
Counterexample Generation in
Probabilistic Model Checking

Tingting Han, Joost-Pieter Katoen, Member, IEEE Computer Society, and Berteun Damman

Abstract—Providing evidence for the refutation of a property is an essential, if not the most important, feature of model checking. This

paper considers algorithms for counterexample generation for probabilistic CTL formulas in discrete-time Markov chains. Finding the

strongest evidence (i.e., the most probable path) violating a (bounded) until-formula is shown to be reducible to a single-source (hop-

constrained) shortest path problem. Counterexamples of smallest size that deviate most from the required probability bound can be

obtained by applying (small amendments to) k-shortest (hop-constrained) paths algorithms. These results can be extended to Markov

chains with rewards, to LTL model checking, and are useful for Markov decision processes. Experimental results show that, typically,

the size of a counterexample is excessive. To obtain much more compact representations, we present a simple algorithm to generate

(minimal) regular expressions that can act as counterexamples. The feasibility of our approach is illustrated by means of two

communication protocols: leader election in an anonymous ring network and the Crowds protocol.

Index Terms—Diagnostic feedback, Markov chain, model checking, regular expression, shortest path.

Ç

1 INTRODUCTION

A major strength of model checking is the possibility to
generate counterexamples in case a property is

violated. They are of utmost importance in model checking:
First, and for all, they provide diagnostic feedback even in
cases where only a fragment of the entire model can be
searched. They also constitute the key to successful
abstraction-refinement techniques [15] and are at the core
of obtaining feasible schedules in, e.g., timed model
checking [11]. As a result, advanced counterexample
generation and analysis techniques have intensively been
investigated, see, e.g., [39], [10], [21].

The shape of a counterexample depends on the checked
formula and the temporal logic. For logics such as LTL,
typically finite or infinite paths through the model are
required. The violation of linear-time safety properties is
indicated by finite paths that end in a “bad” state. Liveness
properties instead require infinite paths ending in a cyclic
behavior indicating that something “good” will never
happen. LTL model checkers usually incorporate breadth-
first search algorithms to generate shortest counterexamples,
i.e., paths of minimal length. For branching-time logics such
as CTL, paths may act as counterexamples for a subclass of
universally quantified formulas, i.e., those in ACTL\LTL.
To cover a broader spectrum of formulas, though, more
advanced structures such as trees of paths [16], proof-like
counterexamples [29] (for ACTLnLTL), or annotated paths
[58] (for ECTL) are used.

This paper considers the generation of counterexamples
in probabilistic model checking. Probabilistic model check-
ing is a technique to verify system models in which
transitions are equipped with random information. Popular
models are discrete and continuous-time Markov chains
(DTMCs and CTMCs, respectively), and variants thereof
which exhibit nondeterminism. Efficient model-checking
algorithms for these models have been developed, have
been implemented in a variety of software tools, and have
been applied to case studies from various application areas
ranging from randomized distributed algorithms, computer
systems, and security protocols to biological systems and
quantum computing. The crux of probabilistic model
checking is to appropriately combine techniques from
numerical mathematics and operations research with
standard reachability analysis. In this way, properties such
as “the (maximal) probability to reach a set of goal states by
avoiding certain states is at most 0.6” can be automatically
checked up to a user-defined precision. Markovian models
comprising millions of states can be checked rather fast by
dedicated tools such as PRISM [46] and MRMC [42], as well
as extensions to existing tools such as GreatSPN, SPIN,
PEPA Workbench, and Statemate.

In probabilistic model checking, however, counter-
example generation is almost not developed; a notable
exception is the recent heuristic search algorithm for
CTMCs and DTMCs [3], [4] that works under the
assumption that the model is unknown. Instead, we
consider a setting in which it has already been established
that a certain state refutes a given property. This paper
considers algorithms, complexity results, and experimental
results for the generation of counterexamples in probabil-
istic model checking. The considered setting is probabilistic
CTL [33] for DTMCs, a model in which all transitions are
equipped with a probability. In this setting, typically there
is no single path, but rather a set of paths that indicates why
a given property is refuted. We first concentrate on

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. XX, XXXXXXX 2009 1

. The authors are with the Department of Computer Science, RWTH Aachen
University, Ahornstraße 55, D-52074 Aachen, Germany, and with the
Department of Computer Science, University of Twente, PO Box 217,
NL-7500 AE Enschede, The Netherlands.
E-mail: {tingting.han, katoen}@cs.rwth-aachen.de, berteun@dds.nl

Manuscript received 27 Jan. 2008; revised 8 Sept. 2008, accepted 23 Sept.
2008; published online 21 Jan. 2009.
Recommended for acceptance by J. Hillston, M. Kwiatkowska, and M. Telek.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2008-01-0042.
Digital Object Identifier no. 10.1109/TSE.2009.5.

0098-5589/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

properties of the form P�pð� U�h�Þ, where � and �
characterize sets of states, p is a probability, and h a
(possibly infinite) bound on the maximal allowed number
of steps before reaching a goal (i.e., a �) state. In case state s
refutes this formula, the probability of all paths in s
satisfying � U�h� exceeds p. We consider two problems
that are aimed to provide useful diagnostic feedback for this
violation: generating strongest evidences and smallest
counterexamples.

Strongest evidences are the most probable paths that
satisfy �U�h�. They “contribute” mostly to the property
refutation and are thus expected to be informative. For
unbounded until (i.e., h ¼ 1), determining strongest
evidences is shown to be equivalent to a standard single-
source shortest path (SP) problem; in case h is bounded, we
obtain a special case of the (resource) constrained shortest
path (CSP) problem [2] that can be solved in OðhmÞ, where
m is the number of transitions in the DTMC. Alternatively,
the Viterbi algorithm [61], [40] can be used for bounded h
yielding the same time complexity.

Evidently, strongest evidences often do not suffice as
true counterexamples as their probability mass lies (far)
below p. As a next step, therefore, we consider the problem
of determining most probable subtrees (rooted at s). Similar
to the notion of shortest counterexample in LTL model
checking, we consider trees of smallest size that exceed the
probability bound p. Additionally, such trees, of size k, say,
are required to maximally exceed the lower bound, i.e., no
subtrees should exist of size at most k that exceed p. The
problem of generating such smallest counterexamples can be
cast as a k shortest paths problem. For unbounded-until
formulas (i.e., h ¼ 1), the generation of such smallest
counterexamples can be carried out in pseudopolynomial
time by adopting k shortest paths algorithms [26], [22] that
compute k on the fly. For bounded until-formulas, we
propose an adaptation of the recursive enumeration
algorithm (REA) of Jiménez and Marzal [38]. The time
complexity of this adapted algorithm is Oðhmþhk logðmnÞÞ,
where n is the number of states in the DTMC.

This approach is applicable to probability thresholds with
lower bounds, i.e., formulas of the formP�pð�U�h�Þ, as well
as to the logic LTL. It is applicable to various other models
such as Markov reward models and Markov decision
processes (MDPs) once a scheduler for an MDP violating
an until-formula is obtained. It also provides the basis for
counterexample generation techniques for time-bounded
reachability in CTMCs [31], CEGAR techniques for MDPs
[35], and counterexamples for the logic cpCTL [8]. Heuristic
search algorithms for CTMC counterexamples are provided
in [3], [4]. Counterexamples for refinement of probabilistic
programs have recently been considered in [53].

Once we have established the theoretical underpinnings,
we report on experiments that apply our counterexample
generation algorithms to example DTMCs. Using the
synchronous leader election protocol [36], we show that the
size of counterexamples may be double exponential in terms
of the input parameters of the protocol (like number of
processes and rounds). In order to obtain insight into this
phenomenon, we provide a short mathematical analysis of
the number of evidences in counterexamples in this protocol.

The resulting closed-form expression confirms the double
exponential growth. To achieve a more succinct representa-
tion we propose to use regular expressions. The advantage of
regular expressions is that they are commonly known, are
easy to understand, and may be very compact. The idea is to
represent a DTMC by a deterministic finite-state automaton
(DFA, for short) and obtain regular expressions by applying
successive state elimination where the order of state
elimination is determined heuristically [32]. The computa-
tion of the probability of a regular expression is performed
using the approach advocated by Daws [20] for parametric
model checking of DTMCs. This boils down to a recursive
evaluation which is guaranteed to be exact (i.e., no rounding
errors), provided the transition probabilities are rational.
We provide the details of this approach and show its result
when applied to the leader election protocol. We briefly
argue that model reduction such as bisimulation and SCC
elimination [50] can be used to obtain even more compact
counterexamples. Finally, we show the generation of
counterexamples on the Crowds protocol [56], a protocol
for anonymous Web browsing that has been adopted, among
others, to Bluetooth [59] and wireless Internet [5].

The paper is organized as follows: Section 2 introduces
DTMCs and PCTL logic. Section 3 considers the notion
of evidences and counterexamples. Section 4 shows the
adaptation of a DTMC to a weighted digraph. Sections 5 and
6 consider the algorithms for generating strongest evidences
and smallest counterexamples, respectively. Sections 7 and 8
extend the approach to lower-bound probability operators,
the qualitative fragment of PCTL and rewards, respectively.
Section 9 discusses the implementation details as well as the
leader election case study. Section 10 presents the algorithm
for the regular expressions. Section 11 considers the Crowds
protocol, and Section 12 concludes.

This paper is an extension of [30] and [19].

2 PRELIMINARIES

2.1 Markov Chains

Let AP be a fixed, finite set of atomic propositions ranged
over by a; b; c;

Definition 1 (DTMCs). A (labeled) discrete-time Markov
chain (DTMC) is a triple D ¼ ðS;P; LÞ, where:

. S is a finite set of states;

. P : S � S ! ½0; 1� is a stochastic matrix;

. L : S ! 2AP is a labeling function which assigns to
each state s 2 S the set LðsÞ of atomic propositions
that are valid in s.

Intuitively, a DTMC is a Kripke structure in which all
transitions are equipped with discrete probabilities such that
the sum of outgoing transitions of each state equals 1. A state s
in D is called absorbing if Pðs; sÞ ¼ 1. Without loss of
generality, we assume a DTMC to have a unique initial state.

Definition 2 (Paths). Let D ¼ ðS;P; LÞ be a DTMC.

. An infinite path � in D is an infinite sequence
s0�s1�s2�s of states such that 8i � 0: Pðsi; siþ1Þ > 0.

. A finite path � is a finite prefix of an infinite path.

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. XX, XXXXXXX 2009

Let Paths!DðsÞ denote the set of all infinite paths in D that
start in state s and Paths?DðsÞ denote the set of all finite paths
of s. The subscript D is omitted when it is clear from the
context. For state s and finite path� ¼ s0 � � � sn with Pðsn; sÞ >
0, let ��s denote the path obtained by extending � by s.

Let � denote either a finite or an infinite path. Let j� j
denote the length of � , i.e., js0�s1 � � � snj ¼ n, js0j ¼ 0; and
j� j ¼ 1 for infinite � . For 0 � i � j� j, � ½i� ¼ si denotes the
ðiþ 1Þth state in � . We use �#i to denote the prefix of �
truncated at length i (thus ending in si), formally,
�#i ¼ � ½0��� ½1�� � �� ½i�. We use Prefð�Þ to denote the set of
prefixes of � , i.e., Prefð�Þ ¼ f�#i j 0 � i � j� jg.

A DTMC D induces a probability space. The underlying
� algebra is defined over the basic cylinder set induced by
the finite paths starting in the initial state s0. The probability
measure PrDs0

(briefly Pr) induced by ðD; s0Þ is the unique
measure on this � algebra where:

Prf� 2 Paths!Dðs0Þ j �#n ¼ s0� � �sn|ffl{zffl}
Cylðs0���snÞ

g ¼
Y

0�i<n
Pðsi; siþ1Þ:

The probability of finite path � ¼ s0� � �sn is defined as
IPð�Þ ¼

Q
0�i<n Pðsi; siþ1Þ. Note that, although PrðCylð�ÞÞ ¼

IPð�Þ, they have different meanings: Pr is a measure on
infinite paths whereas IP refers to finite ones. For a set C of
finite paths which is prefix containment free, i.e., for any
�; �0 2 C with � 6¼ �0, � 62 Prefð�0Þ, the probability of C is
IPðCÞ ¼

P
�2C IPð�Þ. Paths in C induce disjoint cylinder sets.

Example 1. Fig. 1 illustrates a DTMC with initial state s.
AP ¼ fa; bg and L is given as LðsÞ ¼ LðsiÞ ¼ fag, for
i ¼ 1; 2; Lðt1Þ ¼ Lðt2Þ ¼ fbg and LðuÞ ¼ ;. t2 is an
absorbing state. �1 ¼ s�u�s2�t1�t2 is a finite path with
IPð�1Þ ¼ 0:1� 0:7� 0:5� 0:7 and j�1j ¼ 4, �1½3� ¼ t1. �1 ¼
s�ðs2�t1Þ! is an infinite path.

