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Acknowledgements

I still remember the summer back in 2005 when I took this PhD position. Four

years were just like a snap of fingers, leaving me this booklet and many vivid pieces of

snapshots deep and clear in my mind.

I was a “risk” four years ago when Joost-Pieter Katoen, my promotor and supervi-

sor, decided to offer me this job. After all, to Joost-Pieter at that time, I was nothing

more than a two-page CV and a short international call. I do appreciate this trust,

which in these years keeps urging me to make progress and “make profits”:). His ex-

pertise, insights and far-reaching interests broadened my views and helped me find

“shorter (if not the shortest:) paths” at each crossroad. I am grateful for his endur-

ing guidance, his great support, understanding and flexibility. I am also thankful for

his big effort and contribution going to China in 2008, visiting different universities

and institutes, giving both tutorials and more advanced invited talks, attracting more

Chinese students and researchers to the field of formal verification.

Many results presented in this thesis are a product of joint work. Apart from Joost-

Pieter, I am grateful to Berteun Damman, Alexandru Mereacre and Taolue Chen, who

shared ideas, had (usually long and fruitful) discussions and transferred their expertise

to me. I am also thankful to Christel Baier, David N. Jansen and Jeremy Sproston

for their useful remark and insightful discussion on my papers. The peer review and

exchange of ideas inside the group, usually by/with Henrik Bohnenkamp, Daniel Klink
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Abstract

This dissertation considers three important aspects of model checking Markov mod-

els: diagnosis — generating counterexamples, synthesis — providing valid parameter

values and analysis — verifying linear real-time properties. The three aspects are rela-

tively independent while all contribute to developing new theory and algorithms in the

research field of probabilistic model checking.

We start by introducing a formal definition of counterexamples in the setting of

probabilistic model checking. We transform the problem of finding informative coun-

terexamples to shortest path problems. A framework is explored and provided for

generating such counterexamples. We then investigate a more compact representation

of counterexamples by regular expressions. Heuristic based algorithms are applied to

obtain short regular expression counterexamples. In the end of this part, we extend

the definition and counterexample generation algorithms to various combinations of

probabilistic models and logics.

We move on to the problem of synthesizing values for parametric continuous-time

Markov chains (pCTMCs) wrt. time-bounded reachability specifications. The rates

in the pCTMCs are expressed by polynomials over reals with parameters and the

main question is to find all the parameter values (forming a synthesis region) with

which the specification is satisfied. We first present a symbolic approach where the

intersection points are computed by solving polynomial equations and then connected

to approximate the synthesis region. An alternative non-symbolic approach based on

interval arithmetic is investigated, where pCTMCs are instantiated. The error bound,

time complexity as well as some experimental results have been provided, followed by

a detailed comparison of the two approaches.

In the last part, we focus on verifying CTMCs against linear real-time properties

specified by deterministic timed automata (DTAs). The model checking problem aims

at computing the probability of the set of paths in CTMC C that can be accepted

by DTA A, denoted PathsC(A). We consider DTAs with reachability (finite, DTA♦)

and Muller (infinite, DTAω) acceptance conditions, respectively. It is shown that

PathsC(A) is measurable and computing its probability for DTA♦ can be reduced to

computing the reachability probability in a piecewise deterministic Markov process

(PDP). The reachability probability is characterized as the least solution of a system

of integral equations and is shown to be approximated by solving a system of PDEs.

Furthermore, we show that the special case of single-clock DTA♦ can be simplified to

solving a system of linear equations. We also deal with DTAω specifications, where the

problem is proven to be reducible to the reachability problem as in the DTA♦ case.
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Samenvatting

Dit proefschrift behandelt drie aspecten van het model checken van Markov modellen: di-

agnose — de generatie van tegenvoorbeelden, synthese — de berekening van valide waarden

voor parameters en analyse — de verificatie van lineaire real-time eigenschappen. Hoewel deze

drie aspecten onderling ongerelateerd lijken, dragen alle drie bij aan de theorie en ontwikkeling

van algoritmen in het onderzoeksgebied van probabilistisch model checking.

