Time-abstracting Bisimulation for Probabilistic Timed Au tomata

Taolue Chen

Ccwi
PO Box 94079, 1090 GB Amsterdam, The Netherlands
chen@wi . nl

Abstract

Tingting Han

Joost-Pieter Katoen

MOVES, RWTH Aachen University, Germany
FMT, University of Twente, The Netherlands
{tingting. han, katoen}@s.rw h-aachen. de

large to be of any practical interest: its size is exponéntia
in the number of clocks of the system as well as the size

This paper focuses on probabilistic timed automata of the constants in the time constraints. To overcome this

(PTA), an extension of timed automata with discrete prob-

explosion, inspired by [12], we propopeobabilistic time-

abilistic branchings. As the regions of these automata of- abstracting bisimulation§P TAB) for PTAS, where the pas-
ten lead to an exponential blowup, reduction techniques are sage of arbitrary time is abstracted by dransition. This

of utmost importance. In this paper, we investigate prob-

abilistic time-abstracting bisimulatiorATAB), an equiva-
lence notion that abstracts from exact time delalSAB

is proven to preserve probabilistic computational treeitog
(PcTL). The region equivalence is a (very refind®)AB.
Furthermore, we provide a non-trivial adaptation of the-tra
ditional partition-refinement algorithm to compute the guo
tient underPTAB. This algorithm is symbolic in the sense
that equivalence classes are represented as polyhedra.

1 Introduction

Digital technology has been widely deployed in safety-
critical situations and real-life environments, whichdedo

equivalence is usually much coarser than the region equiva-
lence, therefore, in practice, it induces a much smallée sta
space partition. In particular, the region equivalence-con
stitutes a (very fine) probabilistic time-abstracting ivisi
lation. Thebisimulation quotienis a finite-state Markov
decision processMDP), where the states are equivalence
classes ovesymbolic state& set of states) with eitheror
discrete probabilistic transitions.

PTAB is particularly useful when the desired properties
do not involve time constraints, which are prevalent in prac
tice, i.e., safety, reachability, etc. Those propertias loa
well captured by theprobabilistic computation tree logic
(PcTL) [6], which is proven to be preserved underABE.

In this case, the existing tools and algorithms\iaps w.r.t.

increased interests in computer systems expressed in termscTL [7] can thus be applied farTAs.

of quantitative timing constraints. Timed automatag,
[2]) are a prominent and well-established formalism for
modeling, analysis and verification of sumal-time sys-

To obtain a minimal PAB quotient, our algorithm
works in thepartition-refinemenfashion [11]. We start
from an initial partition that respects state labeling, prat

tems, which have received much attention both in terms of ceed by refining each block till it contains only bisimilar

theoretical and practical developments.

states. Due to the fact thatras involve an interweaving

Traditional approaches to the formal description of real- of time, nondeterminism and probability distributionse th

time systems usually express the system model purely i

terms of nondeterminism. However, many real-life sys-

nminimization has thus to deal with the following difficul-
ties: When taking & transition, it must guarantee that time

tems, such as multimedia equipment, communication pro-traverses continuously, e.g., time cannot jump fromo 2

tocols and networks, exhibiandombehaviors, thus it may
be desirable to refer to thielihood of certain properties
satisfied by the real-time system. This notion is partidular

without traversingl. Thus, we introduce théémed prede-
cessorset as a splitter, as in [12]. Moreover, since a discrete
transition results in one or more probability distributon

important when the fault-tolerance aspect of systems is con the splitter of only one block in [12] is, however, not ap-

cerned. This suggests the studypobbabilisticmodels.

In this paper, we investigatprobabilistic timed au-
tomata(PTAs) [8], which are a probabilistic extension of
timed automata. As imAs, in the research @&fTAs, the no-
tion of region graphsplays an essential role, see e.g. [8].

However, it is well recognized that albeit being a very use-

plicable. Our algorithm instead, adopts the ideanoftual-
refinetechnique in [3], which maintains a state partition and
a distribution partition. In each refinement iteration, diee
tribution partition is used to refine a state partition antkvi
versa. The algorithm in [3], unfortunately, cannot be ap-
plied in our setting in a straightforward way, as the number

ful tool for theoretical purposes, the region graph is too of symbolic states in a block may grow in each iteration

when time comes into play. As a result, the symbolic state

space and the distribution set vary in each iteration, tateal
their partitions. To solve this problem, &xpandoperator

An X-valuationv satisfiesa clock constraing, denoted
asv = g, and is defined as follows: = « i ¢ iff v(x)
cviErz—yxciff v(z) —v(y) xcandy = g1 A g if

is introduced, recalculating the symbolic states in a block v = ¢g; andv = gs.

as well as the distribution set before the mutual-refine-tech
nigue is applied. This algorithm is symbolic, namely, equiv

An X-hyperplaneis a set of valuations satisfying an
atomic constraint. The class ofl y-polyhedra is de-

alence classes are symbolic states and set-theoretic-operdined as the smallest subsetd¥f which contains all-
tors are used to compute the set of (time) predecessor statelsyperplanes and is closed under set union, intersectiah, an

of a symbolic state.