2.2 Logic

Probabilistic computation tree logic (PCTL) [33] is an extension
of CTL in which state formulas are interpreted over states of
a DTMC and path formulas are interpreted over infinite
paths in a DTMC. The syntax of PCTL is:

� ::¼ tt j a j :� j � ^ � j P/pð�Þ;

where p 2 ½0; 1� is a probability, / 2 f<;�; >;�g, and � is a
path formula defined according to the following grammar:

� ::¼ �U�h� j �W�h�;

where h 2 IN�0 [f1g. The path formula �U�h� asserts that
� is satisfied within h transitions and that all preceding
states satisfy �. For h ¼ 1 such path formulas are standard

(unbounded) until-formulas, whereas, in other cases, these
are bounded until-formulas. W�h is the weak counterpart of

U�h which does not require � to eventually become true. For

the sake of simplicity, we do not consider the next-operator.
The temporal operators}�h and ut�h are obtained as follows:

P/pð}�h�Þ ¼ P/pðttU�h�Þ;
P/pðut�h�Þ ¼ P/pð�W�hffÞ:

Note that ff ¼ :tt. The example formula P�0:5ðaUbÞ asserts

that the probability of reaching a b-state via an a-path is at

most 0.5 and P>0:001ð}�50errorÞ states that the probability
for a system error within 50 steps exceeds 0.001. Dually,

P<0:999ðut�50:errorÞ states that the probability for no error in
the next 50 steps is less than 0.999.

Semantics. Let DTMC D ¼ ðS;P; LÞ. The semantics of
PCTL is defined by a satisfaction relation, denoted by � ,

which is characterized as the least relation over the states in
S (infinite paths in D, respectively) and the state formulas

(path formulas) satisfying:

s � tt
s � a iff a 2 LðsÞ;
s � :� iff not ðs � �Þ;
s � � ^� iff s � � and s � �;
s � P/pð�Þ iff Probðs; �Þ / p:

Let Paths!ðs; �Þ denote the set of infinite paths that

start in state s and satisfy �. To put it in a more

formal way, Paths!ðs; �Þ ¼ f� 2 Paths!ðsÞ j � � �g. Then,
Probðs; �Þ ¼ Prf� j � 2 Paths!ðs; �Þg. Let � be an infinite

path in D. The semantics of PCTL path formulas is
defined as:

� � �U�h � iff 9 i�h:
�
�½i� � � ^ 8 0�j<i: �½j� � �

�
;

� � �W�h � iff either � � �U�h � or 8 i�h: �½i� � �:

For finite path �, the semantics of path formulas is defined

in a similar way by changing the range of variable i to
i � minfh; j�jg. There is a close relationship between until

and weak until. More precisely, for any state s and PCTL
formulas � and �:

P�pð�W�h�Þ � P�1	p ð� ^ :�ÞU�hð:� ^ :�Þ
�

;

P�pð�U�h�Þ � P�1	p ð� ^ :�ÞW�h ð:� ^ :�Þ
� �

:

This relationship is used later on to show that counter-

examples for formulas with probability lower bounds can be

obtained using algorithms for formulas with upper bounds.
Let � be an until-formula, i.e., � ¼ �U�h�. Let

Paths?ðs; �Þ denote the set of finite paths starting in s that

fulfil �. For finite path �, the relation �min denotes the

minimal satisfaction of a PCTL path formula. Formally,
� �min � iff � � � and �0 6� � for any �0 2 Prefð�Þnf�g.
Example 2. For the PCTL state formula P�0:95ðaUbÞ and the

DTMC D in Fig. 1, let path � ¼ s�s2�t1�t2. � � aUb but

� 6�min aUb. s � P�0:95ðaUbÞ since Probðs; aUbÞ ¼ 0:9.

Let Paths?minðs; �Þ ¼ f� 2 Paths?ðsÞ j � �min �g. It easily
follows that Paths?minðs; �Þ is prefix containment-free and

that, for any state s:

HAN ET AL.: COUNTEREXAMPLE GENERATION IN PROBABILISTIC MODEL CHECKING 3

Fig. 1. An example DTMC.

Probðs;�U�h �Þ ¼ IP Paths?minðs;�U�h �Þ
� �

:

In the rest of this paper, we explore counterexamples for
formulas of the form P�pð�U�h�Þ with p 6¼ 0; 1, i.e., with
probability upper bounds. In Section 7, we extend our
results to formulas with probability lower bounds and deal
with qualitative bounds (i.e., p ¼ 0; 1). Section 8 shows how
our results can be used to show the NP-completeness of
shortest counterexamples for DTMCs with rewards.

3 EVIDENCES AND COUNTEREXAMPLES

Let us first consider what a counterexample in our setting
actually is. To that end, consider the PCTL formula P�pð�Þ,
where p 2 ð0; 1Þ, and let � ¼ �U�h� for the rest of the
paper. It follows that:

s 6� P�pð�Þ
iff not ðProbðs; �Þ � pÞ
iff Probðs; �Þ > p
iff IP Paths?minðs; �Þ

� �
> p:

So, P�pð�Þ is refuted by state s whenever the total
probability mass of all �-paths that start in s exceeds p. Even
for unbounded until-formulas, the validity can be shown by
finite paths as only paths that end in a �-state contribute to
Paths?minðs; �Þ. This indicates that a counterexample for s 6�
P�pð�Þ is a set of finite paths starting in s and minimally
satisfying �. Any finite path that contributes to the violation
is called an evidence.

Definition 3 (Evidence). An evidence for violating P�pð�Þ in

state s is a finite path � 2 Paths?minðs; �Þ.

The contribution of each evidence is characterized by its
probability. Thus, an evidence with the largest contribution
is defined.

Definition 4 (Strongest evidence). For a strongest evidence �

and any evidence �0, it holds that: IPð�Þ � IPð�0Þ.

Dually, a strongest evidence for violating P�pð�Þ is a
strongest witness for fulfilling P>pð�Þ. Evidently, a strongest
evidence is not necessarily a counterexample as its
probability mass may be (far) below p. We thus define a
counterexample as follows:

Definition 5 (Counterexample). A counterexample for

P�pð�Þ in state s is a set C of evidences such that C

Paths?minðs; �Þ and IPðCÞ > p.

A counterexample for state s is thus a set of evidences
that all start in s. We will, at the moment, not dwell further
upon how to represent this set and assume an abstract
representation as a set suffices; a compact representation
will be proposed in Section 10. Note that the measurability
of counterexamples is ensured by the fact that C

Paths?minðs; �Þ is prefix containment-free; hence, IPðCÞ is
well-defined. Let CXpðs; �Þ denote the set of all counter-
examples for P�pð�Þ in state s. For C 2 CXpðs; �Þ and Cs
superset C0: C
 C0
 Paths?minðs; �Þ, it follows that C0 2
CXpðs; �Þ since IPðC0Þ � IPðCÞ > p. That is to say, any
extension of a counterexample C with paths in

Paths?minðs; �Þ is a counterexample. This motivates the
notion of minimality.

Definition 6 (Minimal counterexample). C 2 CXpðs; �Þ
is a minimal counterexample if jCj � jC0j, for any
C0 2 CXpðs; �Þ.

As in conventional model checking, we are not interested
in generating arbitrary counterexamples, but those that are
easy to comprehend and provide clear evidence of the
refutation of the formula. So, akin to shortest counter-
examples for linear-time logics, we consider the notion of a
smallest counterexample. Such counterexamples are re-
quired to be succinct, i.e., minimal, allowing easier analysis
of the cause of refutation, and most distinctive, i.e., their
probability should exceed p more than all other minimal
counterexamples. This motivates the following definition:

Definition 7 (Smallest counterexample). C 2 CXpðs; �Þ is a
smallest counterexample if it is minimal and IPðCÞ �
IPðC0Þ for any minimal counterexample C0 2 CXpðs; �Þ.

The intuition is that a smallest counterexample is the one
that deviates most from the required probability bound
given that it has the smallest number of paths. Thus, there
does not exist an equally sized counterexample that
deviates more from p. Strongest evidences, minimal
counterexamples, or smallest counterexamples may not be
unique, as different paths may have equal probability. As a
result, not every strongest evidence is contained in a
minimal (or smallest) counterexample. Whereas minimal
counterexamples may not contain any strongest evidence,
any smallest counterexample contains at least one strongest
evidence. Using standard mathematical results we obtain:

Lemma 1. A finite counterexample for s 6� P�pð�Þ exists.

Proof. By contradiction. Assume there are only infinite
counterexamples for s 6� P�pð�Þ. Let C ¼ f�1; �2; . . .g be
one such counterexample, i.e.,

X1
i¼1

IPð�iÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼L

¼ lim
j!1

Xj
i¼1

IPð�iÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
aj

> p:

Note that, since all IPð�iÞ are positive, the order of
summation is irrelevant for the limit. By definition of
limit, this means that

8� > 0: 9N� 2 IN: 8n � N�: jan 	 Lj < �: ð1Þ

Take � such that 0 < � < L	 p. By (1), for some n � N�,
jan 	 Lj < L	 p, i.e., an > p. But then, the finite set C0 ¼
f�1; . . . ; �ng is also a counterexample as IPðC0Þ > p.
Contradiction. tu
From this lemma, it directly follows that a smallest

counterexample for s 6� P�pð�Þ is finite.

Remark 1 (Finiteness). For until-formulas with strict upper
bounds, i.e.,P<pð�Þ, a finite counterexample may not exist.
This occurs when, e.g., the only counterexample is an
infinite setC of finite paths with IPðCÞ ¼ p. The limit of the
sum of the path probabilities (obeying a geometric
distribution) equals p, but infinitely many paths are

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. XX, XXXXXXX 2009

needed to reach p. For instance, consider the DTMC in

Fig. 2. The violation ofP<1
2
ð} aÞ in state s can only be shown

by an infinite set of paths, viz. all paths that traverse the

self-loop at state s arbitrarily often reach state t.

Example 3. Consider the DTMC in Fig. 1, for which s

violates P�1
2
ðaUbÞ. Evidences are, among others,

�1 ¼ s�s1�t1, �2 ¼ s�s1�s2�t1, �3 ¼ s�s2�t1, �4 ¼ s�s1�s2�t2,

and �5 ¼ s�s2�t2. Their respective probabilities are 0.2,

0.2, 0.15, 0.12 and 0.09. � ¼ s�s1�t1�t2 is not an evidence as

it contains a proper prefix, s�s1�t1, that satisfies aUb.
Paths �1 and �2 are strongest evidences. The set C1 ¼

f�1; . . . ; �5g with IPðC1Þ ¼ 0:76 is a counterexample, but
not a minimal one, as the removal of either �1 or �2 also
yields a counterexample. C2 ¼ f�1; �2; �4g is a minimal
but not a smallest counterexample, as C3 ¼ f�1; �2; �3g is
minimal too with IPðC3Þ ¼ 0:56 > 0:52 ¼ IPðC2Þ. C3 is a
smallest counterexample.

In the remainder of the paper, we consider the strongest

evidence problem (SE) that, for a given state s with

s 6� P�pð�Þ, determines the strongest evidence for this

violation. Subsequently, we consider the corresponding

smallest counterexample problem (SC).

4 REDUCTION TO GRAPH THEORY

Prior to finding strongest evidences or smallest counter-

examples, we modify the DTMC and turn it into a weighted

digraph. This enables us, as we will show, to exploit well-

known efficient graph algorithms to the SE and SC problem.

Let Satð�Þ ¼ fs 2 S j s � �g for any �. Due to the bottom-

up traversal of the model-checking algorithm over the

formula � ¼ �U�h�, we may assume that Satð�Þ and

Satð�Þ are known.

4.1 Step 1: Adapting the DTMC

First, we make all states in the DTMC D ¼ ðS;P; LÞ that

neither satisfy � nor � absorbing. Then we add an extra

state t so that all outgoing transitions from a �-state are

replaced by a transition to t with probability 1. State t can

thus only be reached via a �-state. The obtained DTMC

D0 ¼ ðS0;P0; L0Þ has state space S [ftg for t 62 S. The

stochastic matrix P0 is defined as follows:

P0ðs; tÞ ¼ 1 if s 2 Satð�Þ or s ¼ t
0 o:w:

�
and, for s; s0 6¼ t,

P0ðs; s0Þ ¼
1 if s 2 Satð:� ^ :�Þ and s ¼ s0
Pðs; s0Þ if s 2 Satð� ^ :�Þ
0 o:w:

8<
:

L0ðsÞ ¼ LðsÞ for s 2 S and L0ðtÞ ¼ fattg, where att 62 Lðs0Þ
for any s0 2 S, i.e., att uniquely identifies being at state t.

Remark that all the ð:� ^ :�Þ states could be collapsed

into a single state, but this is not further explored here.