We leiden in met een formele definitie van informatieve tegenvoorbeelden in de context van

probabilistisch model checken. Vervolgens karakteriseren we dit probleem als een kortste pad

probleem. Daaropvolgende presteren we een kader om tegenvoorbeelden te generen. Om de

tegenvoorbeelden compact te representeren, laten we zien hoe deze uitgedrukt kunnen worden in

reguliere expressies. We passen heuristische algoritmen toe om die expressies te verkrijgen. Ten

slotte passen we ons kader van tegenvoorbeeldgeneratie toe voor verscheidene probabilistische

modellen en logica’s. Hiertoe breiden we onze definitie van informatieve tegenvoorbeelden

enigszins uit.

In het tweede deel behandelen wij het synthese-probleem van parametrische Continuous-

Time Markov Chains (pCTMC’s) met betrekking tot tijdsbegrensde bereikbaarheidsspecifi-

caties. Het doel is om de waarden van alle intensiteitsparameters (het gesynthetiseerde ge-

bied) te bepalen die ervoor zorgen dat de gegeven CTMC aan de specificatie voldoet. De

intensiteitsparameters worden dan beschouwd als polynomen over de reëele getallen. We pre-

senteren eerst een methode die intersectiepunten bepaalt en vervolgens die verbindt om een

benadering van het gesynthetiseerde gebied te verkrijgen. Een alternatieve methode met in-

terval arithmetica wordt ook behandeld. Ten slotte worden de foutmarges, tijdscomplexiteiten

en experimentele resultaten uiteengezet gevolgd door een gedetailleerde vergelijking tussen de

twee methodes.

In het laatste deel richten we ons op de verificatie van CTMC’s met lineaire real-time

eigenschappen die gespecificeerd worden met deterministic timed automata (DTA’s). In dit

model checking probleem berekenen we de waarschijnlijkheid van de paden die door een CTMC

C geaccepteerd wordt door DTA A, beschreven als PathsC(A). We behandelen DTA’s met

bereikbaarheid (eindig, DTA♦) en Muller (oneindig, DTAω) acceptatie condities. We bewijzen

dat PathsC(A) meetbaar is en daardoor de berekening van de kans voor DTA♦ gereduceerd

kan worden naar het berekenen van de bereikbaarheidskans van een Piecewise Deterministic

Markov Process (PDP). De bereikbaarheidskans is gekarakteriseerd door de minimale oplossing

van een stelsel van partiële differentiaalvergelijkingen. Daarnaast laten we zien dat DTA’s met

een enkele klok een speciaal geval zijn. Het stelsel van partiële differentiaalvergelijkingen kan

dan worden gereduceerd naar een stelsel van lineaire vergelijkingen. We behandelen ook DTA
ω

specificaties waar we aantonen dat dat probleem reduceerbaar is naar een bereikbaarheidsprob-

leem als dat van DTA♦.
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Zusammenfassung

In dieser Dissertation werden drei wichtige Aspekte bei der Modellüberprüfung von Markov-

Modellen betrachtet: Die Diagnose — das Generieren von Gegenbeispielen, die Synthese — das

zur Verfügung stellen korrekter Parameterwerte und die Analyse — das Verifizieren von line-

aren Realzeiteigenschaften. Die drei Aspekte sind vergleichsweise unabhängig, obwohl sie alle

dem Zweck dienen, neue Theorie und Algorithmen für das Forschungsfeld der probabilistischen

Modellüberprüfung zu entwickeln.

Zu Beginn führen wir eine formale Definition von Gegenbeispielen im Bereich der proba-

bilistische Modellüberprüfung ein. Wir transformieren das Problem, informative Gegenbeispiele

zu finden, auf das Shortest-Path Problem. Es wird ein Framework untersucht und entwickelt

um solche Gegenbeispiele zu erzeugen. Weiterhin untersuchen wir eine kompaktere Darstellung

von Gegenbeispielen durch reguläre Ausdrücke. Algorithmen, die auf Heuristiken basieren,

werden benutzt, um kurze reguläre Ausdrücke als Gegenbeispiele zu erhalten. Am Ende dieses

Teils erweitern wir die Definition und die Algorithmen zum Generieren von Gegenbeispielen auf

verschiedene Kombinationen von probabilistischen Modellen und Logiken.