Related works. [3, 5] present algorithms for the proba-
bilistic bisimulation and simulation for discrete problibi

tic systems. [10] investigates weak probabilistic bisiaaul
tion for PTAs with a decision procedure, however, the algo-
rithm is region based, which is tried to be avoided in the

complement.

Intersection (), union (U) and complement(are well-
defined operations on polyhedra. Given a polyhedf@nd
a subset of clockst C X, the operationZ[X := 0] is
defined aqv | v[X :=0] € Z}.

Probabilistic timed automata. Let AP denote a fixed,

current paper. [8] presents a comprehensive exposition forfinite set of atomic propositions ranged overdy, c,

PTAs and model checking algorithms feras. [9] gives a
symbolic algorithm for model checking, however, the prob-
lem of deciding time-abstracting bisimulations is not con-
sidered.

Structure of the paper. Section 2 presents basic defini-
tions regardingeTAs. Section 3 defines probabilistic time-
abstracting bisimulation. Section 4 presents the bisimula
tion minimization algorithm and constitutes the core o$thi
paper. Section 5 shows that bisimulation preseresL
formulae. This paper is concluded in Section 6.

2 Preliminaries

Definition 1 (Probability distribution) For a finite setS,

a distribution is a functionp : S — [0,1] such that
> ses i(s) = 1. pul denotes the unique distribution ¢
with u(s) = 1. Supp(p) denotes thesupportof 1, i.e., the
set of states € S with u(s) > 0. With Distr(S) we denote
the set of all probability distributions of.

Clocks and valuations. Let R denote the set ofon-
negativereals and lett = {z1,--- ,z,} be a set of vari-
ables inRR, calledclocks An X-valuation is a function
v : X — R assigning to each clock a valuev(x). The
set of all valuations ovef’ is denoted byR*. We write
0 for the valuation that assigns zero to all clocks. For a
subsetX C X, v[X 0] is the valuatiore’ such that
Ve € X. V(x) = 0andVe ¢ X. V' (z) = v(z). For
d € R, v + d is the valuationv” such thatvz € X.
V" (xz) = v(z) + d, by which it implies that all clocks pro-
ceed at the same speed.

Hyperplanes and polyhedra. An clock constrainton X
is an expression of the form <1 c or z — y > ¢ oOr
the conjunction of any clock constraints, wherg) € X,
< € {<,<,>,>}andc € N. An atomic constraintdoes
not contain any conjunctions. L&tC(X) and ACC(X)

denote the set of clock constraints and atomic clock con-

straints overY, respectively.

Definition 2 (Probabilistic timed automata [8]) A prob-
abilistic timed automaton(pTA) is a tuple G
(Loc, X, Ly, L,inv, ~) where:
Loc is afinite set oflocations
X is a set of clocks;
lo € Loc is the initial location;
L : Loc — 2" is alabeling function for the locations;
~C Locx CC(X) x Distr(2¥ x Loc) is a transition
relation;

e inv: Loc—CC(X) is an invariant-assignment function.
Allinvariants aredownward-closeth the sense that for any
d € R,v+d = inv(¢) implies thatv |= inv(¢).

The system starts in locatidy with all its clocks initial-
ized to 0. The values of all the clocks increase uniformly
with time. We refer to/ % 5 as atransition, where the
guard g is a clock constraint on the clocks gfandn is
a distribution over thé€ X, ¢) pairs with X C X a set of
clocks to be reset antélthe successor location. The intu-
ition is that thepTa G can move from locatiodf to loca-
tion ¢’ via two phases. In the first phase, a distributipn
is nondeterministically chosen wherholds. In the second
phase, a successor locati@ris probabilistically chosen ac-
cording ton(X, ¢'), where the clocks ifX should be reset
when entering’. The functioninv assigns to eacha loca-
tion invariant that constrains the amount of time that may be
spent inf. In other words, locatiof should be left before
the invariantinv(¢) becomes invalid. If there is no outgo-
ing transition enabled and no further progress is possible,
it is atimelock The labeling functior, associates to each
location/ a set of atomic propositions that are validlin

Example 1 Fig. 1is an exampleTa, where from¢; there
are two distributions (or transitions) and thus is nondeter
ministic. The transitions té; and/, share the same guard
x > 1, since they belong to the same distribution. The tran-
sition to /3 resets the clockz}. The labeling ort; and/s

is {a}, 0 otherwise.