The time complexity of this transformation is OðnÞ, where

n ¼ jSj. It is evident that the validity of �U�h� is not

affected by this amendment of the DTMC. By construc-

tion, any finite path �0 ¼ ��t in D0 with 0 < j�0j � hþ 1

satisfies ð� _�ÞU�hþ1att and the prefix � in D satisfies

�U�h�, where �0 and � are equally probable.

Example 4. Applying the above transformation to the

DTMC D in Fig. 1 and path formula aUb yields the

DTMC D0 illustrated in Fig. 3. The ð:a ^ :bÞ state u is

made absorbing and both b-states (i.e., t1 and t2) are

equipped with a transition with probability 1 to the new

absorbing state t (indicated by a double circle).

4.2 Step 2: Conversion into a Weighted Digraph

As a second preprocessing step, the DTMC obtained in the

first step is transformed into a weighted digraph, i.e., a triple

G ¼ ðV ;E;wÞ, where V is a finite set of vertices,E
 V � V is

a set of edges, and w : E ! IR�0 is a weight function.

Definition 8 (Weighted digraph of a DTMC). For DTMC

D ¼ ðS;P; LÞ, the weighted digraph GD ¼ ðV ;E;wÞ, where

V ¼ S, ðv; v0Þ 2 E iff Pðv; v0Þ > 0, a n d wðv; v0Þ ¼
	 log Pðv; v0Þ.

The edge weights are obtained by taking the negation of the

logarithm of the corresponding transition probabilities.

Note that wðs; s0Þ 2 ½0;1Þ if Pðs; s0Þ > 0. Thus, we indeed

obtain a digraph with nonnegative weights. This transfor-

mation can be done in OðmÞ, where m is the number of

nonzero elements in P. We often omit the self-loop on

vertex t in GD, as it has weight 0.

Example 5 (Continuing Example 4). Applying this trans-

formation to the DTMC D0 in Fig. 3 yields the weighted

digraph in Fig. 4.

A path � from s to t in the digraph G is a sequence

� ¼ v0�v1� � �vj 2 V þ, where v0 ¼ s; vj ¼ t and ðvi; viþ1Þ 2 E,

for 0 � i < j�j. As for paths in DTMCs, j�j denotes the

length of �. The weight of finite path � ¼ v0�v1� � �vj in graph

G is wð�Þ ¼
Pj	1

i¼0 wðvi; viþ1Þ. Path weights in G and path

probabilities in DTMC D are related as follows:

HAN ET AL.: COUNTEREXAMPLE GENERATION IN PROBABILISTIC MODEL CHECKING 5

Fig. 2. A DTMC with infinite counterexample for P<1
2
ð}aÞ.

Fig. 3. Transformation from a DTMC to a weighted digraph: Step 1.

wð�Þ ¼
Xj	1

i¼0

wðvi; viþ1Þ ¼
Xj	1

i¼0

	 log Pðvi; viþ1Þ

¼ 	
Xj	1

i¼0

log Pðvi; viþ1Þ ¼ 	 log
Yj	1

i¼0

Pðvi; viþ1Þ

¼ 	 log IPð�Þ:

Now the multiplication of probabilities in D corresponds to
addition of weights in GD and the next two lemmas directly
follow.

Lemma 2. Let � and �0 be finite paths in DTMC D and its
graph GD. Then, IPð�0Þ � IPð�Þ iff wð�0Þ � wð�Þ.

This result implies that the most probable path between two
states in DTMC D equals the shortest path (i.e., the path
with the least weight) between these states in the weighted
digraph GD. It is easy to see that this result can be
generalized to paths of a certain length (or, equivalently,
number of hops), and to the second, third, etc., most
probable paths. This yields:

Lemma 3. For any path � with j�j ¼ h from s to t in DTMC D,
k 2 IN>0 : � is a kth most probable path of h hops in D iff � is a
kth shortest path of h hops in GD.

A path � is a kth shortest path if, whenever all paths
(between the same states as �) are ranked in a descending
order w.r.t. their weights, � is at the kth position. Note that
such rankings are not necessarily unique (as paths may
have equal weights) and, so, a kth shortest path may not be
unique. The kth most probable path is defined in a similar
way. This lemma provides the basis for the remaining
algorithms in the following sections.

5 FINDING STRONGEST EVIDENCES

5.1 Unbounded Until

Based on Lemma 3 with k ¼ 1 and h ¼ 1, we consider the
well-known shortest path problem:

Definition 9 (SP problem). Given a weighted digraph G ¼
ðV ;E;wÞ and s; t 2 V , the shortest path (SP) problem is to
determine a path � from s to t such that wð�Þ � wð�0Þ for any
path �0 from s to t in G.

From Lemma 3, together with the transformation of a DTMC
into a weighted digraph, it follows that there is a polynomial
reduction from the SE problem for unbounded until to the
SP problem. As the SP problem is in PTIME, it follows:

Theorem 4. The SE problem for unbounded until is in PTIME.

Various efficient algorithms [24], [12], [18] exist for the
SP problem, e.g., when using Dijkstra’s algorithm, the
SE problem for unbounded until can be solved in time
Oðmþ n lognÞ, wherem ¼ jEj and n ¼ jV j, provided appro-
priate data structures such as Fibonacci heaps are used.

5.2 Bounded Until

Lemma 3 for k ¼ 1 and h 2 IN�0 suggests considering the
hop-constrained SP problem.

Definition 10 (HSP problem). Given a weighted digraph
G ¼ ðV ;E;wÞ, s; t 2 V , and h 2 IN�0, the hop-constrained
SP (HSP) problem is to determine a path � in G from s to t
with j�j � h such that wð�Þ � wð�0Þ for any path �0 from s to
t with j�0j � h.

The HSP problem is a special case of the (resource)
constrained shortest path (CSP) problem [54], [2], where
the only constraint is the hop count. Besides the weight w on
each edge, it may consume other resources w1; . . . ; wc and
the sum of each resource should be bounded by the
resource constraints �1; . . . ; �c, where c is the number of
resources. Weighted digraphs with multiple resources are
obtained by allowing multiple weights to edges.

Definition 11 (CSP problem). Let G be a multiweighted
digraph ðV ;E; fwg [fw1; . . . ; wcgÞ with s; t 2 V and re-
source constraints �i, for 1 � i � c. Edge e 2 E uses
wiðeÞ � 0 units of resource i. The (resource) constrained
SP (CSP) problem is to determine a shortest path � w.r.t. the
weight

P
e2� wð�Þ in G from s to t such that

P
e2� wiðeÞ � �i

for 1 � i � c.

The CSP problem is NP-complete, even for a single resource
constraint [2]. However, if each edge uses a constant unit of
that resource (such as the hop count), the CSP problem can
be solved in polynomial time, cf. [27, problem [ND30].

Theorem 5. The SE problem for bounded until is in PTIME.

For h � n	 1, it is possible to use Dijkstra’s SP algorithm
(as for unbounded until) as a shortest path does not contain
cycles. If h < n	 1, however, Dijkstra’s algorithm does not
guarantee to obtain a shortest path of at most h hops. We
therefore adopt the Bellman-Ford (BF) algorithm [12], [18],
which fits well to our problem as it proceeds by increasing
hop count. It can be readily modified to generate a shortest
path within a given hop count. In the remainder of the
paper, this algorithm is generalized for computing smallest
counterexamples. The BF algorithm is based on a set of
recursive equations; we extend it with the hop count h. For
v 2 V , let ��hðs; vÞ denote the shortest path from s to v of at
most h hops (if it exists). Then:

��hðs; vÞ ¼
s if v ¼ s and h � 0
? if v 6¼ s and h ¼0
arg minu

�
w
�
��h	1ðs; uÞ�v

�
j ðu; vÞ 2 E

�
o:w:

8<
:

where ? denotes the nonexistence of a such a path.1 The last
clause states that ��hðs; vÞ consists of the shortest path to
v’s direct predecessor u, i.e., ��h	1ðs; uÞ, extended with edge

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. XX, XXXXXXX 2009

Fig. 4. Transformation from a DTMC to a weighted digraph: Step 2.

1. Where ?�v ¼ v for any v, f?g ¼ ;, and arg min ; ¼ ?.

ðu; vÞ. Note that minufw
�
��h	1ðs; uÞ�v

�
j ðu; vÞ 2 Eg is the

weight of a shortest path; by means of arg , such a shortest

path is obtained. It follows (cf. [49]) that ��hðs; vÞ
characterizes the shortest path from s to v in at most

h hops and can be solved in time OðhmÞ. As h < n	 1, this

is indeed in PTIME. Recall that, for h � n	 1, Dijkstra’s

algorithm has a favorable time complexity.

Remark 2 (Exploiting the Viterbi algorithm). An alter-

native to the BF algorithm is to adopt the Viterbi algorithm

[40], [61], [60]. In fact, to apply this algorithm, the

transformation into a weighted digraph is not needed.

The Viterbi algorithm is based on dynamic programming

and aims to find the most likely sequence of hidden

states (i.e., a finite path) that result in a sequence of

observed events (a trace). It is used in the context of

hidden Markov models, which are used in, e.g., speech

recognition, and bioinformatics. Let DTMC D be

obtained after the first step described in Section 4, and

suppose that LðsÞ is extended with all subformulas of the

formula under consideration that hold in s. (Note that

these labels are known due to the recursive descent

nature of the PCTL model-checking algorithm.) Let trð�Þ
denote the projection of a path � ¼ s0�s1� � �sh on its trace,

i.e., trð�Þ ¼ Lðs0ÞLðs1Þ� � �LðshÞ. Recall that �#i denotes

the prefix of path � truncated at length i (thus ending in

si), thus trð�#iÞ ¼ Lðs0ÞLðs1Þ� � �LðsiÞ. 	#i denotes the

prefix of trace 	 with length iþ 1. Note that the length of

a trace is one more than the length of the corresponding

path. Let %ð	; i; vÞ denote the probability of the most

probable path �#i whose trace equals 	#i and reaches

state v. Formally,

%ð	; i; vÞ ¼ max
trð�#iÞ¼	i^�2Paths?ðs0Þ

Yi	1

j¼0

Pðsj; sjþ1Þ�1vðsiÞ;

where 1vðsiÞ is the characteristic function of v, i.e.,

1vðsiÞ ¼ 1 iff si ¼ v. The Viterbi algorithm provides an

algorithmic solution to compute %ð	; i; vÞ:

%ð	; i; vÞ ¼
1 ifs ¼ v and i ¼ 0
0 ifs 6¼ v and i ¼0
maxu2S

�
%ð	; i	1; uÞ�Pðu; vÞ

�
o:w:

8<
:

By computing %ð�h�; h; shÞ, the Viterbi algorithm
determines the most probable path � ¼ s0�s1� � �sh that
generates the trace 	 ¼ L0ðs0ÞL0ðs1Þ� � �L0ðshÞ ¼ �h� with
length hþ 1. Here, L0ðsÞ ¼ LðsÞ \ f�;�g, i.e., L0 is the
labeling restricted to the subformulas � and �. For the
SE problem for bounded until, the trace of the most
probable hop-constrained path from s to t is among
f�att;��att; . . . ;�h�attg. The self-loop at vertex t with
probability 1 ensures that all these paths have length
hþ 1 while not changing their probabilities. For instance,
the path with trace �i�att can be extended so that the
trace becomes �i�att

hþ1	i, where i � h. Since the DTMC
is already transformed as in Step 1 (cf. Section 4.1), we
can obtain the most probable path for �U�h� by
computing %ðð�_�_attÞhþ1att; hþ1; tÞ using the Viterbi
algorithm. The time complexity is OðhmÞ, as for the BF
algorithm.

6 FINDING SMALLEST COUNTEREXAMPLES

Recall that a smallest counterexample is a minimal counter-
example, whose probability, among all minimal counter-
examples, deviates maximally from the required
probability bound. In this section, we investigate algo-
rithms and their time and space complexity for computing
smallest counterexamples.

6.1 Unbounded Until

Lemma 3 is applicable here for k > 1 and h ¼ 1. This
suggests considering the k shortest paths problem.

Definition 12 (KSP problem). Given a weighted digraph
G ¼ ðV ;E;wÞ, s; t 2 V , and k 2 IN>0, the k shortest paths
(KSP) problem is to find k distinct paths �1; . . . ; �k between s

and t in G (if such paths exist) such that 1) for 1 � i < j � k,
wð�iÞ � wð�jÞ and 2) for every � between s and t, if

� 62 f�1; . . . ; �kg, then wð�Þ � wð�kÞ.

Note that �i denotes the ith shortest path and, for i 6¼ j, it is
possible that wð�iÞ ¼ wð�jÞ. Stated in words, the ith shortest
path is not necessarily “strictly shorter” than the jth one,
for i < j.

Theorem 6. The SC problem for unbounded until is a KSP
problem.

