2 case is similar as0 6 x < 1.

Probabilistic timed structures. The semantics of a timed
automaton is an infinite timed transition system. The se-
mantics of aPTA is provided by a probabilistic timed struc-
ture, in fact an infiniteMDP.

Definition 3 (Probabilistic timed structures) A prob-
abilistic timed structure(PTS) M is a labeled Markov
decision process(S,Steps , L, s0) whereS is a set of states,
Steps : S → 2R×Distr(S) is a function that assigns to
each states ∈ S a set of pairs(t, µ) wheret ∈ R and
µ ∈ Distr(S) andL : S → 2AP is a state labeling function.
s0 ∈ S is the initial state.

Steps(s) is the set of transitions that can be nondeter-
ministically chosen in states. The transition labels are of
the form(t, µ) wheret is the duration of the transition and
µ is the probability distribution over the successor states.

s
t,µ
→ s′ means that aftert time units have elapsed, a transi-

tion is fired froms to s′ with probabilityµ(s′).

Paths. Paths in aPTS arise by resolving both the nonde-
terministic and probabilistic choices. Apath of the PTS

M = (S,Steps , L, s0) is a finite or infinite sequence:

ω = s0
t0,µ0

→ s1
t1,µ1

→ s2
t2,µ2

→ ...

wheresi ∈ S, (ti, µi) ∈ Steps(si) andµi(si+1) > 0 for all
0 6 i 6 |ω|, where|ω| is the number of transitions inω. A
finite pathω ends in a state, denotedlast(ω).

We usePathfin to denote the set of finite paths and
Pathfin(s) the set of finite paths that start ins. Path inf

andPath inf (s) are the counterpart for infinite paths. Con-
sider a pathω ∈ Path inf of M. A positionof ω is a pair
(i, t′) wherei ∈ N andt′ ∈ R such that0 6 t′ 6 ti. The
state at position(i, t′) onω is denoted byω(i, t′) = si + t′.

Definition 4 (Scheduler of aPTS) A schedulerof a PTS

M = (S,Steps , L, s0) is a functionG mapping every
finite path ω of M to a pair (t, µ) such thatG(ω) ∈
Steps(last(ω)). LetW be the set of all schedulers ofM.

A scheduler resolves the nondeterminism by choosing
a probability distribution based on the process executed so
far. Formally, if aPTS is guided by schedulerG and has the
finite pathω as itshistory, then it will be in states in the
next step with probabilityµ(s), whereG(ω) = (t, µ).

We denote the set of infinite paths induced by a given
schedulerG to bePathsG with PathsG = {ω ∈ Paths |
G(ω↓i) = µi for i>0}, whereω↓i returns the prefix ofω up
to lengthi. PathsG(s) is defined asPathsG ∩ Paths(s).

SchedulerG on PTSM induces a discrete-time Markov
chain (DTMC) MG, where the nondeterminism has been re-
solved. Each state inMG is a finite path fragmentω in M.
The transition probability is determined byG and the cho-
sen probability distribution. We omit the formal definition
of MG, the probability space ofMG, and a basic cylinder
as they are standard and can be found in e.g., [4].

Semantics. Any PTA can be interpreted as aPTS. Due
to the continuous nature of clocks, these underlyingPTSs
have infinitely many states (even uncountably many), and
are infinitely branching.PTA can thus be considered as a
finitedescription of infinitePTSs.

Given aPTA G = (Loc,X , ℓ0, L, inv,), astateof G is
a pair(ℓ, ν), whereℓ ∈ Loc is a location andν ∈ inv(ℓ) is
a valuation satisfying the invariant ofℓ.

Definition 5 (PTS semantics of aPTA) Let G =
(Loc,X , ℓ0, L, inv,) be a PTA. The PTS of G is
MG = (S,Steps , L′, s0) with:

• S = {(ℓ, ν) | ν |= inv(ℓ), ℓ ∈ Loc};
• L′((ℓ, ν)) = L(ℓ) ∪ {g ∈ ACC(X) | ν |= g};
• s0 = (ℓ0,0);
• Given(t, µ) ∈ Steps((ℓ, ν)), transition→ is defined

by the following rules:

– discrete transition: (ℓ, ν)
0,µ
→ (ℓ′, ν′), if the fol-

lowing conditions hold:

1. ∃ transitionℓ
g
 η in G with η(ℓ′, X) > 0;

2. ν |= g;
3. ν′ = ν[X := 0];
4. µ(ℓ′, ν′) =

∑

X⊆X ,ν′=ν[X:=0] η(X, ℓ′).