T > 2
0.3,{z}

Figure 1. An example PTA

as z>1,3/4 .

r<2,1/4

0<z<1,1

Figure 2. The encoding to a one-clock-
constraint model

Remark 1 Due to the syntax, one transition is associated
with a single clock constraint. This requirement is integti

Paths. Paths in apTsarise by resolving both the nonde-
terministic and probabilistic choices. path of the PTs
M = (S, Steps, L, s¢) is a finite or infinite sequence:

wheres; € S, (t;, i) € Steps(s;) andu;(s;+1) > 0forall
0 < i < |w|, where|w| is the number of transitions in. A
finite pathw ends in a state, denotédst (w).

We use Pathg, to denote the set of finite paths and
Pathg,(s) the set of finite paths that start in Path
and Path,s (s) are the counterpart for infinite paths. Con-
sider a pathv € Path;,s of M. A positionof w is a pair
(i,t') wherei € N andt’ € R such thal < ¢’ < ¢;. The
state at positior{:, t') onw is denoted by (i,t') = s; +t'.

Definition 4 (Scheduler of apTs) A schedulerof a PTS

M = (S, Steps, L, sp) is a function® mapping every
finite pathw of M to a pair (¢,) such that®(w) €

Steps(last(w)). Let20 be the set of all schedulers 8.

A scheduler resolves the nondeterminism by choosing
a probability distribution based on the process executed so
far. Formally, if apTsis guided by schedule$ and has the

and reasonable since the more-than-one clock constraintfinite pathw as itshistory, then it will be in states in the
case, see e.g., [10], can be encoded by adding more dismext step with probability.(s), where®(w) = (¢,).

tributions. To give an example, the left in Fig. 2 isaA
with two clock constraints in one distribution. This can be
encoded by theTa on the right in Fig. 2. It goes as fol-
lows: When0 < x < 1, the transition from¢; to ¢5 is not
enabled. Thus the only possible transition is the self-lmop
£1, which is normalized to probability 1. Whén< z < 2,
both transitions are enabled, and their probabilities rema
the same. The > 2 case is similara® < z < 1.

Probabilistic timed structures. The semantics of a timed
automaton is an infinite timed transition system. The se-
mantics of aTA is provided by a probabilistic timed struc-
ture, in fact an infinitevDp.

Definition 3 (Probabilistic timed structures) A prob-
abilistic timed structure(pTs M is a labeled Markov
decision procestS, Steps, L, so) whereS is a set of states,
Steps : S — 2RxDistr(S) js g function that assigns to
each states € S a set of pairs(¢, u) wheret € R and
u € Distr(S)andL : S — 247 is a state labeling function.
so € S is the initial state.

Steps(s) is the set of transitions that can be nondeter-
ministically chosen in state. The transition labels are of
the form(¢, 1) wheret is the duration of the transition and
1 is the probability distribution over the successor states.

s "4 ¢ means that aftertime units have elapsed, a transi-
tion is fired froms to s’ with probability 1(s").

We denote the set of infinite paths induced by a given
schedule®® to be Paths® with Paths® = {w € Paths |
&(wl;) = p; fori>0}, wherew]; returns the prefix ob up
to lengthi. Paths® (s) is defined asPaths® N Paths(s).

Schedule® on PTS M induces a discrete-time Markov
chain pT™Mc) M®, where the nondeterminism has been re-
solved. Each state iM® is a finite path fragment in M.
The transition probability is determined Igy and the cho-
sen probability distribution. We omit the formal definition
of M®, the probability space of1®, and a basic cylinder
as they are standard and can be found in e.g., [4].

Semantics. Any PTA can be interpreted asrrs Due
to the continuous nature of clocks, these underlyrmngs
have infinitely many states (even uncountably many), and
are infinitely branching.PTA can thus be considered as a
finite description of infiniterTss.

Given aPTA G = (Loc, X, 4y, L, inv, ~), astateof G is
a pair(¢,v), wherel¢ € Loc is a location and € inv(¢) is
a valuation satisfying the invariant 6f
Definition 5 (PTs semantics of aPTA) Let G
(Loc, X, Ly, L,inv,~>) be a PTA. The PTS of G is
Mg = (S, Steps, L', so) with:
S={{,v)|vEinv{),£ e Loc};
o L'((t,v)) = L(O)u{g € ACC(X) | v |= g};
so = (fo,0);
Given(t,u) € Steps((¢,v)), transition — is defined
by the following rules:

— discrete transition (¢, v) Ly

lowing conditions hold:
1. 3transition? % 5 in G with (¢, X) > 0;
2. vEg;
3.V =v[X =0
4ol v) = Yo xcxp—vixi=g 1K).
Usually, we simply writé/, v) — pu.

(', 1), if the fol-

— delay transition (¢, v) 43 (¢,v+d)forall 0 <
d <t ifv+dE=inv).
Note that1 indicates that the probability dis-

tribution is sif, ,,, ;. Usually, we simply write

(v) S (v +d).

Symbolic states. We define symbolic states which are

used for the effective representation and manipulatiohef t
infinite state space afts. Generally, a symbolic state is a
set of states oM.