Proof. We prove by contraposition that a smallest counter-
example of size k, contains kmost probable paths. LetC be
a smallest counterexample for � with jCj ¼ k and assume
C does not contain the kmost probable paths satisfying �.
Then, there is a path � =2 C satisfying � such that IPð�Þ >
IPð�0Þ for some �0 2 C. LetC0 ¼ C n f�0g [f�g. Then,C0 is
a counterexample for �, jCj ¼ jC0j and IPðCÞ > IPðC0Þ.
This contradicts C being a smallest counterexample. tu

The question remains how to obtain k. Various algo-
rithms for the KSP problem require k to be known a priori.
This is inapplicable in our setting as the number of paths in
a smallest counterexample is not known in advance. We
therefore consider algorithms that allow to determine k on

the fly, i.e., that can halt at any k and resume if necessary. A
good candidate is Eppstein’s algorithm [26]. Although this
algorithm has the best known asymptotic time complexity,
viz. Oðmþ n lognþ kÞ, in practice, the recursive enumera-
tion algorithm (REA) by Jiménez and Marzal [38] prevails.
This algorithm has a time complexity in Oðmþ kn logm

nÞ
and is based on a generalization of the recursive equations
for the BF algorithm. Besides, it is readily adaptable to the
case for bounded h, as we demonstrate below. Note that the
time complexity of all known KSP algorithms depend on k

and, as k can be exponential in the size of the digraph, their
complexity is pseudopolynomial.

6.2 Bounded Until

Similar to strongest evidences for bounded until, we now
consider the KSP problem with constrained path lengths.

Definition 13 (HKSP problem). Given a weighted digraph

G ¼ ðV ;E;wÞ, s; t 2 V , h 2 IN�0, and k 2 IN>0, the hop-
constrained KSP (HKSP) problem is to determine k shortest

paths each of length at most h between s and t.

HAN ET AL.: COUNTEREXAMPLE GENERATION IN PROBABILISTIC MODEL CHECKING 7

Theorem 7. The SC problem for bounded until is an HKSP
problem.

To our knowledge, algorithms for the HKSP problem do

not exist. In order to solve the HKSP problem, we propose

adapting Jiménez and Marzal’s REA algorithm [38]. The

advantage of this algorithm is that k can be determined on

the fly, an essential characteristic for our setting. For v 2 V ,

let �k�hðs; vÞ denote the kth shortest path from s to v of

length at most h (if it exists). As before, we use ? to denote

the nonexistence of a path. We establish:

�k�hðs; vÞ ¼
s if k ¼ 1; v ¼ s and h � 0
? if h ¼ v and ðv 6¼ s or v ¼ s ^ k>1Þ
arg min� wð�Þ j � 2 Qk

�hðs; vÞ
� �

o:w:

8<
:

ð2Þ

where Qk
�hðs; vÞ is defined by:

f�1
�h	1ðs; u0Þ�v j ðu0; vÞ 2 Eg

if k ¼ 1; v 6¼ s; h > 0 or k ¼ 2; v ¼ s; h > 0;�
Qk	1
�h ðs; vÞ 	 f�k

0

�h	1ðs; uÞ�vg
�
[
�
�k
0þ1
�h	1ðs; uÞ�v

�
if k > 1; h > 0; and 9u; k0:

�
�k	1
�h ðs; vÞ ¼ �k

0

�h	1ðs; uÞ�v
�
;

; o:w:

8>>>><
>>>>:

ð3Þ

Let us explain these equations. The kth shortest path of

length h is chosen from a set Qk
�hðs; vÞ of “candidate” paths.

This principle is identical to that in the Bellman-Ford

equations given earlier. In particular, if this set contains

several shortest paths, a nondeterministic selection is made.

The main difference with the BF equations is the more

complex definition of the set of candidate paths. The first

clause of Qk
�hðs; vÞ is self-explanatory. Let k > 1, h > 0, and

v 6¼ s. By the inductive nature, the set Qk	1
�h ðs; vÞ is at our

disposal. Assume that the path �k	1
�h ðs; vÞ has the form

s� � �u�v, where prefix s� � �u is the k0th shortest path between s

and u (for some k0) of at most h	 1 hops, i.e., s� � �u equals

�k
0

�h	1ðs; uÞ. Then, Qk
�hðs; vÞ is obtained from Qk	1

�h ðs; vÞ by

replacing the path s� � �u�v (as it has just been selected) by the

path �k
0þ1
�h	1ðs; uÞ�v, if this exists. Thus, as a result of the

removal of a ðk	 1Þth shortest path which reaches v via u,

say, the set of candidate paths is updated with the next

shortest path from s to v that goes via u. If such path does not

exist (i.e., equals ?), then the candidate set is not extended

(as f?g ¼ ;). In case there is no k0 such that �k	1
�h ðs; vÞ can be

decomposed into a k0th shortest path between s and some

direct predecessor u of v, it means that Qk	1
�h ðs; vÞ is empty,

and we return the empty set (last clause).

Lemma 8. Equations (2) and (3) characterize the hop-constrained
k shortest paths from s to v in at most h hops.

Proof. This proof goes along similar lines as [38]. Let

Xk
�hðs; vÞ denote the set of k shortest paths from s to v in

at most h hops. Each path in Xk�hðs; vÞ reaches v from

some vertex u 2 PredðvÞ ¼ fv 2 V j ðv; vÞ 2 Eg. In order

to compute �k�hðs; vÞ, we should consider, for every

u 2 PredðvÞ, all paths from s to u that do not yield a path

in Xk	1
�h ðs; vÞ. However, since k1 < k2 implies that

w
�
�k1

�h	1ðs; uÞ
�
þ wðu; vÞ � w

�
�k2

�h	1ðs; uÞ
�
þ wðu; vÞ, only

the shortest of these paths needs to be taken into account

when computing �k�hðs; vÞ. Thus, we can associate to

ðv; hÞ a set of candidate paths Qk
�hðs; vÞ among which

�k�hðs; vÞ can be chosen, that contains at most one path for

each predecessor u 2 PredðvÞ. This set Qk
�hðs; vÞ is

recursively defined by (3). tu

6.3 Adapted Recursive Enumeration Algorithm

Equations (2) and (3) provide the basis for the adapted REA

for the HKSP problem. In the main program (Algorithm 1),

first the shortest path from s to t is determined using, e.g.,

BF. Then, the k shortest paths are determined iteratively

using the subroutine NextPath (Algorithm 2). The compu-

tation terminates when the total probability mass of the k

shortest paths so far exceeds the bound p (Algorithm 1,

line 4). Recall that p is the upper probability bound of the

PCTL formula to be checked. Note that Q½v; h; k� in the

algorithm corresponds to Qk
�hðs; vÞ. The paths in the priority

queue Q½v; h; k� are ordered w.r.t. their weights. When

k ¼ 1, Q½v; h; k	 1� and �k	1
�h ðs; vÞ do not exist and are ; and

?, respectively. Q½v; h; k� is constructed explicitly in two

cases (Algorithm 2, lines 4-5) and inherits from Q½v; h; k	 1�
for the remaining cases (line 12). In the latter case, �0 is the

path � ¼ �k	1
�h ðs; vÞ without the last state v, i.e., � ¼ �0�v; u is

the last state on �0, or equivalently, the predecessor state of v

on � with � ¼ s� � �u�v and �0 is the k0th shortest path from s

to u within h	 1 hops, i.e., �0 ¼ �k0�h	1ðs; uÞ. In other words,

the function index ðs� � �u; h	1Þ returns k0, where s� � �u is the

k0th shortest s-u path within h	 1 hops. The set Qk
�hðs; vÞ is

updated according to (3) (Algorithm 2, lines 6-13). In line 14,

�k�hðs; vÞ is selected from Qk
�hðs; vÞ according to the third

clause in (2).
Time complexity. Before we analyze the time complexity

of the algorithm, we first prove that the recursive calls to
NextPath to compute the �k�hðs; tÞ visit in the worst case all
the vertices in �k	1

�h ðs; tÞ, which is at most h.

Algorithm 1 Hop-constrained k shortest paths

Require: weighted digraph G, states s; t, h 2 IN�0,
p 2 ½0; 1�

Ensure: C ¼ f�1
�hðs; tÞ; . . . ; �k�hðs; tÞg with IPðCÞ > p

1: compute �1
�hðs; tÞ by BF;

2: k :¼ 1;

3: pr :¼ IPð�1
�hðs; tÞÞ;

4: while pr � p do

5: k :¼ kþ 1;

6: �k�hðs; tÞ :¼ NextPathðt; h; kÞ;
7: pr :¼ prþ IPð�k�hðs; tÞÞ;
8: end while;

9: return �1
�hðs; tÞ; . . . ; �k�hðs; tÞ;

Algorithm 2 NextPathðv; h; kÞ
Require: weighted digraph G, �k	1

�h ðs; vÞ (if it exists),

and candidate path set Q½v; h; k	1� (if it exists)
Ensure: �k�hðs; vÞ

1: PriorityQueue Q½v; h; k�;
2: if k ¼ 1; v ¼ s; h � 0 then return s;

3: if ðh ¼ 0Þ ^ ððk > 1 ^ v ¼ sÞ _ ðv 6¼ sÞÞ then return ?;

4: if ðk ¼ 1; v 6¼ s; h > 0Þ _ ðk ¼ 2; v ¼ s; h > 0Þ then

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. XX, XXXXXXX 2009

5: Q½v; h; k� :¼ f�1
�h	1ðs; u0Þ�v j ðu0; vÞ 2 Eg;

6: else

7: Path �0 :¼ �k	1
�h ðs; vÞ n fvg;

8: State u :¼ lastð�0Þ;
9: Int k0 :¼ index ð�0; h	 1Þ;
10: if �k

0þ1
�h	1ðs; uÞ is not computed yet then

11: �k
0þ1
�h	1ðs; uÞ :¼ NextPathðu; h	1; k0þ1Þ;

12: Q½v; h; k� :¼ Q½v; h; k	1�;
13: Q½v; h; k�:enqueue

�
�k
0þ1
�h	1ðs; uÞ�v

�
;

14: return Q½v; h; k�:dequeueðÞ;

Lemma 9. Let k > 1 and v 2 V . If NextPathðv; h; kÞ calls

NextPathðu; h	1; jÞ, then vertex u occurs in �k	1
�h ðs; vÞ.

Proof. ConsiderNextPathðv; h; kÞ and let �k	1
�h ðs; vÞ ¼ u1� � �u‘

with u1 ¼ s and u‘ ¼ v. Let ki be the index such that

�ki�h	1ðs; uiÞ ¼ u1� � �ui, f o r 0 < i � ‘. A s �k	1
�h ðs; vÞ ¼

�k‘	1

�h	1ðs; u‘	1Þ�v, NextPathðv; h; kÞ needs to recursively

invoke NextPathðu‘	1; h	1; k‘	1þ1Þ in case the path

�k‘	1þ1
�h	1 ðs; u‘	1Þ has not been computed yet. By a similar

reasoning, the path �k‘	1

�h	1ðs; u‘	1Þ is of the form

�k‘	2

�h	2ðs; u‘	2Þ�u‘	1, a n d NextPathðu‘	1; h	1; k‘	1þ1Þ
may need to invoke NextPathðu‘	2; h	2; k‘	2þ1Þ, and so

on. In the worst case, this sequence of recursive calls covers

the vertices u‘; u‘	1; . . . ; u1 and ends when it either reaches

�1
�h0 ðs; sÞ for some 0 < h0 � h or a hop bound zero. This

conforms to the termination conditions in (2) or Algo-

rithm 2 lines 2-3 hold. tu

To determine the computational complexity of the

algorithm, we assume the candidate sets to be implemented

by heaps [38]. The k shortest paths to a vertex v can be stored

in a linked list, where each path �k�hðs; vÞ ¼ �k
0

�h	1ðs; uÞ�v is

compactly represented by its length and a back pointer to

�k
0

�h	1ðs; uÞ. Using these data structures, we obtain:

Theorem 10. The time complexity of the adapted REA is

Oðhmþ hk logðmnÞÞ.
Proof. The computation of the first step takes OðhmÞ using

the BF algorithm. Due to Lemma 9, the number of

recursive invocations to NextPath is bounded by h, the

maximum length of �k	1
�h ðs; tÞ. At any given time, the set

Qk
�hðs; vÞ contains at most jPredðvÞj paths, where

PredðvÞ ¼ fu 2 V j ðu; vÞ 2 Eg, i.e., one path for each

predecessor vertex of v. By using heaps to store the

candidate sets, a minimal element can be determined and

deleted (cf. Algorithm 2, line 14) in Oðlog jPredðvÞjÞ time.

Insertion of a path (as in Algorithm 2, line 5,13) takes the

same time complexity. Since
P

v2V jPredðvÞj ¼ m,P
v2V log jPredðvÞj is maximized when all vertices have

an equal number of predecessors, i.e., jPredðvÞj ¼ m
n .