Danach betrachten wir das Problem, Werte für parametrisierte zeitkontinuierliche

Markovketten (pCTMCs) bezüglich zeitbeschränkter Erreichbarkeitseigenschaften zu syn-

thetisieren. Das Ziel hierbei ist es, alle Werte für die Ratenparameter (die eine Synthesere-

gion bilden) zu finden, die die Spezifikation erfüllen können; hierbei sind die Ratenausdrücke

Polynome über den reellen Zahlen. Zuerst stellen wir einen symbolischen Ansatz vor, in dem

zunächst die Schnittpunkte durch das Lösen von Polynomgleichungen berechnet und dann

miteinander verbunden werden, um die Syntheseregion zu approximieren. Ein anderer, nicht

symbolischer Ansatz, der auf Intervallarithmetik beruht und für den pCTMCs instanziiert

werden, wird ebenfalls untersucht. Die Fehlerschranke, die Zeitkomplexität sowie einige ex-

perimentelle Resultate werden dargestellt, gefolgt von einem detaillierten Vergleich der beiden

Ansätze.

Im letzten Abschnitt steht das Verifizieren von linearen Realzeiteigenschaften auf CTMCs

im Vordergrund, wobei die Eigenschaften als deterministische Zeitautomaten (DTA) gegeben

sind. Das Modellüberprüfungsproblem zielt darauf ab, die Wahrscheinlichkeit der Menge aller

Pfade einer CTMC C, die von einem DTA A akzeptiert werden, zu bestimmen. Wir betra-

chten DTAs mit Erreichbarkeits- (endliche, DTA♦) und Muller- (unendliche, DTA
ω) Akzep-

tanzbedingungen. Es wird gezeigt, dass PathsC(A) messbar ist und dass die Berechnung dieser

Wahrscheinlichkeit im Falle von DTA♦ auf die Berechnung der Erreichbarkeitswahrschein-

lichkeit in einem Piecewise Deterministic Markov Process (PDP) reduziert werden kann. Die

Erreichbarkeitswahrscheinlichkeit wird charakterisiert als die kleinste Lösung eines Systems

von Integralgleichungen und es wird gezeigt, dass sie durch Lösen eines Systems von PDEs

approximiert werden kann. Weiterhin zeigen wir, dass der Spezialfall eines DTA♦, der auf eine

Uhrenvariable beschränkt ist, zu einem linearen Gleichungssystem vereinfacht werden kann.

Zusätzlich betrachten wir DTAω Spezifikationen und zeigen, dass das Problem hier wie im Fall

von DTA♦ auf das Erreichbarkeitsproblem reduziert werden kann.
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Chapter 1

Introduction

1.1 Background

The increasing reliance on complex computer systems in diverse fields such as business,

transport, and medicine has led to an increased interest in obtaining formal guarantees

of system correctness. Consider a railway system. The most important questions one

concerns are e.g., “Will it ever happen that trains collide with each other?” Or “is

there a possible scenario in which two trains are mutually waiting for each other, thus

effectively halting the system?” If such situations happen, this has far reaching, even

catastrophic consequences.

Model Checking. A prominent discipline in computer science to assure the absence

of errors (the correctness), or complementarily, to find errors (diagnosis) is formal

verification. It mathematically proves the correctness of the design, provided in the form

of a system model, with respect to a formal specification. Compared to other techniques

in this spectrum (e.g., theorem proving), model checking is a highly automated model-

based technique by a systematic, usually exhaustive, state-space exploration to check

whether a system model satisfies some desired properties. Typically, those properties

are expressed in some logical formalisms (e.g., temporal logic) or by automata, while

the system behavior is captured by Kripke structures, i.e., finite state automata with

labeled states.