Usually, we simply write(ℓ, ν) → µ.

– delay transition: (ℓ, ν)
d,1
→ (ℓ, ν + d) for all 0 6

d 6 t, if ν + d |= inv(ℓ).
Note that1 indicates that the probability dis-
tribution is µ1

(ℓ,ν+d). Usually, we simply write

(ℓ, ν)
d
→ (ℓ, ν + d).

Symbolic states. We define symbolic states which are
used for the effective representation and manipulation of the
infinite state space ofPTS. Generally, a symbolic state is a
set of states ofMG .

In a nutshell, azoneZ ∈ R
X of X is a set of valuations

which satisfy a conjunction of constraints. Formally, the
zone for the constraintg is Z = {ν | ν(x) |= g, x ∈ X}.
Geometrically, a zone is a polyhedron (note that we do not
require a zone to be convex). Asymbolic stateS is a set of
states whose clock evaluations form a zone. Strictly,S is a
set of pairs of location and zone, namely, of the form(ℓ, Z).
The union of all symbolic states is the state spaceS.

3 Time-abstracting Bisimulation for PTS

In order to refine the dense state space as much as pos-
sible, we adopt the time-abstracting bisimulation [12] for
state space minimization, which abstracts from the quanti-
tative aspect of time: we know thatsometime passes, but
not how much. We first introduce a technical definition:

Definition 6 µ, µ′∈Distr(S) are equivalent w.r.t. equiva-
lenceR onS, writtenµ≡Rµ′, if ∀U ∈ S/R. µ(U)=µ′(U).

Definition 7 (Probabilistic time-abstracting bisimulation)
LetG be aPTA, MG = (S, Steps, L′, s0) be thePTSof G.
A probabilistic time-abstracting bisimulation(PTAB) for G
is an equivalence relationR on S such that for all states
(s1, s2) ∈ R, the following conditions hold:

• L′(s1) = L′(s2);

• If s1
t1→ s′1, for somet1 ∈ R, then there existst2 ∈ R

ands′2 ∈ S such thats2
t2→ s′2 and(s′1, s

′
2) ∈ R;

• If s1 → µ1, for someµ1 ∈ Distr(S), then there exists
someµ2∈Distr(S) such thats2 → µ2 andµ1 ≡R µ2.

s1 and s2 are probabilistic time-abstracting bisimilar, de-
noteds1 ∼ s2, if (s1, s2) ∈ R for somePTAB R.

We useτ -transitions to abstract away the exact time pas-

sage, formally,s
τ
→ s′ iff ∃t ∈ R.s

t
→ s′.

Region equivalence. In the following, we first recall the
definition and properties of region equivalence (RE) [1]
which is essential in turning the infinite state space of aPTS

into afinite quotient. We will then show a similar result as
in [12] that theRE for PTS is in fact a PTAB.

Consider a set of clocksX and letc = cmax(G) the
largest integer constant among all the clock constraints and
invariants inG. Two clock evaluationsν andν′ areregion
equivalent, denotedν ∼= ν′, iff they satisfy:
• ∀x ∈ X , either⌊ν(x)⌋ = ⌊ν′(x)⌋ or bothν(x) > c

andν′(x) > c.
• ∀x, y ∈ X , either⌊ν(x)− ν(y)⌋ = ⌊ν′(x)− ν′(y)⌋ or

both⌊ν(x) − ν(y)⌋ > c and⌊ν′(x) − ν′(y)⌋ > c.
Note that⌊r⌋ is the maximal integer that is at mostr. The

equivalence classes induced by∼= areregions. The region
equivalence can be lifted to states such that(ℓ, ν) ∼= (ℓ′, ν′)
if ℓ = ℓ′ andν ∼= ν′.

The region equivalence has following properties:
Lemma 8 For valuationsν, ν′ ∈ R

X with ν ∼= ν′:
1. for any zoneZ, ν ∈ Z iff ν′ ∈ Z;
2. for any set of clocksX⊆X , ν[X := 0] ∼= ν′[X := 0];
3. ∀d > 0 ∃d′ > 0. ν + d ∼= ν′ + d′.