Hence, it takes Oðh logðmnÞÞ to compute �k�hðs; vÞ. We have

k such paths to compute, yielding Oðhmþhk logðmnÞÞ. tu

Note that the time complexity is pseudopolynomial due

to the dependence on k which may be exponential in n. As

in our setting, k is not known in advance, hence this cannot

be reduced to a polynomial time complexity.

7 OTHER PROBABILITY BOUNDS

So far we have considered properties of the form P�pð�Þ
for 0 < p < 1. In this section, we will show how for the
cases P�pð�Þ, P¼1ð�Þ, and P>0ð�Þ, counterexamples can
be generated.

7.1 Lower Bounds

In order to generate smallest counterexamples for formulas
of the form P�pð�Þ, we propose a reduction to the case with
upper probability bounds. This is done by a transformation
of the formula and the DTMC at hand, while enabling us to
use the algorithms presented before. As before, we
distinguish unbounded and bounded until.

For h ¼ 1, we have:

P�p
�
�U�

�
� P�1	p

�
ð� ^ :�Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

��

W ð:� ^ :�Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
��

�
� P�1	p

�
��Uð�� _ atbÞ

�
;

where atb is a new atomic proposition such that s � atb iff
s 2 B, where B is a bottom strongly connected component
(BSCC) such that B
 Satð��Þ, or shortly s 2 B�� . A BSCC B
is a maximal strongly connected subgraph that has no
transitions leaving B. Algorithmically, the DTMC is first
transformed such that all the ð:�� ^ :��Þ states are made
absorbing. Note that, once those states are reached, ��W��

will never be satisfied. As a second step, all the �� states are
made absorbing. Finally, all BSCCs are obtained and all
states in B�� are labeled with atb. The obtained DTMC now
acts as the starting point for applying all the model
transformations and algorithms in Sections 4-6 to generate
a counterexample for P�1	pð��Uð�� _ atbÞÞ.

For finite h, identifying all states in BSCCs B�� is not
sufficient, as a path satisfying ut¼h �� may never reach such
a BSCC. Instead, we transform the DTMC and use:

P�pð�U�h�Þ � P�1	p ð�� _��ÞU¼hð�� _ athÞ
� �

;

where ath is an atomic proposition such that s0 � ath iff there
exists � 2 Paths?ðsÞ such that �½h� ¼ s0 and � � ut¼h ��.
Algorithmically, the ð:�� ^ :��Þ states and �� states are
made absorbing; and all of the ��-states that can be reached
in exactly h hops are computed by e.g., a breadth-first
search (BFS) algorithm. The obtained DTMC now acts as the
starting point for applying all the model transformations
and algorithms in Sections 4-6 to generate a counterexample
for P�1	p

�
ð�� _��ÞU¼hð�� _ athÞ

�
. Finite paths of exactly

h hops suffice to check the validity of � � ut¼h��, as all ��

states are absorbing.
In the explained above way, counterexamples for

(bounded) until-formulas with a lower bound on their
probability are obtained by considering formulas on slightly
adapted DTMCs with upper bounds on probabilities.
Intuitively, the fact that s refutes P�pð�Þ is witnessed by
showing that violating paths of s are too probable, i.e., carry
more probability mass than p.

7.2 0-1 Bounds

Quantitative questions relate to the numerical value of the
probability with which the property holds in the system;
qualitative questions ask whether the property holds with

HAN ET AL.: COUNTEREXAMPLE GENERATION IN PROBABILISTIC MODEL CHECKING 9

probability 0 or 1. Typically, a qualitative property can be
checked using graph analysis, i.e., by just considering the
underlying digraph of the DTMC and ignoring the
transition probabilities. With the qualitative fragment of
PCTL we can specify properties that hold almost surely (i.e.,
with probability 1) or, dually, almost never (i.e., with
probability 0). The qualitative fragment of PCTL only
allows 0 and 1 as probability bounds and only covers
unbounded (weak) until [9]. Due to the fact that

P¼0ð�Þ � :P>0ð�Þ and P<1ð�Þ � :P¼1ð�Þ;

it suffices to only consider formulas of the form P>0ð:Þ and
P¼1ð:Þ. Qualitative PCTL is closely related to CTL.

Lemma 11 ([9]). For state s of DTMC D, it holds that:

s � P>0ðaUbÞ iff s � 9ðaUbÞ;
s � P¼1ðaUbÞ iff s � 8ð9ðaUbÞWbÞ:

As a result, a counterexample for a qualitative PCTL
property is a counterexample for the corresponding CTL
formula. For the violation of CTL formula 8

�
9ðaUbÞWb

�
in

state s, it suffices to find one path � 2 Paths?ðsÞ such that
� �

�
9ðaUbÞ ^ :b

�
U
�
:9ðaUbÞ ^ :b

�
. Counterexamples for

formulas of the form 9ðaUbÞ can be solved using the
techniques in [58].

8 REWARDS

Both DTMCs and PCTL can be augmented with costs, or
dually rewards, which can specify standard and complex
measures in a precise, unambiguous, and lucid manner. A
reward function r is added to the DTMC, which associates a
real reward (or: cost) to any transition. Formally, ri :
S � S ! IR�0 for 1 � i � c, where c is the number of
resources in the model. riðs; s0Þ denotes the reward for
resource i earned when taking transition s! s0. The
cumulative reward along a finite path � is the sum of the
reward on each transition along the path. Formally,
rið�Þ ¼

Pj�j	1
l�0 rið�½l�; �½lþ 1�Þ.

Let Ji
 IR�0 ð1 � i � cÞ be an interval on the real line,
p 2 ½0; 1�. We use ~J to denote the vector of intervals, i.e.,
~J ¼ fJ1; . . . ; Jcg. The formula P�pð�U~J �Þ asserts that, with
probability at most p, � will be satisfied such that all
preceding states satisfy �, and that the cumulative reward
ri until reaching the �-state lies in the interval Ji, for
1 � i � c. The formal semantics can be found in [6]. Note
that the hop constraint � h can be considered as a reward
constraint over a simple auxiliary reward structure, which
assigns cost 1 to each edge.

It holds that s 6� P�pð�U~J �Þ iff Probðs;�U~J �Þ > p. As
before, we cast the SE problem into a SP problem.
Obviously, the weight (probability) of a path is of primary
concern, which is required to be optimal. The rewards are of
secondary concern; they are not required to be optimal but
need to fulfil some constraints. This is exactly an instance of
the (resource) constrained shortest path (CSP) problem
which is NP-complete [34]. Approximation or heuristic
methods are surveyed in [45]. There are some special case
CSP problems. For the case c ¼ 1 (a single resource) and if
this resource increases in a constant unit for each edge (e.g.,

hop counts), the CSP problem, as is mentioned before, can
be solved in PTIME. For the case c ¼ 1 and not with a
uniformly allocated resource and the case for c ¼ 2, the CSP
problem is not strongly NP-complete since there are
pseudopolynomial algorithms to solve it exactly, in which
the computational complexity depends on the values of
edge weight in addition to the graph size [37]. The other
cases are strong NP-complete problem.

For finding smallest counterexamples, we need to obtain
k shortest paths subject to multiple constraints, denoted
k-CSP or KMCSP [52], which is NP-complete. The KMCSP
problem has received scant attention, where an exact
solution is given in [52].

9 EXPERIMENTATION

Smallest counterexamples may contain an excessive
number of evidences, which is illustrated by the
violation of s � P�0:9999ð} attÞ in the DTMC in Fig. 5.
The smallest counterexample consists of the evidences
s�ðu�sÞ0�u�t; . . . ; s�ðu�sÞk	1�u�t, where ðu�sÞi is a short form
of traversing the loop s�u�s for i times and k is the
smallest integer such that 1	 0:99k	1 > 0:9999 holds. As
a result, the smallest counterexample has k ¼ 689
evidences. In fact, the large number of evidences
degrades the significance of each evidence.

To illustrate that such phenomena also occur in real-life
cases, we made a prototypical implementation (in Python)
to enable generating counterexamples for more practical
case studies. Our implementation uses the same input
format as the probabilistic model checker MRMC [42].
Using the export facilities of PRISM [46], counterexamples
can be generated for various case studies.

Let us report on one case study: the synchronous leader
election protocol [36]. In this protocol, N processes are
arranged in a unidirectional ring to elect a leader. For this
purpose, they randomly select an identity (id, for short)
according to a uniform distribution on f1; . . . ; Kg. We call
each such selection by all processes a configuration. By
means of synchronous message passing, processes send
their ids around the ring till every process sees all the ids of
the others, and can thus determine whether a leader (the
one with the highest unique id) can be elected. If yes, the
protocol terminates; if no, a new round will be started.

We intend to find a counterexample for the following
formula: P�pð} leader electedÞ, where leader elected char-
acterizes the global state of the protocol in which a leader
has been selected. It is clear that a leader will be elected
eventually. What interests us, is the number of evidences
needed to converge to probability 1. We are especially
interested in the relationship between the number of
evidences and the bound p and R, where R is the round
number. Starting a new round means that each process
reselects an id and repeats the procedure.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. XX, XXXXXXX 2009

Fig. 5. A DTMC with excessive number of evidences.

9.1 Experimental Results

To find the number of evidences contained in a counter-
example, we used the PRISM-model of the protocol [1] and
ran the counterexample generation using our implemented
algorithm. The results for a fixed N (N ¼ 4) and varying K
are depicted in Fig. 6, where the y-axis is the accumulated
probability and the x-axis (log-scale) is the number of
evidences that are contained in a counterexample. The
abrupt changes in the curves correspond to the start of a new
round, i.e., a new election, in the protocol. Due to the fact
that the probability of all evidences in one round is the same,
the curves in Fig. 6 are actually piecewise linear if the x-axis
were not log-scale. The curves shift more to the right when
K increases since there are more possible configurations
and, thus, more evidences. The larger K is, the more quickly
the probability of the counterexample approaches 1. This is
due to the fact that it is less probable that no process selects a
unique id. All curves approach 1, which indicates that
eventually a leader will be elected. The number of evidences
in a counterexample, however, grows drastically to millions;
whereas the probability of having elected a leader (Prob.
mass) decreases drastically in each round, thus the prob-
ability per evidence decreases tremendously.

9.2 Mathematical Analysis

To obtain more insight into this rapid growth of the size of a
counterexample, we carry out a brief combinatorial analy-
sis. Let us first consider the number of possibilities (denoted
W ðN;KÞ) of putting N labeled balls into K labeled boxes such
that each box contains at least two balls. Actually, WðN;KÞ
characterizes the number of possibilities of assigning K ids
to N processes such that each id is assigned to more than
one process, in which case a leader is not selected. WðN;KÞ
can be solved by using the “associated Stirling number of
the second kind (S2)” [17]:

W ðN;KÞ ¼
XminðbN=2c;KÞ

j¼1

S2ðN; jÞ
K!

ðK 	 jÞ! ; ð4Þ

where S2ðN;KÞ ¼ K�S2ðN	1; KÞ þ ðN	1Þ�S2ðN	2; K	1Þ
indicates the number of ways to put N labeled balls into

K unlabeled boxes. Obviously, it makes no sense to have

more than bN=2c boxes or else it would be impossible to

allocate all the balls in the right way. The factor K!
ðK	jÞ!

expresses that there are K! ways to permute the boxes

(including the empty ones); for these empty boxes, the order

does not matter, so we divide by ðK 	 jÞ!.
The nonrecursive equation for S2ðN;KÞ is:

S2ðN;KÞ ¼
XK
i¼0

ð	1Þi N

i

� 	 XK	i
j¼0

ð	1Þj ðK	i	jÞ
N	i

j!ðK	i	jÞ!

 !
: ð5Þ

For each round in the leader election protocol, the number
of possibilities for a process to choose an id is KN . Thus, the
probability that N processes with K ids elect a leader in
round R, denoted by P ðN;K;RÞ, is:

P ðN;K;RÞ ¼ WðN;KÞ
KN

� 	R	1KN 	WðN;KÞ
KN

; ð6Þ

where ðWðN;KÞ
KN ÞR	1 is the probability that a leader is not

elected in the first ðR	1Þ rounds and KN	WðN;KÞ
KN indicates

the probability that a leader is elected in the Rth round.
We now calculate the probabilities of each evidence per

round using (6). The model of the synchronous leader
election protocol is depicted in Fig. 7. When we start a new
round, there are KN possible configurations, among which
in W ðN;KÞ (square states, unsuccessful) configurations no
unique id will be selected. For these states, we start the next
round, while, in KN	W ðN;KÞ (round-angle states, success-
ful) configurations, a unique id will be selected with a leader
elected. Thus:

Proposition 1. The number of evidences that can reach the state
leader elected in round R is:

#EviðN;K;RÞ ¼W ðN;KÞR	1� KN 	WðN;KÞ
� �

:

Proposition 1 shows that the number of evidences is
exponential in R. Note that W ðN;KÞ is exponential in N
and K, which makes #EviðN;K;RÞ double exponential.