In a nutshell, ZzoneZ € R of X is a set of valuations

which satisfy a conjunction of constraints. Formally, the

zone for the constrainfis Z = {v | v(z) = g,z € X}.

Region equivalence. In the following, we first recall the
definition and properties of region equivalencee) [1]
which is essential in turning the infinite state space pfa
into afinite quotient. We will then show a similar result as
in [12] that there for PTSis in fact a PRB.

Consider a set of clockd” and letc = cnax(G) the
largest integer constant among all the clock constrairds an
invariants inG. Two clock evaluationg andv’ areregion
equivalentdenoteds = /, iff they satisfy:

o Vz € X, either|v(z)] = [V/(x)] or bothy(z) > ¢

andv/(z) > c.
o Vz,y € X, either|v(z) —v(y)| = [V (z) — V' (y)] or
both|v(z) —v(y)] > cand[V/'(z) — V' (y)] > c.

Note that|r | is the maximal integer thatis at mostThe
equivalence classes induced Byareregions The region
equivalence can be lifted to states such tliat) = (¢, 1)
if {=¢andv /.

The region equivalence has following properties:
Lemma 8 For valuationsy, v/ € RY with v = /-

1. foranyzoneZ,v € Z iff v/ € Z;
2. for any set of clock¥ CX, v[X := 0] 2 V'[X :=0];

Geometrically, a zone is a polyhedron (note that we do not 3.Vd>03d' >0.v+d=v+d.

require a zone to be convex). ymbolic state is a set of
states whose clock evaluations form a zone. Strigtlis a
set of pairs of location and zone, namely, of the f¢éin?).
The union of all symbolic states is the state spéce

3 Time-abstracting Bisimulation for PTS

In order to refine the dense state space as much as pos-
sible, we adopt the time-abstracting bisimulation [12] for
state space minimization, which abstracts from the quanti-

tative aspect of time: we know thabmetime passes, but
not how much. We first introduce a technical definition:

Definition 6 u, u’€ Distr(S) are equivalent w.r.t. equiva-
lenceR on S, writtenu=x /', if VU € S/R. u(U)=p'(U).

Definition 7 (Probabilistic time-abstracting bisimulation)
LetG be aPTA, Mg = (S, Steps, L', so) be thepTsof G.
A probabilistic time-abstracting bisimulatig@ TAB) for G
is an equivalence relatio® on S such that for all states
(s1, 82) € R, the following conditions hold:
o I'(s1) = L'(s2);
o If 51 2N s}, for somet; € R, then there exists, € R
ands, € S such thats, 4 shand(s}, s5) € R;
e If s1 — uq, for someu; € Distr(S), then there exists
someuq € Distr(S) such thats, — pe andu; =r po.
s1 and s, are probabilistic time-abstracting bisimilade-
noteds; ~ so, if (s1,s2) € R for somePTAB R.

Theorem 9 The region equivalence isRITAB, i.e.,~ C ~.

Proof: Let (¢,v),(¢,v') be two states inPTS M =

(S, Steps, L', s9) suchthat¢, v) = (¢,).

e (Labels) Due to the factthat (¥, v) = (¢,v'),v € Z
iff v/ € Z (Lemma8(1)), itholds thaty € ACC(X) |
v E gt = {¢ € ACC(X) | v/ = ¢'}. Since
L'((¢,v)) = L()U{g € ACC(X) | v = g}, where
L is the labeling function in the correspondinga G,
we havel/((¢,v)) = L'((¢£,v)).

e (Timed transition) Let(¢,) <, (¢,v + d). Due to
Lemma 8(3), there exists@ > 0 such thatv + d =
vV +d. Vv +d Einv(e) sincer,v 4+ d E inv(Y).
Foranyd” < d', v +d" = inv(¢), by the downward-
closedness Ghv(¢). Thus(¢, ') % (6,0 + d).

e (Prob. transition) Let?, v) — u. u is chosen by some
schedule®. As & can only select enabled transitions,
pEg LetZ={v|vEg}veZ Sincell,v) =
(¢,v"), due to Lemma 8(1)/’ € Z, which means that
V' | g,thuspis also enabled if¢, v'). Therefore, we
can construct a scheduléf which chooses the same
distribution as®. Sincey =~ p, (¢,v') — p.

RE satisfies all conditions of being a RB, thus>~ C ~. [J

The above theorem asserts that the region equivalence is

a (probably very refined) PAB. Note that the converse does
not hold in general. It can be the case thav) ~ (¢/,v/)
wherel # ¢ (see Example 2), howevél, v) 2 (¢',v').

The next result shows that timelocks are preserved by
Proposition 1 If (¢,v) ~ (¢/,1'), then(¢, v) has a timelock

We user-transitions to abstract away the exact time pas- iff (¢/,2/) has a timelock.

sage, formallys = s’ iff 3t € R.s 5 s'.

Evidently, the converse does not hold.