Theorem 9 The region equivalence is aPTAB, i.e.,∼=⊆∼.
Proof: Let (ℓ, ν), (ℓ, ν′) be two states inPTS M =
(S,Steps , L′, s0) such that(ℓ, ν) ∼= (ℓ, ν′).
• (Labels) Due to the fact that if(ℓ, ν) ∼= (ℓ, ν′), ν ∈ Z

iff ν′ ∈ Z (Lemma 8(1)), it holds that{g ∈ ACC(X) |
ν |= g} = {g′ ∈ ACC(X) | ν′ |= g′}. Since
L′((ℓ, ν)) = L(ℓ) ∪ {g ∈ ACC(X) | ν |= g}, where
L is the labeling function in the correspondingPTA G,
we haveL′((ℓ, ν)) = L′((ℓ, ν′)).

• (Timed transition) Let(ℓ, ν)
d
→ (ℓ, ν + d). Due to

Lemma 8(3), there exists ad′ > 0 such thatν + d ∼=
ν′ + d′. ν′, ν′ + d′ |= inv(ℓ) sinceν, ν + d |= inv(ℓ).
For anyd′′ < d′, ν + d′′ |= inv(ℓ), by the downward-

closedness ofinv(ℓ). Thus(ℓ, ν′)
d′

→ (ℓ, ν′ + d′).
• (Prob. transition) Let(ℓ, ν) → µ. µ is chosen by some

schedulerG. As G can only select enabled transitions,
µ |= g. Let Z = {ν | ν |= g}, ν ∈ Z. Since(ℓ, ν) ∼=
(ℓ, ν′), due to Lemma 8(1),ν′ ∈ Z, which means that
ν′ |= g, thusµ is also enabled in(ℓ, ν′). Therefore, we
can construct a schedulerG′ which chooses the same
distribution asG. Sinceµ ≡∼= µ, (ℓ, ν′) → µ.

RE satisfies all conditions of being a PTAB, thus∼= ⊆ ∼. �

The above theorem asserts that the region equivalence is
a (probably very refined) PTAB. Note that the converse does
not hold in general. It can be the case that(ℓ, ν) ∼ (ℓ′, ν′)
whereℓ 6= ℓ′ (see Example 2), however,(ℓ, ν) 6∼= (ℓ′, ν′).

The next result shows that timelocks are preserved by∼.
Proposition 1 If (ℓ, ν) ∼ (ℓ′, ν′), then(ℓ, ν) has a timelock
iff (ℓ′, ν′) has a timelock.

Evidently, the converse does not hold.

4 Minimization of PTA

Having defined the PTAB, an immediate question is:
how to compute it, since one of the crucial steps of exploit-
ing PTAB for verification is to generate the quotient of the
given PTA. A simple answer might be, taking the region
graph, since the region equivalence is a PTAB! However, as
pointed in [1], the number of regions grows exponentially
with the number of clocks in theTA, the finite region equiv-
alence quotient is too large to be of any practical interest,
and the same applies toPTAs. Therefore, for the sake of ef-
ficiency, we are interested in theminimalquotient, namely,
the one corresponding to thecoarsestbisimulation. In what
follows, we will propose an algorithm to compute the quo-
tient of aPTSw.r.t. the coarsest PTAB, which combines the
algorithm in [12] for timed automata and the algorithm in
[3] for MDPs.

Partition refinement. Prior to presenting our algorithm,
let us first recall how the minimization algorithm works
for finite (non-probabilistic, without time) labeled transi-
tion systems (LTSs). The algorithm relies on thepartition-
refinementtechnique [11]. Roughly speaking, the state
spaceS is partitioned inblocks, i.e., pairwise disjoint sets of
states. Starting from an initial partitionΠ0 where, e.g., all
equally-labeled states form a block, the algorithm succes-
sively refines these blocks such that ultimately each block
contains only bisimilar states. The refinement is based
on the fact that a bisimulation induces a pre-stable parti-
tion. Formally, given a partitionΠ of states and blocks
C1, C2 ∈ Π, C1 is pre-stablew.r.t. C2 if C1 ⊆ pred(C2)
or C1 ∩ pred(C2) = ∅, wherepred(C) is the set of direct
predecessors of all the states inC. If C1 is not stable w.r.t.
C2, thenC1 can further be partitioned into two sub-blocks
C1 ∩ pred(C2) andC1 \ pred(C2). In this case,C2 is a
splitter of C1. Π is pre-stableif all its blocks are pairwise
pre-stable. The main sketch of the algorithm below, albeit
simple, is the essence of partition refinement.