The number of evidences thus grows extremely fast. This
results in two problems. First, it leads to the storage
problem as counterexamples may simply get too large to be
kept in memory. Second, and more important, counter-
examples will be incomprehensible to the user. We there-
fore need to find ways to reduce the number of evidences in
a counterexample, and to obtain a compact and user-
friendly representation. To that purpose we suggest to use
regular expressions.

10 SUCCINCT COUNTEREXAMPLES

This approach is inspired by classical automata theory and is
based on representing sets of paths by regular expressions.

HAN ET AL.: COUNTEREXAMPLE GENERATION IN PROBABILISTIC MODEL CHECKING 11

Fig. 7. Abstract leader election model.

Fig. 6. Probability versus number of evidences for leader election

(N ¼ 4).

A major difference with usual regular expressions is that we
need to keep track of the transition probabilities. To tackle
this, we adopt the approach proposed by Daws [20]. He
uses regular expressions to represent sets of paths and
calculates the exact rational value of the probability
measure in DTMC model checking (provided all transition
probabilities are rational). We adapt this approach to obtain
compact representations of counterexamples. The main
idea is to consider a counterexample as a set of probable
branches (subexpressions) that go from the initial state to
the goal state and to provide a function to evaluate the
probability measure of those expressions. To simplify the
presentation, we will assume that the DTMC at hand has
been subject to the transformation in Step 1, cf. Section 4.
This is not a limitation since s � P/pð�U�h �Þ in a DTMC iff
s � P/pð}�hþ1 attÞ in the transformed DTMC where att
uniquely identifies t.

10.1 Turning a DTMC into an Automaton

For DTMC D ¼ ðS;P; LÞ with initial state ŝ 2 S and goal
state t, let the deterministic finite automaton (DFA)
AD ¼ ðS0;�; ~s;
; ftgÞ, where:

. S0 ¼ S [f~sg is the state space with start state ~s 62 S;

. �
 ð0; 1� � S is the (finite) alphabet;

.

 S0 � �� S0 is the transition relation such that

 s; ðp; s0Þð Þ ¼ s0 iff Pðs; s0Þ ¼ p, and
ð~s; ð1; ŝÞÞ ¼ ŝ;

. t 2 S is the accepting state.

The automaton is equipped with a start state ~s with a

transition of probability one to the initial state of D. Symbols

in the alphabet are pairs ðp; sÞ with p a probability and s a

state. Transition s!p s0 in D is turned into a transition from

s to s0 labeled with ðp; s0Þ. (Obviously, this yields a

deterministic automaton.) This is a slight, though important

deviation from [20], where labels are just probabilities. The

probabilities are needed to determine the path probabilities

(see Definition 14), while the target states are used for

recovering the evidences. For simplicity, probability labels

are omitted if they are clear from the context.

Example 6. Fig. 8 (left) depicts an abstract example of a
DTMC D with initial state ŝ ¼ s1 and goal state t ¼ s4

and its DFA AD (right). The new start state is ~s ¼ s0,
which has a transition equipped with symbol ð1; s1Þ to s1.

10.2 Evaluation of Regular Expressions

Regular expressions will be used to represent a counter-
example C. To determine the probability of C, IPðCÞ, from
its regular expression we use an evaluation function. Let
Rð�Þ be the set of regular expressions over the finite
alphabet �. It contains the elements of �, the empty word ",
and is closed under union (j), concatenation (.), and Kleene

star (�). Let LðrÞ denote the regular language (a set of
words) described by the regular expression r 2 Rð�Þ and
Lð�Þ denote the regular language that can be generated by
any regular expression over �. The length jzj and jrj denote
the number of symbols in the word z and regular
expression r, respectively. We sometimes omit . and write
r:r0 as rr0 for short. Note that in our setting, �
 ð0; 1� � S.

Definition 14 ([20], Evaluating regular expressions). Let
val : Rð�Þ7!IR be defined as:

valð"Þ ¼ 1 valðrjr0Þ ¼ valðrÞ þ valðr0Þ
valððp; sÞÞ ¼ p valðr:r0Þ ¼ valðrÞ � valðr0Þ

valðr�Þ ¼
1 if valðrÞ ¼ 1

1
1	valðrÞ o:w:

(

If we limit the transition probabilities to being rational
values, then exact values are obtained. It can be proven that
valðrÞ ¼ IP

�
Paths?minðŝ;}

�h attÞ
�
, for h ¼ 1 [20].

Definition 15. r1 is a maximal union subexpression (MUS)
of a regular expression r if r ¼ r1 jr2 modulo ðR1Þ-ðR3Þ, for
some r2 2 Rð�Þ, where:

ðR1Þ r � r j ";
ðR2Þ r1 j r2 � r2 j r1;
ðR3Þ ðr2 j r3Þ � ðr1 j r2Þ j r3:

r1 is maximal because it is at the topmost level of a union
operator. If the topmost level operator is not union, then
r1 ¼ r (cf. R1). A regular expression represents a set of
paths and each MUS can be regarded as a main branch from
the start state to the accepting state.

Example 7. A regular expression for the automaton AD in
Fig. 8 (right) is:

r0 ¼ s1s3s
�
3s4|fflfflfflffl{zfflfflfflffl}

r1

j s1ðs2js3s
�
3s2Þðs5s3s

�
3s2Þ�s5s3s

�
3s4|ffl{zffl}

r2

:

r1 and r2 are the MUSs of r0 with valðr1Þ ¼ 1� 0:3�
1

1	0:5� 0:3 ¼ 0:18 and valðr2Þ ¼ 0:82. Note that jr1j ¼ 4
and jr2j ¼ 13; z ¼ s1s3s3s3s4 is a word generated by r1

and jzj ¼ 5. We can distribute j over . in r2 and obtain
two more MUSs instead: r3 ¼ s1s2ðs5s3s

�
3s2Þ� s5s3s

�
3s4 and

r4 ¼ s1s3s
�
3s2ðs5s3s

�
3s2Þ�s5s3s

�
3s4. r1, r3 and r4 characterize

all paths from s1 to s4, which fall into the above three
branches. Note that r1 cannot be written as s1s

þ
3 s4 since,

from the full form of r1 ¼ ð1; s1Þð0:3; s3Þ ð0:5; s3Þ�ð0:3; s4Þ,
the probability of the first s3 is different from that of s�3.

10.3 Regular Expressions as Counterexamples

The equivalence of DFAs and regular expressions, as well
as converting DFAs to regular expressions has been widely
studied. Several techniques are known, e.g., the transitive
closure method [44], Brzozowski’s algebraic method [14],
[13], and state elimination [25], [51]. State elimination is
based on removing states one by one, while labeling
transitions by regular expressions. It terminates only once
the start and accepting state remain; the transition connect-
ing these states is labeled with the resulting regular
expression. This technique is suitable for manual inspection

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. XX, XXXXXXX 2009

Fig. 8. An example DTMC D and its automaton AD.

but is less straightforward to implement. The transitive
closure method gives a clear and simple implementation
but tends to create rather long regular expressions. The
algebraic method is elegant and generates reasonably
compact regular expressions. For a more detailed compar-
ison, see [55]. In order to obtain a minimal counterexample
in an on-the-fly manner, we take the state elimination
method. This allows us to stop once the value of the
obtained regular expression exceeds the probability thresh-
old. The algebraic method does not support this.

By using regular expressions for representing counter-
examples, we will, instead of obtaining evidences one by one,
derive a larger number of evidences at a time, which
hopefully yields a quick convergence to the required
probability threshold and a clear explanation of the violation.
As a result, we will not insist on obtaining the smallest
counterexample but instead prefer to find the branches
(MUSs) with large probabilities and short length. Thus, a
(good) regular expression should be

1. shorter (w.r.t. its length), to improve comprehensi-
bility;

2. more probable, such that it is more informative and
the algorithm will terminate with less MUSs;

3. minimal, where a compact counterexample is mini-
mal if the omission of any of its MUSs would no
longer result in a counterexample.

However, it has been recently proven that the size of a
shortest regular expression of a given DFA cannot be
efficiently approximated [28]. Therefore, it is not easy to,
e.g., by state elimination, compute an optimal removal
sequence for state elimination in polynomial time [32]. We
could adapt the heuristics proposed in e.g. [32], [23] to get a
better order to eliminate states. For 2, we could take the
advantage of the KSP or HKSP algorithms as well as the
model-checking results. The states on the more probable
evidences should be eliminated first.

We take the following iterative strategy: In each iteration,
we take the strongest evidence � ¼ ~s�ŝ�s1� � �sj�t in the
remaining automaton—recall that this amounts to an SP
problem—and eliminate all of the intermediate states on �
(i.e., ŝ; s1; . . . ; sj) one by one according to a recently
proposed heuristic order [32]. After eliminating a state,
possibly a new MUS rk, say, is created where k MUSs have
been created so far, and valðrkÞ can be determined. IfPk

i¼1 valðriÞ > p, then the algorithm terminates. Otherwise,
the transition labeled with rk is removed from the
automaton and either a next state is selected for elimination
or a new evidence is to be found, cf. Algorithm 3.

Algorithm 3 Regular expression counterexamples

Require: DFA AD ¼ ðS;�; ~s;
; ftgÞ and p 2 ½0; 1�
Ensure: regular expression r 2 Rð�Þ with valðrÞ > p

1: A :¼ AD; pr :¼ 0; Priority queue q :¼ ;; k :¼ 1;

2: while pr � p do

3: � :¼ the strongest evidence in A;
4: forall s0 2 � n f~s; tg do q.enqueue(s0); endforall;

5: while q 6¼ ; do

6: A :¼ eliminate(q:dequeue()); rk :¼ the created

MUS;

7: pr :¼ prþ val(rk); A :¼ eliminate(rk);

8: if (pr > p) then break; else k :¼ kþ 1;
9: endwhile;

10: endwhile;

11: return r1 j . . . j rk;
Priority queue q keeps the states to be eliminated in the

current iteration. The order in which states are dequeued

from q is given by the heuristics in [32]. The function

“eliminate(�)” can eliminate both states and regular expres-

sions, where the latter simply means the deletion of the

transitions labeled with the regular expression.

Example 8. Let us apply the algorithm on AD of Fig. 8 and

P�0:7ð} s4Þ. In the first iteration, s0�s1�s2�s5�s3�s4 is found

as the strongest evidence. Assuming the order to

eliminate the states by [32] is s5; s2; s1; s3, we obtain the

regular expression r5¼s1ðs3js2s5s3Þðs3js2s5s3Þ�s4 with

valðr5Þ¼1. Since all states are eliminated and the thresh-

old 0.7 is exceeded, the algorithm terminates. This

expression gives a clear reason that traversing the

cycle s3 or s2s5s3 infinitely many times causes the

probability exceeding 0.7.
Let us change the elimination order to s5; s1; s3; s2. Then,

the regular expression is r0 ¼ s1s3s
�
3s4 j s1ðs2js3s

�
3s2Þ

ðs5s3s
�
3s2Þ�s5s3s

�
3s4. After eliminating s3, the first MUS

r1 ¼ s1s3s
�
3s4 is generated and the probability is

0:18 < 0:7. The algorithm continues (i.e., eliminates s2)
to find more MUSs till r0 is found. Note that r0 is longer
than r5 and, thus, less intuitive to comprehend. The
cycles s3 and s3s2s5 are, however, indicated.

Let us pick a less probable evidence s0�s1�s3�s4 to be
eliminated in the first iteration. After eliminating s3, the
resulting expression is r1¼s1s3s

�
3s4. Then, r1 is removed

from the automaton and the strongest evidence in the
remaining automaton is s0�s1�s2�s5�s4. After eliminating
s2; s5, we obtain the regular expression: r2, as in
Example 7. The final regular expression is again r0 and
the analysis in the last case applies.

Proposition 2. The regular expression counterexample generated

by Algorithm 3 is minimal.

This property immediately follows from the fact that

Algorithm 3 terminates immediately once the cumulative

probability exceeds the threshold. We would like to

emphasize that the regular expression representation is

not applicable for formulas with nested probabilistic

operators, e.g., P�p1

�
}P�p2

ð} attÞ
�
. However, this is not a

real constraint in practice since those formulas are rarely

used. In addition, it is important to mention that the

algorithm in this section not only applies to nonstrict

probability bounds, but also to strict bounds as, e.g.,

P<pð}�h attÞ.

10.4 Bounded Reachability

For bounded reachability formula }�h att, a regular

expression, e.g. r ¼ r1jr�2, may not be valid because it is

possible that the length of the words generated by r1 or the

expansion of r2 exceeds h. Thus, valðrÞ might be larger than

the actual probability. In order to obtain a precise valuation,

we consider constrained regular expressions.