Probabilistic Model Checking. Whereas model checking algorithms focus on

the absolute guarantee of correctness — “it is impossible that the system fails” — in

practice such rigid notions are hard, or even impossible, to guarantee. Instead, systems

are subject to various phenomena of stochastic nature, such as message loss or garbling

and the like. Correctness is thus of a less absolute nature.

Probabilistic model checking, based on conventional model checking, is a technique

1



1. INTRODUCTION

to verify system models in which transitions are equipped with or stochastic infor-

mation. Popular models are discrete- and continuous-time Markov chains (DTMCs

and CTMCs, respectively), and variants thereof which exhibit nondeterminism. Ef-

ficient model checking algorithms for these models have been developed, have been

implemented in a variety of software tools, and have been applied to case studies from

various application areas ranging from randomized distributed algorithms, computer

systems and security protocols to biological systems and quantum computing. The crux

of probabilistic model checking is to appropriately combine techniques from numerical

mathematics and operations research with standard reachability analysis. In this way,

properties such as “the (maximal) probability to reach a set of goal states by avoiding

certain states is at most 0.6” can be automatically checked up to a user-defined pre-

cision. Markovian models comprising millions of states can be checked rather fast by

dedicated tools such as PRISM [KNP04] and MRMC [KKZ05], as well as extensions

to existing tools such as GreatSPN, SPIN, PEPA Workbench, and Statemate.

Model Checking Markov Chains. Let us zoom in and reflect on the history of

verifying Markov chains against linear-time as well as branching-time properties. The

goal of model checking of this kind is to compute the probability of a set of paths in the

Markov chain that satisfy the property. As is summarized in the upper part of Table 1.1,

for DTMCs, Hansson and Jonsson first introduced the probabilistic computation tree

logic (PCTL) in [HJ94] and showed how the verification of a PCTL formula can be

reduced to solving a system of linear equations. This can be done in polynomial time.

Linear-time-wise,

• Vardi first proposed in [Var85] to check linear temporal logic (LTL) formulae

by using the automata-based approach. The idea goes along similar lines as in

the non-probabilistic setting, namely, the LTL formula ϕ is first transformed

into a corresponding automaton (e.g., deterministic Rabin automaton, DRA for

short); the product between the DTMC D and the DRA is then constructed;

the property (adapted accordingly to a reachability property) is then checked (or

to be exactly, computed) on the product DTMC. This shows that this model

checking problem is in EXPSPACE.

• Courcoubetis and Yannakakis investigated in [CY95b] a tableau-based approach

to solve the same problem. The algorithm transforms the LTL formula ϕ and the

DTMC step-by-step, eliminating temporal modalities from ϕ, while preserving

the probability of satisfaction of ϕ in the adapted DTMC. This reduced the

upper-bound of the model checking problem to PSPACE, which matches the

known lower-bound [Var85].

• Couvreur, Saheb and Sutre obtained the same PSPACE upper-bound using the

2



1.1 Background

branching time linear time

PCTL LTL

discrete- linear equations automata-based tableau-based

time [HJ94] (⋆) [Var85][CSS03] (⋆⋆) [CY95b]

(DTMC D) PTIME PSPACE-C

untimed real-time untimed real-time

continuous- PCTL CSL LTL ?

time emb(C) integral equations emb(C)

(CTMC C) cf. (⋆) [ASSB00][BHHK03] cf. (⋆⋆)
?

PTIME PTIME PSPACE-C ?

Table 1.1: An overview of verifying Markov chains

automata-based approach [CSS03]. The key of their approach is to exploit some

nice characteristics of the obtained automaton (e.g., separated).

Model checking CTMCs (cf. the lower part of Table 1.1), on the other hand, has

been focused more on branching-time logics, e.g., continuous stochastic logic (CSL)

[ASSB00][BHHK03]. CSL model checking proceeds — like CTL model checking — by

a recursive descent over the parse tree of the formula. One of the key ingredients is that

the reachability probability for a time-bounded until-formula can be characterized as

the least solution of a system of integral equations and approximated arbitrarily closely

by a reduction to transient analysis in CTMCs. This results in a polynomial-time

approximation algorithm. As a special case when the until operator is time-unbounded

(⋆ in the lower part of the table), the verification can be performed on the embedded

DTMC by applying the same technique as in [HJ94]. Verifying LTL formulae on

CTMCs (⋆⋆ in the lower part of the table) follows basically the same approach as in

the discrete-time case, as same probability will be yielded in the CTMC and in the

embedded DTMC.