4 Minimization of PTA

Having defined the PAB, an immediate question is:
how to compute it, since one of the crucial steps of exploit-
ing PTAB for verification is to generate the quotient of the
given PTA. A simple answer might be, taking the region
graph, since the region equivalence is aBTHowever, as
pointed in [1], the number of regions grows exponentially
with the number of clocks in thea, the finite region equiv-
alence quotient is too large to be of any practical interest,
and the same applies koAs. Therefore, for the sake of ef-
ficiency, we are interested in tlmeinimal quotient, namely,
the one corresponding to tikearsesbisimulation. In what
follows, we will propose an algorithm to compute the quo-
tient of apTsw.r.t. the coarsest BB, which combines the
algorithm in [12] for timed automata and the algorithm in
[3] for MDPs.

Partition refinement. Prior to presenting our algorithm,
let us first recall how the minimization algorithm works
for finite (non-probabilistic, without time) labeled trans
tion systemsi(tss). The algorithm relies on theartition-
refinementtechnique [11]. Roughly speaking, the state
spaces is partitioned irblocks i.e., pairwise disjoint sets of
states. Starting from an initial partitidi, where, e.g., all

pre-stable partition always exists. In [12], such an adapta
tion is given forTA to compute time-abstracting bisimula-
tion since the state spaceof falls in this category.

4.1 Bisimulation quotienting algorithm

In this section, we shall move further, taking the proba-
bilistic transitions into account. This is not trivial senthe
infinite states (caused by time) and probabilistic traosgi
are closely interweaved, thus the geid should be replaced
by thediscrete predecessodiscpred and thetimed prede-
cessorgimepred in a proper way.

The set of timed predecessors splits a block where a
discontinuity on time occurs when taking a timed transi-
tion. This is captured by thiéme-refinement operatdsee
Def. 10). Besides, due to Proposition 1, a state having a
timelock must be in a different block than a state that does
not suffer from a timelock. This suggestdiest discrete-
refinement operatofsee Def. 11).

For discrete predecessors, since a probability distribu-
tion rather than a state is associated with a transition, suc
cessively dividing a block by a single-block splitter does
not suffice. Instead, we adapt thautual-refinealgorithm
in [3]. The algorithm maintains a distribution partition in
addition to a state partition, and in each iteration refirmes o
partition by the other and vice versa, till both partitiotes-s

equally-labeled states form a block, the algorithm succes-pjji;e - However, this algorithm cannot be directly applied

sively refines these blocks such that ultimately each block
The refinement is based

contains only bisimilar states.
on the fact that a bisimulation induces a pre-stable parti-
tion. Formally, given a partitiorI of states and blocks
C1,Cy € 11, C4 is pre-stablew.r.t. Cy if C; C pred(Cs)

or Cy N pred(Cs) = (), wherepred(C) is the set of direct
predecessors of all the states(in If C; is not stable w.r.t.
Cs, then(Cy can further be partitioned into two sub-blocks
Cy N pred(Cy) and Cy \ pred(C2). In this case (s is a
splitter of C;. II is pre-stableif all its blocks are pairwise
pre-stable. The main sketch of the algorithm below, albeit
simple, is the essence of partition refinement.

Algorithm 1 The general partition-refinement algorithm

Require: TheLTs, the initial partitionIIy
Ensure: The partitionIT under the coarsest bisimulation

1: II .= Ilp;

2: while (3C1, Cy € 11, C is not stable w.r.tCs) do
3: H01 = {Cl N pred(Cg)7 C1 \ pred(C’g)};

4 II:= (I1\ {C1}) UTl¢g,;

5. end while

6: return II,

in our case, since a block might expand in a new partition
as the number of symbolic states in it may grow. Conse-
quently, in a new partition, it is possible that the disttibo
set differs from the one in the last iteration and obviously
the old distribution partition is obsolete. TExpand oper-
ator (see Def. 12) thus recalculates the symbolic states, the
distribution set, as well as the distribution partition asd
a final step in one iteration, a state block is refined by the
second discrete-refinement operafsee Def. 13) using the
newest distribution partition.

The algorithm is presented in Algo. 2. A detailed expla-
nation follows.

Determining the initial partition. The initial partition of
statesllyp = S/Rap is the AP-partition of S, where
Rap = {(81,82) e SxS | L(Sl) = L(Sg)} Initially,
the zone of symbolic staté,) is inv(¢), thus on the sym-
bolic state levelllap = {{([{]r.,,inv(¢))} | £ € Loc}.