Algorithm 1 The general partition-refinement algorithm
Require: TheLTS, the initial partitionΠ0

Ensure: The partitionΠ under the coarsest bisimulation
1: Π := Π0;
2: while (∃C1, C2 ∈ Π, C1 is not stable w.r.t.C2) do
3: ΠC1

:= {C1 ∩ pred(C2), C1 \ pred(C2)};
4: Π := (Π \ {C1}) ∪ ΠC1

;
5: end while
6: return Π;

The scheme can be adapted to infinite state spaces, as-
suming that they admit effective representations of blocks
and decision procedures for computing intersection, set-
difference and predecessors of blocks, and testing whether
a block is empty. For termination, it must be ensured that a

pre-stable partition always exists. In [12], such an adapta-
tion is given forTA to compute time-abstracting bisimula-
tion since the state space ofTA falls in this category.

4.1 Bisimulation quotienting algorithm

In this section, we shall move further, taking the proba-
bilistic transitions into account. This is not trivial since the
infinite states (caused by time) and probabilistic transitions
are closely interweaved, thus the setpred should be replaced
by thediscrete predecessorsdiscpred and thetimed prede-
cessorstimepred in a proper way.

The set of timed predecessors splits a block where a
discontinuity on time occurs when taking a timed transi-
tion. This is captured by thetime-refinement operator(see
Def. 10). Besides, due to Proposition 1, a state having a
timelock must be in a different block than a state that does
not suffer from a timelock. This suggests afirst discrete-
refinement operator(see Def. 11).

For discrete predecessors, since a probability distribu-
tion rather than a state is associated with a transition, suc-
cessively dividing a block by a single-block splitter does
not suffice. Instead, we adapt themutual-refinealgorithm
in [3]. The algorithm maintains a distribution partition in
addition to a state partition, and in each iteration refines one
partition by the other and vice versa, till both partitions sta-
bilize. However, this algorithm cannot be directly applied
in our case, since a block might expand in a new partition
as the number of symbolic states in it may grow. Conse-
quently, in a new partition, it is possible that the distribution
set differs from the one in the last iteration and obviously
the old distribution partition is obsolete. TheExpand oper-
ator (see Def. 12) thus recalculates the symbolic states, the
distribution set, as well as the distribution partition andas
a final step in one iteration, a state block is refined by the
second discrete-refinement operator(see Def. 13) using the
newest distribution partition.

The algorithm is presented in Algo. 2. A detailed expla-
nation follows.

Determining the initial partition. The initial partition of
statesΠAP = S/RAP is the AP -partition of S, where
RAP = {(s1, s2) ∈ S × S | L(s1) = L(s2)}. Initially,
the zone of symbolic state(ℓ, ν) is inv(ℓ), thus on the sym-
bolic state level,ΠAP =

{

{([ℓ]RAP
, inv(ℓ))} | ℓ ∈ Loc

}

.

Refining partitions. In the rest of this section, we will
concentrate on how to refine an existing partition. For ref-
erence convenience, given aPTA, we designate each tran-
sition (leading to a distribution) a unique action name, and
for each locationℓ, we denote∇(ℓ) as the set of outgoing
transitions fromℓ, which is ranged over byα, β Let
∇ =

⋃

ℓ∈Loc ∇(ℓ). Moreover, for each transitionα, gα and
µα are the guard and the resulting distribution, respectively.

Algorithm 2 The partition-refinement algorithm forPTA

Require: ThePTA G andPTSMG = (S,Steps, L′, s0)
Ensure: The partitionΠ under the coarsest PTAB

1: Initialization: Get the initial partition,Π := ΠAP ;
2: PartitionΠ according toRefine1

d
(Π,∇).