This table, with a “hole” in it, sheds light on some problems that are still open, i.e.,

how to verify CTMCs against linear real-time properties? Those properties can either

be expressed by linear real-time logics, e.g., metric (interval) temporal logic (M(I)TL)

[Koy90][AFH96] or directly by a (timed) automaton [AD94]. We will partially answer

this question by investigating the verification of a CTMC against a deterministic timed

automaton (DTA) specification.

Counterexample Generation. A major strength of model checking is the pos-

sibility to generate diagnostic counterexamples in case a property is violated. This

3



1. INTRODUCTION

is nicely captured by Clarke in his reflections on 25 years of model checking [Cla08]:

“It is impossible to overestimate the importance of the counterexample feature. The

counterexamples are invaluable in debugging complex systems. Some people use model

checking just for this feature.” Counterexamples are of utmost importance in model

checking: first, and for all, they provide diagnostic feedback even in cases where only

a fragment of the entire model can be searched. They also constitute the key to suc-

cessful abstraction-refinement techniques [CGJ+00], and are at the core of obtaining

feasible schedules in e.g., timed model checking [BLR05]. As a result, advanced coun-

terexample generation and analysis techniques have intensively been investigated, see

e.g., [JRS04][BNR03][dAHM00].

The shape of a counterexample depends on the checked formula and the temporal

logic. For logics such as LTL, typically finite or infinite paths through the model are

required. The violation of linear-time safety properties is indicated by finite paths that

end in a “bad” state. The violation of liveness properties, instead, require infinite paths

ending in a cyclic behavior indicating that something “good” will never happen. LTL

model checkers usually incorporate breadth-first search algorithms to generate shortest

counterexamples, i.e., paths of minimal length. For branching-time logics such as CTL,

paths may act as counterexamples for a subclass of universally quantified formulae, i.e.,

those in ACTL∩LTL. To cover a broader spectrum of formulae, though, more advanced

structures such as trees of paths [CJLV02], proof-like counterexamples [GC03] (for

ACTL\LTL) or annotated paths [SG03] (for ECTL) are used.

The counterexample generation in the probabilistic model checking, however, only

received scant attention dating back to 2005, when I started my doctor study. Due to

the stochastic nature of probabilistic models, counterexamples in most cases cannot be

simply captured by a single path which usually bears a low probability. Instead, we

explore a set of paths as a counterexample, where the sum of the path probabilities

shows the violation of the property. We studied the definition, compact representation

as well as various counterexample generation algorithms to tackle different combinations

of probabilistic models and logics.

Parameter Synthesis. A disadvantage of the traditional approaches to model

checking, however, is that they can only check the validity of properties under the

assumption that all parameter values are known. This means that concrete values

of e.g., timing parameters, branching probabilities, costs, and so forth, need to be

explicitly given. Although this might be appropriate for the a posteriori verification of

concrete system realizations, for design models at a higher level of abstraction this is less

adequate. In earlier design phases, such explicit information about model parameters

is mostly absent, and instead, only the ranges of parameter values, or the relationship

between parameters is known (if at all). For models that incorporate aspects of a
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random nature, the need for concrete parameter values is, in fact, a significant hurdle,

as mostly precise information about the random variables is known after extensive

experimentation and measurements only. This is, e.g., witnessed by the fact that

fitting —roughly speaking, the attempt to find an appropriate and accurate distribution

to actual measurements— is an active field of research in model-based performance

analysis [TBT06].