Refining partitions. In the rest of this section, we will
concentrate on how to refine an existing partition. For ref-
erence convenience, giverPaA, we designate each tran-

The scheme can be adapted to infinite state spaces, assition (leading to a distribution) a unique action name, and
suming that they admit effective representations of blocks for each locatior?, we denoteV (¢) as the set of outgoing

and decision procedures for computing intersection, set-

transitions from¢, which is ranged over by, 5.... Let

difference and predecessors of blocks, and testing whethe¥V = J,., .. V(¢). Moreover, for each transitiom, g, and
a block is empty. For termination, it must be ensured that a 11, are the guard and the resulting distribution, respectively

Algorithm 2 The partition-refinement algorithm ferra

Require: ThepPTAG andPTsS Mg = (S, Steps, L', so)
Ensure: The partitionII under the coarsest RB
1: Initialization: Get the initial partitionl] := 11 4 p;

2: PartitionII according toRefing (I1, V).
3: Repeat
4 PHASE |- RefineIl by discrete transitions:
5: Choose some blodk' € II,
6: C' = ExpandC, II);
7 Update the distribution se®istr’;
8: Compute the equivalence claBsstr’ /11;
9: Choose somé/ € Distr’ /11,
10: II := Refiné(C’, M),
11: PHASE II— Refinell by time delays:
12: Choose some blodk € I, Figure 3. The motivation of Expand
13: 11 := Refing (11, C);
14: until II does not change.
15: return II,

and for anyl < h # k < ¢, & # (% For index
1 < h<m,a € V() such thaty” C g,, we want
h to derive the distributions induced ly
However, it is possible that the resulting symbolic state

As we have two types of transitions, there are two types of a transition bestrides different blocks, Where the pl_foba
of refinements as well. For timed transitions, the time- Pility 1(C) to a blockC may not be well defined. For in-
refinement operator is as follows: stance, Fig. 3(a) illustrates a distribution fr&n = (¢, Z)

toS; = (¢1,Z) andSy = ({5,7), whereS, € Cy,
Definition 10 (The time-refinement operator) LetIl be a So € Cy butS; scattersirCy;, C12 andChs, asin Fig. 3(b).
partition of S andCy, C»€I1. Then RefingC;,C5) equals: Note that{ Z;, Z», Z3} is a partition ofZ. The problem is
)) thatu(C1;) cannotbe defined fod < ¢ < 3.
{C1 N timepred(C), Cy \t'mepred(OQ)t} \ {0}, To solve this problem, we have to splisgmbolic state
wheretimepred(S) = {s | 35’ € S,t € R, s — '} in such a way that each sub-symbolic state has well-defined

We define Refin@l, C2) = Uq, <y Refing(C1, Cs). probabilistic transitions over the partitidfy as in Fig. 3(c).

As a result of this split, the number of blocks stays the same,
but the symbolic state space expands in terms of transitions
For discrete transitions, the split consists of two steps. In the following, we define th&xpandoperator formally.

For instance, there are 4 uniquely labeled transitionsen t
PTAIN Fig. 1.

This corresponds tBHASE 11 (line 11-13) in Algo. 2.

The first step is to differentiate the symbolic states that ca For symbolic stateS = (¢,Z) and actionq, let
fire a discrete transition from those that cannot. In thip,ste Supfu.) = {(¢1, X1), ..., (lm, Xm)} with probabilities
a splitter is the action sa&t, which refines a block as: P1, -, Pm, FESPECtively, wher&(; C X is the reset clock set
andp; is the associated probability with', ., p; = 1.
Definition 11 (The 1% discrete-refinement operator) For successaf;, X;), the resulting symboﬁc\stateﬁﬁ =
LetII be a partition ofS, V be the action set an@' < II. (¢;,Z[X; := 0]). In the following, we will splitZ into a
Then: Refind(C, V) = {C*,C 1\ {0}, par_titioné,7 = {/Zl, e ,_Zf} s/uch that for any (sub) sym-
whereC*+ = {(£,7) | Ja € V(£),Z C go) andC— = bolic S'Fate(é,Z) of S,.l.e.,Z € Z, each of its successor
(4, 2) | Vo € V(£). Z N go = D). zt;?ﬁz is located only in one block. F@ € {C4,...,Cy},

We define Refigéll, V) = | Refing(C, V). 25— {(60) v € 2, (6301, = 0]) € Cu .
All symbolic states inrC* have an enabled discrete tran-

sition whereas none of them #~ does. ActuallyC~ is Itis possible thaZ} = (). For each successor< j < m,

the set of states that have a timelock. This is used in line{Z}, Z7,..., Z}'} is a partition ofZ. We have the follow-

2 of the algorithm. This operator has only to be performed ing partitions:

once, _becau§e the furthe_r_reflnement won't change the fact For 1-stsuccessor {Z},...,ZF ... 72,

of having a discrete transition.