3: Repeat
4: PHASE I – RefineΠ by discrete transitions:
5: Choose some blockC ∈ Π,
6: C′ = Expand(C, Π);
7: Update the distribution setDistr ′;
8: Compute the equivalence classDistr ′/Π;
9: Choose someM ∈ Distr ′/Π;

10: Π := Refine2
d
(C′, M);

11: PHASE II – RefineΠ by time delays:
12: Choose some blockC ∈ Π;
13: Π := Refinet(Π, C);
14: until Π does not change.
15: return Π;

For instance, there are 4 uniquely labeled transitions in the
PTA in Fig. 1.

As we have two types of transitions, there are two types
of refinements as well. For timed transitions, the time-
refinement operator is as follows:

Definition 10 (The time-refinement operator) LetΠ be a
partition ofS andC1, C2∈Π. Then Refinet(C1,C2) equals:

{C1 ∩ timepred(C2), C1 \ timepred(C2)} \ {∅},

wheretimepred(S) = {s | ∃s′ ∈ S, t ∈ R, s
t
→ s′}.

We define Refinet(Π, C2) =
⋃

C1∈Π Refinet(C1, C2).

This corresponds toPHASE II (line 11-13) in Algo. 2.

For discrete transitions, the split consists of two steps.
The first step is to differentiate the symbolic states that can
fire a discrete transition from those that cannot. In this step,
a splitter is the action set∇, which refines a block as:

Definition 11 (The1st discrete-refinement operator)
Let Π be a partition ofS, ∇ be the action set andC ∈ Π.
Then:

Refine1d(C,∇) = {C+, C−} \ {∅},
whereC+ = {(ℓ, Z) | ∃α ∈ ∇(ℓ), Z ⊆ gα} andC− =
{(ℓ, Z) | ∀α ∈ ∇(ℓ), Z ∩ gα = ∅}.

We define Refine1d(Π,∇) =
⋃

C∈Π Refine1d(C,∇).

All symbolic states inC+ have an enabled discrete tran-
sition whereas none of them inC− does. Actually,C− is
the set of states that have a timelock. This is used in line
2 of the algorithm. This operator has only to be performed
once, because the further refinement won’t change the fact
of having a discrete transition.

As the second step, we can further partitionC+ ac-
cording to the distributions. Suppose the current partition
Π = {C1, ..., Cn}, n ∈ N. For any blockCi, we can write
Ci = {(ℓ1

i , Y
1
i), . . . , (ℓq

i , Y
q
i)} with Ci =

⋃

16j6q(ℓ
j
i , Y

j
i),

(ℓ, Z)

(ℓ1, Z)

(ℓ2, Z)

p1

p2

(ℓ, Z)

(ℓ1, Z1)

(ℓ1, Z2)

(ℓ1, Z3)(ℓ2, Z)

?

?

?
p2

(ℓ, Z2)

(ℓ1, Z1)

(ℓ1, Z2)

(ℓ1, Z3)

(ℓ2, Z)

(ℓ, Z1)

(ℓ, Z3)

p1

p1

p1

p2

p2

p2

(a)

(b) (c)

C11

C12

C13

C2

C2

C11

C0

C ′
0

C12

C13

Figure 3. The motivation of Expand

and for any1 6 h 6= k 6 q, ℓh
i 6= ℓk

i . For index
1 6 h 6 m, α ∈ ∇(ℓh

i) such thatY h
i ⊆ gα, we want

to derive the distributions induced byα.
However, it is possible that the resulting symbolic state

of a transition bestrides different blocks, where the proba-
bility µ(C) to a blockC may not be well defined. For in-
stance, Fig. 3(a) illustrates a distribution fromS0 = (ℓ, Z)
to S1 = (ℓ1, Z) and S2 = (ℓ2, Z), whereS0 ∈ C0,
S2 ∈ C2 butS1 scatters inC11, C12 andC13, as in Fig. 3(b).
Note that{Z1, Z2, Z3} is a partition ofZ. The problem is
thatµ(C1i) cannot be defined for1 6 i 6 3.

To solve this problem, we have to split asymbolic state
in such a way that each sub-symbolic state has well-defined
probabilistic transitions over the partitionΠ, as in Fig. 3(c).
As a result of this split, the number of blocks stays the same,
but the symbolic state space expands in terms of transitions.
In the following, we define theExpandoperator formally.