HAN ET AL.: COUNTEREXAMPLE GENERATION IN PROBABILISTIC MODEL CHECKING 13

Definition 16 (Constrained regular expressions). For r 2
Rð�Þ and h 2 IN�0, Lðr½h�Þ ¼ fz 2 LðrÞ j jzj � hg.

In fact, Lðr½h�Þ
 LðrÞ and r½h� can be expressed equiva-
lently by a union of possible enumerations, namely
r½h� ¼ rh0ijrh1ij� � �jrhhi, where rhii denotes the set of words
generated by r and having exactly i symbols. Constrained
regular expressions can be obtained in the same way as
presented just before, only their valuation is different.

Definition 17. For r 2 Rð�Þ and h 2 IN�0, the function val for
r½h� and rhhi is defined by:

valðr½h�Þ ¼
Xh
i¼0

valðrhhiÞ;

valð"hhiÞ ¼
1; if h ¼ 0;

0; o:w:;

�

valððp; sÞhhiÞ ¼
p; if h ¼ 1;

0; o:w:;

�
valðr1jr2hhiÞ ¼ valðr1hhiÞ þ valðr2hhiÞ;

valðr1:r2hhiÞ ¼
Xh
i¼0

valðr1hiiÞ�valðr2hh	 iiÞ;

valðr�hhiÞ ¼ valð"hhiÞ þ
Xh
i¼1

valðrhiiÞ�valðr�hh	 iiÞ:

Note that the complexity of the above evaluation
function is, however, very high. It remains to establish that
constrained regular expressions are counterexamples for
bounded until-formulas.

Theorem 12. Let r be the regular expression for DFA
AD ¼ ðS0;�; ~s;
; ftgÞ, where D ¼ ðS;P; LÞ with initial state
ŝ and h 2 IN�0. Then:

valðr½h�Þ ¼ IP
�
Paths?minðŝ;}

�hattÞ
�
:

10.5 Leader Election Example

We conclude this section by reconsidering the leader
election protocol. For the original DTMC, the regular
expression, denoted rðN;KÞ, is:

start:
�
u1j� � �juið Þ:next:start

��
: s1j� � �jsj
� �

:leader;

where start, next, and leader are the obvious short forms.
The regular expression lists all the unsuccessful configura-
tions, as well as the successful ones. As a result,
jrðN;KÞj ¼ KNþ4. Compared to the number of evidences
computed directly, i.e.,

PR
i¼1 #EviðN;K; iÞ, jrðN;KÞj is

much shorter, but it is still exponentially long. On the other
hand, however, the structure of rðN;KÞ clearly indicates the
reason of violation, i.e., the repeated unsuccessful config-
urations followed by a successful one.

Regular expression counterexamples are feasible when
the excessive number of evidences are caused by traversing
loops. Clearly, the number of states also affects the size of the
regular expression. Thus, any model reduction prior to
counterexample generation would be helpful. Two strate-
gies may be utilized to slim down the model size, viz.,
bisimulation minimization and SCC minimization. Bisimulation

minimization [41], [48] lumps bisimilar states and yields a
typically much smaller quotient DTMC. Strongly-con-
nected-component (SCC) minimization [50], instead, only
lumps SCCs. Bisimulation minimization preserves both
unbounded and bounded probabilistic reachability proper-
ties, while SCC minimization only preserves the former one.
An evidence ½s0���½s1��� � �½sn�� in the quotient DTMC
represents a set of evidences in the original DTMC, viz.,
fs00�s01� � �s0n j s0i 2 ½si�� and 0 � i � ng, where ½si�� is the
equivalence class under equivalence � with si as its
representative.

For the leader election protocol, the regular expression
counterexample in the bisimulation quotient DTMC is:

r�ðN;KÞ ¼ start: u:next:startð Þ�:s:leader;

where u1; . . . ; ui are wrapped as u; s1; . . . ; sj as s in Fig. 7.
Note that jr�ðN;KÞj ¼ 6 is independent of N and K. The
SCC-quotient DTMC is obtained by replacing the left half of
the model (an SCC) by a self-loop on the initial state. The
regular expression counterexample is:

rSCCðN;KÞ ¼ start:start�:ðs1j� � �jsjÞ:leader;

where the intuition of the self-loop is “still unsuccessful."
Applying both techniques yield:

rSCC� ðN;KÞ ¼ start:start�:s:leader:

11 CASE STUDY—CROWDS PROTOCOL

We now illustrate our techniques on a more serious
example. The Crowds protocol [56] is aimed to provide
users with a mechanism for anonymous Web browsing. The
main idea behind Crowds is to hide each user’s commu-
nication by routing randomly within a group of similar
users. Even if a local eavesdropper or a bad group member
observes a message being sent by a particular user, it can
never be sure whether the user is the actual sender, or is
simply routing another user’s message.

The protocol works in the following way: 1) The sender
selects a crowd member at random (possibly itself), and
forwards the message to it, encrypted by the corresponding
pairwise key. 2) The selected router flips a biased coin. With
probability 1	 PF , where PF (forwarding probability) is a
parameter of the system, it delivers the message directly to
the destination. With probability PF , it selects a crowd
member at random (possibly itself) as the next router in the
path, and forwards the message to it, reencrypted with the
appropriate pairwise key. The next router repeats this step.

In our experiments, we assume that: 1) If a sender has
been observed by the bad member twice, then it has been
positively identified (Pos for short), thus the anonymity is not
preserved. 2) The bad member will deliver the message
with probability 1, as in [57]. This protocol is executed every
time a crowd member wants to establish an anonymous
connection to a Web server. We call one run of the protocol
a session and denote the number of sessions by R. Other
parameters are the number N of good members and the
number M of bad members.

We take the Crowds protocol modeled by PRISM [1]
and the property is P�pð}PosÞ, which characterizes the

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. XX, XXXXXXX 2009

probability threshold that the original sender’s id 0 is
positively identified by any of the bad members. The
relation between the number of evidences and the
probability threshold for different number of sessions R
is shown in Fig. 9 (N ¼ 5, M ¼ 1, PF ¼ 0:8), both for the
original DTMC and its bisimulation quotient. As one
evidence in the minimized model may represent a set of
evidences in the original model, given the same number of
evidences, the cumulative probability in the minimized
model is higher than that in the original model. This is
illustrated in Fig. 9 by the fact that the curves for the
minimized model are above the ones for the original model.
It also holds that the larger the round number we allow, the
larger the cumulative probability is, as the smaller round
case is subsumed in the larger round case. For instance, in
the case of R ¼ 2, only consecutively sending to two bad
members causes a Pos (shortly as BB); whereas in the case
of R ¼ 3, besides BB, there are two more situations that
causes Pos, viz. GBB and BGB (G represents sending to a
good member). This also explains why the curves overlap in
the beginning of the x-axis.

We choose a configuration with a small state space
(N ¼ 2, M ¼ 1, R ¼ 2, and PF ¼ 0:8) as this suffices to
illustrate the algorithm. Bisimulation minimization reduces
the state space from 77 to 34; cf. the quotient DTMC in Fig. 10.
To make the figure comprehensible, sequences of states with
probability 1 are depicted by a square state. States i,G,B,Del,
Pos represent initiating a new session, sending a message to a
Good member, to a Bad member, a message being Delivered, a
Positive result obtained, respectively. G0 and G1 are the two

good members, where G0 is assumed always to be the

original sender when a new session starts. G0 _G1 is a

lumped state where either G0 or G1 is reached. The

subscripts a; b; . . . are to distinguish the states in similar

situations. Since the goal state Pos can be reached by only

the gray states, the regular expression (thus the automaton)

only depends on those states. Note that Dela and Delb
denote the end of the first session, while Delc and Delb
denote the end of the second. Only the case that two

messages are both delivered by the bad member indicates a

positive identification of the sender.
An intermediate automaton (see Fig. 11) can be derived

after eliminating some states. The start state ~s of the

automaton is also omitted. This shows the basic structure of

the model: ia and ic are the starting points of two sessions.

The horizontal transitions indicate the observation of G0 by

the bad member, which lead to Pos. In each session, a

message can be forwarded to G0 or G1 many times

(captured by the self-loops). Once a message is delivered,

a new session is assumed to be started (the transitions back

to ia and ic). Thus, a regular expression that can be

generated from the automaton is r ¼ r0r
�
1r2r

�
3r4, where:

r0 ¼ ð1; iaÞ;
r1 ¼ ð0:667; GaÞð0:267; G1a:Gb:GaÞ�ð0:4; G0a:iaÞ;
r2 ¼ ð0:333; Ba:Delb:icÞ;
r3 ¼ ð0:667; GdÞð0:267; G1b:Ge:GdÞ�ð0:4; G0b:icÞ;
r4 ¼ ð0:333; Bc:Deld:PosÞ:

If we omit the probabilities and the subscripts and merge

the stuttering steps G, then we obtain:

r0 ¼ i G:ðG1:GÞ�G0:ið Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
good

: ðB:Del:iÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
bad

: G:ðG1:GÞ�G0:ið Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
good

: B|{z}
bad

;

which is highly compact and informative in the sense that it

indicates the observation of the bad members twice with

arbitrary number of observing the good members. r0 can be

HAN ET AL.: COUNTEREXAMPLE GENERATION IN PROBABILISTIC MODEL CHECKING 15

Fig. 10. State space of the quotient DTMC for the Crowds protocol ðN ¼ 2;M ¼ 1; R ¼ 2; PF ¼ 0:8Þ.

Fig. 9. Probability versus number of evidences.

Fig. 11. A more compact automaton.

further compacted if the SCCs are identified and replaced
by self-loops. In this case, r00 ¼ i:i�:ðB:Del:iÞ:i�:B.

The probability of r is valðrÞ ¼ 0:274, which coincides

with the model checking result. These probabilities depend,

among others, on the parameters of the protocol (N , M, R,

PF , etc.). For instance, the probability of the strongest

evidence is ð M
NþMÞ

R ¼ ð13Þ
2 ¼ 1

9 , which loops 0 times at r1 and

r3. The probability of r2 and r4 is a
1	a ¼ 4

11 , where a is the

probability of the inner loop: 1
NþM �PF �ð1	 M

NþMÞ ¼ 0:267, as

is shown in the intermediate automaton. Note that this

closed-form expression can now be used for arbitrary

parameter values.

12 CONCLUSION

In this paper, we have provided the theoretical and
algorithmic foundations for counterexample generation in
probabilistic model checking, in particular for discrete-time
Markov chains. One of the key principles has been the
casting of the concepts of strongest evidence and smallest
counterexample as (variants of) shortest path (SP) pro-
blems. This enabled the use of efficient and well-studied
graph algorithms for counterexample generation.

It has been shown in detail which algorithms can be
applied when checking properties with (nonstrict) prob-
ability upper bounds. These algorithms are central to
counterexample generation for PCTL, both for upper and
lower probability bounds. All cases can be treated by
standard SP algorithms or small amendments thereof. An
overview of the main cases is given in Table 1, where n andm
are the number of states and transitions in the Markov chain,
h is the hop bound, and k is the number of shortest paths.
Generating strongest evidences and smallest counterexam-
ples for reward extensions of Markov chains is NP-complete.

A second main contribution is an algorithm to generate
regular expressions that can act as (rather compact)
counterexamples.

The results in this paper are applicable to LTL model
checking, as LTL model checking of DTMCs reduces to
probabilistic reachability. In addition, the results are useful
for MDP model checking: When a state refutes a property,
such as the maximal reachability probability never exceeds
a bound p, say, a memoryless policy is obtained that yields
this violation. Applying our algorithms to the Markov chain
induced by this policy provides useful diagnostic feedback.
In fact, this strategy has recently been adopted in probabil-
istic CEGAR for MDPs [35]. Other applications include
CTMC counterexample generation [31] and counterexample
generation for cpCTL [8]. Recently, Andrés et al. [7] have
applied SCC minimization to counterexample generation

for MDPs. We foresee that applying the CEGAR-framework

to other abstraction techniques, such as [43], [47], may also

profit from the results in this paper.

ACKNOWLEDGMENTS

Christel Baier, David N. Jansen and Alexandru Mereacre are

kindly acknowledged for their useful remarks on the paper.

The authors thank the reviewers for their detailed and

helpful feedback. This research has been supported by the

NWO project QUPES and the EU FP7 project QUASIMODO.

REFERENCES

[1] PRISM Website, http://www.prismmodelchecker.org, 2009.
[2] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows:

Algorithms, Theory and Applications. Prentice Hall, Inc., 1993.
[3] H. Aljazzar, H. Hermanns, and S. Leue, “Counterexamples for

Timed Probabilistic Reachability,” Proc. Int’l Conf. Formal Model-
ling and Analysis of Timed Sequences, pp. 177-195, 2005.

[4] H. Aljazzar and S. Leue, “Extended Directed Search for
Probabilistic Timed Reachability,” Proc. Int’l Conf. Formal
Modelling and Analysis of Timed Sequences, pp. 33-51, 2006.