As the second step, we can further partitiéii ac-
cording to the distributions. Suppose the current partitio
II = {C,...,C,}, n € N. For any blockC;, we can write :
Ci = {61, Y1), ..., (0], Y} with C; = U, ¢, (6], Y7), Form-th successor {ZL,...,zk ... zm}

For j-th successor {Z}, ceey Zfa R Z;‘l}v

We define

where for eacly, 1 < E[j] < n. me denotes choosing

the k[j]-th element in thej-th row, wherek is a vector of
indices. Stated in words;; is obtained by taking the inter-

section of one arbitrary element from each row in the above

“matrix”. It is not difficult to see that
{Z; | 1< k[j] < <m}p\ {0}
is a partition ofZ and in the worst case, this partition may
containn™ blocks. L
For eachZ;, sinceZ;; C me for1 < j < m, it must
be the case that;, Z;[X; := 0]) C Cyyy foreachl < j <
m. Hence, the probability from the symbolic stdte 7;;)
to C; for 1 < ¢ < n is obtained by adding the nonzero
probabilities in the-th column:
> wi

Pr ((é, Z]*C*), a, Ol) =
1<i<m, k[j]=i

n,1 <

In the following, we merge thoseZ; and Zp
such that for eachC; € 1II, Pr(((,Z;),0,C;) =
Pr((¢, Zz), o, C;). The partitionZ = {Z1, ..., Zs} is then

T~

— {1,432 = 0} {1,05;0 <t} T {4, U331 < o < tp}

@ h, / fa)

{to, s}

+

Figure 4. The bisimulation quotient

Example 2 The bisimulation quotient of theTa in Fig. 1

is shown in Fig. 4. There are four equivalence classes. The
labelr denotes that some time passes during the transition.
The intuition is that fron¥; or /3 it is possible to go to a
state within a given period of time (the firsf where either

it takes a discrete transition to the sinking state or it stay
(taking the second) for some time till it can take a transi-
tion back resetting its clock with probabiliéy3 or it goes to

the sinking state with probabiliy.7. ¢; and¢, are arbitrary
time points which have been abstracted from the original
model.

Correctness and termination. It is not difficult to see
that by any of theRefineoperators, we may obtain some
new blocks, where for any two states in different blocks,

obtained. And the expansion operator expands a block withthey are not bisimilar and these blocks are disjoint. The cor

(possibly) more refined symbolic states as follows:

Definition 12 (The Expand operator) Let IT be a parti-
tionofS,a e V,C elandS = (¢,Z) € C. Then:

ExpandS, o, 1) = {(¢, Z;) | 1 < i < f},

whereZ; is defined as described above.
ExpandC, II) = Ugcc nev EXpANS, o, I1).

Note that for each sub-symbolic stafE of S in
ExpandS, o, II), Pr(T,a,Cy) is well-defined. Let us
denote ur, as the distribution ovedl from T via
action a. Now the distribution set is updated as
Distr' = {ur. | T € ExpandC,II)withT =
(¢,Y) for somel,Y anda € V(¢)}. The distribution par-
tition on Distr’ over II, denoted byDistr’ /I1, can thus

rectness of the algorithm follows from standard correcnes
arguments of the partition-refinement algorithm. Termina-
tionis ensured by Theorem 9. Namely, in the worst case, the
algorithm will generate the partition induced by the region
equivalence.

Complexity. We analyze the complexity of the algorithm
briefly. Since in the worst case, the region equivalence will
be obtained, our algorithm needs to refine exponentially
many times to reach the fixpoint, and thus it is aPEIME
algorithm. On the other hand, it is not hard to see that gen-
erally for PTAs the EXPTIME lower bound can be obtained.
However, we note that (1) farTas with only one clock, we
can show that the algorithm only needs polynomial many
time to reach the fixpoint. Thus in this case, we can get
a polynomial time algorithm; (2) In practice, usualbgas

be updated accordingly, based on the following fact: Let have a much coarser partition than the one induced by the

M € Distr’ /11, thenVu, i/ € M, u(C) = 1/(C) for any

region equivalence, and thus our algorithm is expected to

C € II. As the mutual-refine technique, the state partition perform pretty well in this case.

can in turn be refined by the distribution partition as foltow

Definition 13 (The 2"¢ discrete-refinement operator)
LetII be a partition ofS with C € II, C’ = ExpandC, II)
andM € Distr’ /L. Then:

Refing(C, M) = {C,C"\ Car} \ {0},
whereCyr = {T | pr,o € M andT = (£,Y),a € V({)}.

The above steps correspondteAse |, line 4-10in Algo. 2.

5 \Verification of branching-time properties

The logicPcTL. Inthis section we prove that RB pre-

serves branching-time properties specified in probaiailist

CTL [6]. The syntax and semanticsBETL is:
Du=tt|a|D|DPAD|Pap(e),

wherepe[0, 1] is a probability,ac AP, de{<, <, >, >}
and¢ is a path formula defined as:

pr=0dUd|DW .

The path formulad U ¥ asserts tha is eventually sat-
isfied and that all preceding states satidfy W is the
weak counterpart of) which does not requird to even-
tually become true. Most of the operators are standard
with the exception that = P«,(¢) iff for any sched-
uler & € 2, Prob(s,¢) < p in the bTMC D%, where
Prob(s,¢) = Pr{o € Paths(s) | o = ¢}.
Bisimulation can be lifted to paths in the following way:

Lemma 14 (Bisimulation on paths) Lets ~ s’. Then: for
each (finite or infinite) paty = so 24° s; ‘L4

— —

té) al"é) t/l 7//1

Paths(s), there exists a path’ = sj 5" s; 5" sh--- €
Paths(s") of the same length such thgt~ s, for all i>0.