For symbolic stateS = (ℓ, Z) and actionα, let
Supp(µα) = {(ℓ1, X1), . . . , (ℓm, Xm)} with probabilities
p1, ..., pm, respectively, whereXi ⊆ X is the reset clock set
andpi is the associated probability with

∑

16i6m pi = 1.
For successor(ℓj , Xj), the resulting symbolic state isSj =
(ℓj , Z[Xj := 0]). In the following, we will splitZ into a
partitionZ = {Z1, . . . , Zf} such that for any (sub) sym-
bolic state(ℓ, Z ′) of S, i.e.,Z ′ ∈ Z, each of its successor
states is located only in one block. ForCk ∈ {C1, ..., Cn},
define

Zk
j =

{

(ℓ, ν) | ν ∈ Z, (ℓj , ν[Xj := 0]) ∈ Ck

}

.

It is possible thatZk
j = ∅. For each successor1 6 j 6 m,

{Z1
j , Z2

j , . . . , Zn
j } is a partition ofZ. We have the follow-

ing partitions:

For 1-st successor: {Z1
1 , . . . , Zk

1 , . . . , Zn
1 },

...
For j-th successor: {Z1

j , . . . , Zk
j , . . . , Zn

j },
...

Form-th successor: {Z1
m, . . . , Zk

m, . . . , Zn
m}

We define
Z~k

=
⋂

16j6m

Z
~k[j]
j ,

where for eachj, 1 6 ~k[j] 6 n. Z
~k[j]
j denotes choosing

the~k[j]-th element in thej-th row, where~k is a vector of
indices. Stated in words,Z~k

is obtained by taking the inter-
section of one arbitrary element from each row in the above
“matrix”. It is not difficult to see that

{Z~k
| 1 6 ~k[j] 6 n, 1 6 j 6 m} \ {∅}

is a partition ofZ and in the worst case, this partition may
containnm blocks.

For eachZ~k
, sinceZ~k

⊆ Z
~k[j]
j for 1 6 j 6 m, it must

be the case that(ℓj , Z~k
[Xj := 0]) ⊆ C~k[j] for each1 6 j 6

m. Hence, the probability from the symbolic state(ℓ, Z~k
)

to Ci for 1 6 i 6 n is obtained by adding the nonzero
probabilities in thei-th column:

Pr
(

(ℓ, Z~k
), α, Ci

)

=
∑

16j6m,~k[j]=i

pj.

In the following, we merge thoseZ~k
and Z~k′

such that for eachCi ∈ Π, Pr
(

(ℓ, Z~k
), α, Ci

)

=

Pr
(

(ℓ, Z~k′), α, Ci

)

. The partitionZ = {Z1, ..., Zf} is then
obtained. And the expansion operator expands a block with
(possibly) more refined symbolic states as follows:

Definition 12 (The Expand operator) Let Π be a parti-
tion ofS, α ∈ ∇, C ∈ Π andS = (ℓ, Z) ∈ C. Then:

Expand(S, α, Π) = {(ℓ, Zi) | 1 6 i 6 f},

whereZi is defined as described above.
Expand(C, Π) =

⋃

S∈C,α∈∇ Expand(S, α, Π).

Note that for each sub-symbolic stateT of S in
Expand(S, α, Π), Pr(T, α, Ck) is well-defined. Let us
denote µT,α as the distribution overΠ from T via
action α. Now the distribution set is updated as
Distr ′ = {µT,α | T ∈ Expand(C, Π) with T =
(ℓ, Y) for someℓ, Y andα ∈ ∇(ℓ)}. The distribution par-
tition on Distr ′ over Π, denoted byDistr ′/Π, can thus
be updated accordingly, based on the following fact: Let
M ∈ Distr ′/Π, then∀µ, µ′ ∈ M , µ(C) = µ′(C) for any
C ∈ Π. As the mutual-refine technique, the state partition
can in turn be refined by the distribution partition as follows:

Definition 13 (The2nd discrete-refinement operator)
LetΠ be a partition ofS with C ∈ Π, C′ = Expand(C, Π)
andM ∈ Distr ′/Π. Then:

Refine2d(C, M) = {CM , C′ \ CM} \ {∅},

whereCM = {T | µT,α ∈ M andT = (ℓ, Y), α ∈ ∇(ℓ)}.