[5] C. Andersson, S. Fischer-Hübner, and R. Lundin, “Enabling
Anonymity for the Mobile Internet Using the Mcrowds System,”
IFIP WG 9.2, 9.6/11.7 Summer School on Risks and Challenges of the
Network Soc., p. 35, 2004.

[6] S. Andova, H. Hermanns, and J.-P. Katoen, “Discrete-Time
Rewards Model-Checked,” Proc. Int’l Conf. Formal Modelling and
Analysis of Timed Sequences, pp. 88-104, 2003.

[7] M.E. Andrés, P. D’Argenio, and P. van Rossum, “Significant
Diagnostic Counterexamples in Probabilistic Model Checking,”
Proc. Fourth Haifa Verification Conf., to be published.

[8] M.E. Andrés and P. van Rossum, “Conditional Probabilities Over
Probabilistic and Nondeterministic Systems,” Proc. Int’l Conf. Tools
and Algorithms for the Construction and Analysis of Systems, pp. 157-
172, 2008.

[9] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press,
2008.

[10] T. Ball, M. Naik, and S.K. Rajamani, “From Symptom to Cause:
Localizing Errors in Counterexample Traces,” Proc. Symp. Princi-
ples of Programming Language, pp. 97-105, 2003.

[11] G. Behrmann, K.G. Larsen, and J.I. Rasmussen, “Optimal
Scheduling Using Priced Timed Automata,” ACM SIGMETRICS
Performance Evaluation Rev., vol. 32, no. 4, pp. 34-40, 2005.

[12] R. Bellman, “On a Routing Problem,” Quarterly Applications Math.,
vol. 16, no. 1, pp. 87-90, 1958.

[13] G. Berry and R. Sethi, “From Regular Expressions to Deterministic
Automata,” Theoretical Computer Science, vol. 48, no. 3, pp. 117-126,
1986.

[14] J.A. Brzozowski, “Derivatives of Regular Expressions,” J. ACM
vol. 11, no. 4, pp. 481-494, 1964.

[15] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counter-
example-Guided Abstraction Refinement,” Proc. Int’l Conf. Com-
puter Aided Verification, pp. 154-169, 2000.

[16] E.M. Clarke, S. Jha, Y. Lu, and H. Veith, “Tree-Like Counter-
examples in Model Checking,” Proc. IEEE Symp. Logic in Computer
Science, pp. 19-29, 2002.

[17] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite
Expansion. D. Reidel Publishing Co., 1974.

[18] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, “The
Bellman-Ford Algorithm,” Introduction to Algorithms, chap. 24.1,
pp. 588-592, MIT Press, 2001.

[19] B. Damman, T. Han, and J.-P. Katoen, “Regular expressions for
PCTL Counterexamples,” Proc. Int’l Conf. Quantitative Evaluation of
Systems, 2008.

[20] C. Daws, “Symbolic and Parametric Model Checking of Discrete-
Time Markov Chains,” Proc. Int’l Colloquim Theoretical Aspects of
Computing, pp. 280-294, 2004.

[21] L. de Alfaro, T.A. Henzinger, and F.Y. Mang, “Detecting Errors
Before Reaching Them,” Proc. Int’l Conf. Computer Aided Verifica-
tion, pp. 186-201, 2000.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. XX, XXXXXXX 2009

TABLE 1
Time Complexity of the Counterexample Problems

[22] E. de Queirós Vieira Martins, M.M.B. Pascoal, and J.L.E. dos
Santos, “Deviation Algorithms for Ranking Shortest Paths,” Int’l J.
Foundations of Computer Science, vol. 10, no. 3, pp. 247-262, 1999.

[23] M. Delgado and J. Morais, “Approximation to the Smallest
Regular Expression for a Given Regular Language,” Proc. Int’l
Conf. Implementation and Application of Automata, pp. 312-314, 2004.

[24] E.W. Dijkstra, “A Note on Two Problems in Connexion with
Graphs,” Numerische Mathematik, vol. 1, pp. 269-271, 1959.

[25] D.-S. Du and K.I. Ko, Problem Solving in Automata, Languages, and
Complexity. John Wiley and Sons, 2001.

[26] D. Eppstein, “Finding the k shortest paths,” SIAM J. Computing,
vol. 28, no. 2 pp. 652-673, 1998.

[27] M.R. Garey and D.S. Johnson, Computers and Intractability, A Guide
to the Theory of NP-Completeness. Freeman, 1979.

[28] G. Gramlich and G. Schnitger, “Minimizing NFA’s and Regular
Expressions,” J. Computer Systems and Sciences vol. 73, no. 6,
pp. 908-923, 2007.

[29] A. Gurfinkel and M. Chechik, “Proof-Like Counter-Examples,”
Proc. Int’l Conf. Tools and Algorithms for the Construction and
Analysis of Systems, pp. 160-175, 2003.

[30] T. Han and J.-P. Katoen, “Counterexamples in Probabilistic Model
Checking,” Proc. Int’l Conf. Tools and Algorithms for the Construction
and Analysis of Systems, pp. 72-86, 2007.

[31] T. Han and J.-P. Katoen, “Providing Evidence of Likely Being on
Time: Counterexample Generation for CTMC Model Checking,”
Proc. Int’l Symp. Automated Technology for Verification and Analysis,
pp. 331-346, 2007.

[32] Y.-S. Han, D. Wood, “Obtaining Shorter Regular Expressions from
Finite-State Automata,” Theoretical Computer Science, vol. 370,
nos. 1-3, pp. 110-120, 2007.

[33] H. Hansson and B. Jonsson, “A Logic for Reasoning About Time
and Reliability,” Proc. Int’l Workshop Formal Aspects of Component
Software, vol. 6, no. 5, pp. 512-535, 1994.

[34] S. Hart, M. Sharir, and A. Pnueli, “Termination of Probabilistic
Concurrent Programs.” ACM Trans. Programing Languages Systems,
vol. 5, no. 3, pp. 356-380, 1983.

[35] H. Hermanns, B. Wachter, and L. Zhang, “Probabilistic CEGAR,”
Proc. Int’l Conf. Computer Aided Verification, pp. 162-175, 2008.

[36] A. Itai and M. Rodeh, “Symmetry Breaking in Distributed
Networks,” Information and Computation, vol. 88, no. 1, pp. 60-87,
1990.

[37] J.M. Jaffe, “Algorithms for Finding Paths with Multiple Con-
straints,” IEEE Network, vol. 14, pp. 95-116, 1984.

[38] V.M. Jiménez and A. Marzal, “Computing the k Shortest Paths: A
New Algorithm and an Experimental Comparison,” Proc. Work-
shop Algorithmic Eng., pp. 15-29, 1999.

[39] H. Jin, K. Ravi, and F. Somenzi, “Fate and Free Will in Error
Traces,” Proc. Conf. Software Tools for Technology Transfer, vol. 6,
no. 2, pp. 102-116, 2004.

[40] G.D.F. Jr, “The Viterbi Algorithm,” Proc. IEEE, vol. 61, no. 3,
pp. 268-278, 1973.

[41] J.-P. Katoen, T. Kemna, I. Zapreev, and D. Jansen, “Bisimulation
Minimisation Mostly Speeds Up Probabilistic Model Checking,”
Proc. Int’l Conf. Tools and Algorithms for the Construction and
Analysis of Systems, pp. 87-101, 2007.

[42] J.-P. Katoen, M. Khattri, and I.S. Zapreev, “A Markov Reward
Model Checker,” Proc. Int’l Conf. Quantitative Evaluation of Systems,
pp. 243-244, 2005.

[43] J.-P. Katoen, D. Klink, M. Leucker, and V. Wolf, “Three-valued
Abstraction for Continuous-Time Markov Chains,” Proc. Int’l Conf.
Computer Aided Verification, pp. 311-324, 2007.

[44] S.C. Kleene, Representation of Events in Nerve Nets and Finite
Automata, pp. 3-42, Princeton Univ. Press, 1956.

[45] F.A. Kuipers, T. Korkmaz, M. Krunz, and P. van Mieghem,
“Performance Evaluation of Constraint-Based Path Selection
Algorithms,” IEEE Network vol. 18, no. 5, pp. 16-23, 2004.

[46] M.Z. Kwiatkowska, G. Norman, and D. Parker, “Probabilistic
Symbolic Model Checking with PRISM: A Hybrid Approach,”
Proc. Conf. Software Tools for Technology Transfer vol. 6, no. 2,
pp. 128-142, 2004.

[47] M.Z. Kwiatkowska, G. Norman, and D. Parker, “Game-based
Abstraction for Markov Decision Processes,” Proc. Int’l Conf.
Quantitative Evaluation of Systems, pp. 157-166, 2006.

[48] K.G. Larsen and A. Skou, “Bisimulation Through Probabilistic
Testing,” Information and Computation, vol. 94, no. 1, pp. 1-28, 1991.

[49] E. Lawler, Combinatorial Optimization: Networks and Matroids. Holt,
Reinhart and Winston, 1976.

[50] H. le Guen and R.A. Marie, “Visiting Probabilities in Non-
Irreducible Markov Chains with Strongly Connected Compo-
nents,” Proc. European Conf. Simulation and Modelling, pp. 548-552,
2002.

[51] P. Linz, An Introduction to Formal Languages and Automata. Jones
and Bartless, 2001.

[52] G. Liu and K.G. Ramakrishnan, “A*prune: An Algorithm for
Finding k Shortest Paths Subject to Multiple Constraints,” Proc.
INFOCOM, pp. 743-749, 2001.

[53] A. McIver, C. Morgan, and C. Gonzalia, “Proofs and Refutations
for Probabilistic Systems,” Proc. Technical Conf. Formal Methods,
pp. 100-115, 2008.

[54] K. Mehlhorn and M. Ziegelmann, “Resource Constrained Shortest
Paths,” Proc. Int’l Conf. Embedded Systems and Applications, pp. 326-
337, 2000.

[55] C. Neumann, “Converting Deterministic Finite Automata to
Regular Expressions,” http://neumannhaus.com/christoph/
papers/2005-03-16.DFA_to_RegEx.pdf, 2005.

[56] M.K. Reiter and A.D. Rubin, “Crowds: Anonymity for Web
Transactions,” ACM Trans. Information and System Security, vol. 1,
no. 1, pp. 66-92, 1998.

[57] V. Shmatikov, “Probabilistic Analysis of an Anonymity System,”
J. Computer Security, vol. 12, nos. 3/4, pp. 355-377, 2004.

[58] S. Shoham and O. Grumberg, “A Game-Based Framework for CTL
Counterexamples and 3-Valued Abstraction-Refinement,” Proc.
Int’l Conf. Computer Aided Verification, pp. 275-287, 2003.

[59] A. Vaha-Sipila and T. Virtanen, “BT-Crowds: Crowds-Style
Anonymity with Bluetooth and Java,” Proc. Hawaii Int’l Conf.
System Sciences, 2005.

[60] E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R.C.
Carrasco, “Probabilistic Finite-State Machines-Part I,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 27, no. 7, pp. 1013-
1025, July 2005.

[61] A.J. Viterbi, “Error Bounds for Convolutional Codes and an
Asymptotically Optimum Decoding Algorithm,” IEEE Trans.
Information Theory, vol. 13, no. 2, pp. 260-269, 1967.

Tingting Han received the bachelor’s degree in
2003 and the master’s degree in 2006 in
computer science, both from Nanjing University,
China. She is currently a PhD student at the
Software Modeling and Verification (MOVES)
Group at RWTH Aachen University and in the
Formal Methods and Tools Group at the
University of Twente. Her research interests
include specification and verification of probabil-
istic and stochastic systems, model checking,

diagnostics, and process algebra.

Joost-Pieter Katoen has been a full professor at
the RWTH Aachen University since 2004 and is
affiliated with the University of Twente. His
research interests are concurrency theory, mod-
el checking, timed and probabilistic systems, and
semantics. He has coauthored more than 100
journal and conference papers, and recently
published a comprehensive book (with Christel
Baier) on Principles of Model Checking. In the list
of 10,000 most cited authors in Computer

Science of March 2008 as maintained by the NEC Research Institute
(see citeseerx.ist.psu.edu), he is ranked at position 4383 with 958 cita-
tions. His h-index is 27. He is a member of the EPSRC Review College,
IFIP WG 1.8 on Concurrency Theory, of the editorial board of the Journal
of Software, and of the steering committees of ETAPS and QEST. He is a
member of the IEEE Computer Society.

Berteun Damman is currently working toward
the MS degree in Computer Science in Formal
Methods and Tools Group at the University of
Twente, The Netherlands, after having spent a
year in the MOVES group at the RWTH in
Aachen, Germany, to work on the theory behind
counterexamples for PCTL and to extend the
available toolset, which are his main research
interests.

HAN ET AL.: COUNTEREXAMPLE GENERATION IN PROBABILISTIC MODEL CHECKING 17

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