S1 So--- €

Theorem 15 Let G be apT1a and~ be aPTAB onG. For
anypcTLformula®: s ~ s’ impliess = @ iff s’ = .

Proof: The proof is by induction on the structure of
®. Basis: Ifs ~ s, then L(s) L(s’). The in-
teresting induction steps are fd&r = Pq,(¢), where
¢ = U; U ¥, Assume thats = @, then there ex-
ists a schedule®s : Paths® — R x Distr(S) such
that Paths® (s, ¥1U¥;) = {w € Paths®(s) | 3i >

0. w(i,ti)): Wy AV0 < g <, t <1y w(j,t)): \Ifl} and
Pr(Paths® (s, U;U¥,)) < p.

Assume w € Paths"j(s,\I/lU\IJQ), according to
Lemma 14, there exists a probabilistic time-abstracting
bisimilar pathw’ € Pathsqy(s’, ¥, UW,), and vice versa.
We can thus construct a schedut : Paths® — R x
Distr(S) as follows: forw € Paths™(s) and its bisimilar
pathw’ € Paths™(s'), if &(w) = (u,t), then®' (') =
(w,t")andp = 1.

It remains to show thaPr(Paths® (s, ¥,U¥,))
Pr(Paths® (s', U,U¥,)). Due to the fact that for each
¥, UW, path, the probability distribution determined By
and &’ is equivalent, the probability measure of the two
sets of paths coincides. O

The above theorem states thatatL formula is pre-
served by a PAB, which indicates that albCTL properties
can be checked on the quotieritss, thus all the existing
techniques, algorithms, and tools for finit®pPs can be ap-
plied.

6 Conclusion

We have investigated probabilistic time-abstracting
bisimulation for probabilistic timed automata. This eqiiv
lence usually provides a much coarser partition than tradi-
tion region equivalence and presereestL. We provided a
non-trivial adaptation of the traditional partition-regiment
algorithm to compute the quotient under A8 This algo-

In future works, we would like to investigateeakprob-
abilistic time-abstracting bisimulations, including dtsfini-
tion and decision procedures. Experimental research of the
proposed algorithms is to be carried out. Furthermore, it is
also interesting to study the abstract-refinement and coun-

'terexample generation ferTAs.

Acknowledgement. This research has been financially
supported by the Dutch Bsik projeericks, the Dutch
NWO project QUPES the EU FP/ project QUASIMODO,
and patrtially supported by the Chinese national 863 pro-
gram (200AA01z178), NSFC (60736015) andiSNSF
(BK2006712).

References

[1] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking
in dense real-timelnf. Comput, 104(1):2-34, 1993.

R. Alur and D. L. Dill. A theory of timed automatarlheor.
Comput. Scj.126(2):183-235, 1994.

C. Baier, B. Engelen, and M. E. Majster-Cederbaum. Decid
ing bisimilarity and similarity for probabilistic process. J.
Comput. Syst. S¢i60(1):187-231, 2000.

[4] A.Bianco and L. de Alfaro. Model checking of probabilis-
tic and nondeterministic systems. BRSTTCS, LNCS 1026
pages 499-513, 1995.

S. Derisavi, H. Hermanns, and W. H. Sanders. Optimal
state-space lumping in Markov chainif. Process. Lett.
87(6):309-315, 2003.

H. Hansson and B. Jonsson. A logic for reasoning about
time and reliability. Formal Asp. Comput.6(5):512-535,
1994.

M. Z. Kwiatkowska, G. Norman, and D. Parker. Proba-
bilistic symbolic model checking with PRISM: a hybrid ap-
proach.STTT 6(2):128-142, 2004.

M. Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston.
Automatic verification of real-time systems with discrete
probability distributions.Theor. Comput. S¢i282(1):101—
150, 2002.

M. Z. Kwiatkowska, G. Norman, J. Sproston, and F. Wang.
Symbolic model checking for probabilistic timed automata.
Inf. Comput, 205(7):1027-1077, 2007.

R. Lanotte, A. Maggiolo-Schettini, and A. Troina. Weak
bisimulation for probabilistic timed automata and applica
tions to security. IlSEFM pages 34-43, 2003.

R. Paige and R. E. Tarjan. Three partition refinement-alg
rithms. SIAM J. Comput.16(6):973-989, 1987.

S. Tripakis and S. Yovine. Analysis of timed systemsgsi
time-abstracting bisimulationsFormal Methods in System
Design 18(1):25-68, 2001.

(2]
(3]

(5]

(8]

(9]

[10]

[11]

[12]

rithm is symbolic in the sense that equivalence classes are

represented as polyhedra.