The above steps correspond toPHASE I, line 4-10 in Algo. 2.

{ℓ1, ℓ3; x = 0} {ℓ1, ℓ3; x 6 t1} {ℓ1, ℓ3; t1 < x 6 t2}

{ℓ2, ℓ4}

τ τ

1

0.3

0.7
{a} {a} {a}

∅

Figure 4. The bisimulation quotient

Example 2 The bisimulation quotient of thePTA in Fig. 1
is shown in Fig. 4. There are four equivalence classes. The
labelτ denotes that some time passes during the transition.
The intuition is that fromℓ1 or ℓ3 it is possible to go to a
state within a given period of time (the firstτ) where either
it takes a discrete transition to the sinking state or it stays
(taking the secondτ) for some time till it can take a transi-
tion back resetting its clock with probability0.3 or it goes to
the sinking state with probability0.7. t1 andt2 are arbitrary
time points which have been abstracted from the original
model.

Correctness and termination. It is not difficult to see
that by any of theRefineoperators, we may obtain some
new blocks, where for any two states in different blocks,
they are not bisimilar and these blocks are disjoint. The cor-
rectness of the algorithm follows from standard correctness
arguments of the partition-refinement algorithm. Termina-
tion is ensured by Theorem 9. Namely, in the worst case, the
algorithm will generate the partition induced by the region
equivalence.

Complexity. We analyze the complexity of the algorithm
briefly. Since in the worst case, the region equivalence will
be obtained, our algorithm needs to refine exponentially
many times to reach the fixpoint, and thus it is an EXPTIME

algorithm. On the other hand, it is not hard to see that gen-
erally for PTAs the EXPTIME lower bound can be obtained.
However, we note that (1) forPTAs with only one clock, we
can show that the algorithm only needs polynomial many
time to reach the fixpoint. Thus in this case, we can get
a polynomial time algorithm; (2) In practice, usually,PTAs
have a much coarser partition than the one induced by the
region equivalence, and thus our algorithm is expected to
perform pretty well in this case.

5 Verification of branching-time properties

The logic PCTL . In this section we prove that PTAB pre-
serves branching-time properties specified in probabilistic
CTL [6]. The syntax and semantics ofPCTL is:

Φ ::= tt | a | ¬Φ | Φ ∧ Φ | P�p(φ),

wherep∈[0, 1] is a probability,a∈AP , �∈{<,6, >,>}
andφ is a path formula defined as:

φ ::= Φ U Φ | Φ W Φ.

The path formulaΦ U Ψ asserts thatΨ is eventually sat-
isfied and that all preceding states satisfyΦ. W is the
weak counterpart ofU which does not requireΨ to even-
tually become true. Most of the operators are standard,
with the exception thats |= P�p(φ) iff for any sched-
uler G ∈ W, Prob(s, φ) � p in the DTMC DG, where
Prob(s, φ) = Pr{σ ∈ Paths(s) | σ |= φ}.

Bisimulation can be lifted to paths in the following way:

Lemma 14 (Bisimulation on paths) Lets ∼ s′. Then: for

each (finite or infinite) pathω = s0
t0,µ0

→ s1
t1,µ1

→ s2 · · · ∈

Paths(s), there exists a pathω′ = s′0
t′
0
,µ′

0→ s1
t′
1
,µ′

1→ s′2 · · · ∈
Paths(s′) of the same length such thatsi ∼ s′i, for all i>0.

Theorem 15 LetG be aPTA and∼ be aPTAB onG. For
anyPCTL formulaΦ: s ∼ s′ impliess |= Φ iff s′ |= Φ.
Proof: The proof is by induction on the structure of
Φ. Basis: If s ∼ s′, then L(s) = L(s′). The in-
teresting induction steps are forΦ = P�p(φ), where
φ = Ψ1 U Ψ2. Assume thats |= Φ, then there ex-
ists a schedulerG : Paths∗ → R × Distr(S) such
that PathsG(s, Ψ1UΨ2) = {ω ∈ PathsG(s) | ∃i >
0. ω(i, ti) |= Ψ2 ∧ ∀0 6 j < i, t < tj . ω(j, t) |= Ψ1} and
Pr(PathsG(s, Ψ1UΨ2)) � p.

Assume ω ∈ PathsG(s, Ψ1UΨ2), according to
Lemma 14, there exists a probabilistic time-abstracting
bisimilar pathω′ ∈ PathsG

′

(s′, Ψ1UΨ2), and vice versa.
We can thus construct a schedulerG′ : Paths∗ → R ×
Distr(S) as follows: forω ∈ Paths∗(s) and its bisimilar
pathω′ ∈ Paths∗(s′), if G(ω) = (µ, t), thenG′(ω′) =
(µ′, t′) andµ ≡∼ µ′.

It remains to show thatPr(PathsG(s, Ψ1UΨ2)) =

Pr(Paths
G

′

(s′, Ψ1UΨ2)). Due to the fact that for each
Ψ1UΨ2 path, the probability distribution determined byG

and G′ is equivalent, the probability measure of the two
sets of paths coincides. �

The above theorem states that aPCTL formula is pre-
served by a PTAB, which indicates that allPCTL properties
can be checked on the quotientPTSs, thus all the existing
techniques, algorithms, and tools for finiteMDPs can be ap-
plied.

6 Conclusion
We have investigated probabilistic time-abstracting

bisimulation for probabilistic timed automata. This equiva-
lence usually provides a much coarser partition than tradi-
tion region equivalence and preservesPCTL. We provided a
non-trivial adaptation of the traditional partition-refinement
algorithm to compute the quotient under PTAB. This algo-
rithm is symbolic in the sense that equivalence classes are
represented as polyhedra.

In future works, we would like to investigateweakprob-
abilistic time-abstracting bisimulations, including itsdefini-
tion and decision procedures. Experimental research of the
proposed algorithms is to be carried out. Furthermore, it is
also interesting to study the abstract-refinement and coun-
terexample generation forPTAs.

Acknowledgement. This research has been financially
supported by the Dutch Bsik projectBRICKS, the Dutch
NWO project QUPES, the EU FP7 project QUASIMODO,
and partially supported by the Chinese national 863 pro-
gram (2007AA 01Z178), NSFC (60736015) andJSNSF

(BK2006712).

References

[1] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking
in dense real-time.Inf. Comput., 104(1):2–34, 1993.

[2] R. Alur and D. L. Dill. A theory of timed automata.Theor.
Comput. Sci., 126(2):183–235, 1994.

[3] C. Baier, B. Engelen, and M. E. Majster-Cederbaum. Decid-
ing bisimilarity and similarity for probabilistic processes.J.
Comput. Syst. Sci., 60(1):187–231, 2000.

[4] A. Bianco and L. de Alfaro. Model checking of probabilis-
tic and nondeterministic systems. InFSTTCS, LNCS 1026,
pages 499–513, 1995.

[5] S. Derisavi, H. Hermanns, and W. H. Sanders. Optimal
state-space lumping in Markov chains.Inf. Process. Lett.,
87(6):309–315, 2003.

[6] H. Hansson and B. Jonsson. A logic for reasoning about
time and reliability. Formal Asp. Comput., 6(5):512–535,
1994.

[7] M. Z. Kwiatkowska, G. Norman, and D. Parker. Proba-
bilistic symbolic model checking with PRISM: a hybrid ap-
proach.STTT, 6(2):128–142, 2004.

[8] M. Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston.
Automatic verification of real-time systems with discrete
probability distributions.Theor. Comput. Sci., 282(1):101–
150, 2002.

[9] M. Z. Kwiatkowska, G. Norman, J. Sproston, and F. Wang.
Symbolic model checking for probabilistic timed automata.
Inf. Comput., 205(7):1027–1077, 2007.

[10] R. Lanotte, A. Maggiolo-Schettini, and A. Troina. Weak
bisimulation for probabilistic timed automata and applica-
tions to security. InSEFM, pages 34–43, 2003.

[11] R. Paige and R. E. Tarjan. Three partition refinement algo-
rithms. SIAM J. Comput., 16(6):973–989, 1987.

[12] S. Tripakis and S. Yovine. Analysis of timed systems using
time-abstracting bisimulations.Formal Methods in System
Design, 18(1):25–68, 2001.