In practical system design, one is not interested in checking a concrete instance,

but rather, often in deriving parameter constraints that ensure the validity of the

property under consideration. Typical examples are failure-repair systems such as

multi-processor systems and modern distributed storage systems, in which components

(such as memories or processors) may fail and where only lower- and upper-bounds on

repair times are known. Rather than determining whether for a certain combination of

failure and repair rates, a property holds, one would like to synthesize the set of pairs

of rates for which the validity of the property is guaranteed.

To this end, we start with a CTMC with parameters on rates. Given a time-

bounded reachability property, we answer the following question “With which parame-

ter values can it be guaranteed that the property holds on the CTMC”? This, compared

to model checking problem, gives a more “constructive” way in the modeling phase.

1.2 Outline of the Dissertation

As the title of the dissertation suggests, three aspects of probabilistic models will be

addressed — diagnosis (counterexample generation for probabilistic model checking),

synthesis (synthesizing system parameters for probabilistic models) and analysis (veri-

fying linear real-time properties for probabilistic models). Prior to presenting the main

results, Chapter 2 presents some preliminaries for the models and logics that are

referred intensively and extensively throughout this dissertation.

Diagnosis

This part considers the generation of counterexamples in probabilistic model checking.

It consists of three chapters:

• Chapter 3 establishes the theoretical underpinnings of counterexample genera-

tion in the setting of checking a fragment of PCTL (of the form P6p(Φ UI Ψ))

on DTMCs. We formally define the concept of a (strongest) evidence and a

(smallest) counterexample and propose algorithms to generate such evidences

and counterexamples by reducing the problems to (variants of) shortest path(s)

problems in graph theory. Correctness and complexity results are provided as

well.
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• Chapter 4 proposes an alternative and more compact way of representing a

counterexample. This is motivated by the experimental results — partially sub-

stantiated with combinatorial arguments — showing that the cardinality of such

sets may be excessive. We use regular expressions to compactly represent coun-

terexamples for reachability properties. An algorithm is represented to generate

minimal regular expressions and a recursive scheme is adapted to determine the

likelihood of a counterexample. The state space minimization on DTMCs prior

to counterexample generation may yield even shorter regular expressions. The

feasibility of the approach is illustrated by means of two protocols: leader election

and the Crowds protocol.

• Chapter 5 focuses on the applicability of the established approaches in Chapter 3

and 4 to different probabilistic models and logics. We show that those approaches

can be extended to full PCTL, in particular probability thresholds with lower-

bounds as well as qualitative fragment of PCTL; to Markov reward models; also

to various combinations of the models DTMC and Markov decision processes

(MDPs) and the logics PCTL, LTL and PCTL∗. Besides the discrete-time

settings, the approaches can also be utilized in CTMC model checking of CSL.

Synthesis

Chapter 6 considers the problem of synthesizing parametric rate values in CTMCs

that can ensure the validity of time-bounded reachability properties. Rate expressions

over variables indicate the average speed of state changes and are expressed using the

polynomials over reals. A symbolic and a non-symbolic approach are proposed to

approximate the set of parameter values which can guarantee the validity of the given

property. Both approaches are based on discretizing parameter ranges together with

a refinement technique. We compare the two approaches, analyze the respective time

complexity and show some experimental results on a case study — a real-time storage

system with probabilistic error checking facilities.

Analysis

Chapter 7 considers the problem of quantitative verification of a CTMC against

a linear real-time property specified by a deterministic timed automaton (DTA) A.

Specifically, what is the probability of the set of paths of C that are accepted by A
(C satisfies A)? It is shown that this set of paths is measurable. We consider two

kinds of acceptance conditions: the reachability condition (in DTA♦) and the Muller

acceptance condition (in DTAω). The former accepts (finite) paths which reach some

final states and the latter accepts (infinite) paths that infinitely often visit some set

of final states. For DTA♦, we prove that computing this probability can be reduced
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to computing the reachability probability in a piecewise deterministic Markov process

(PDP). The reachability probability is characterized as the least solution of a system

of integral equations and is shown to be approximated by solving a system of partial

differential equations. For the special case of single-clock DTA, the system of integral

equations can be transformed into a system of linear equations where the coefficients

are solutions of ordinary differential equations. For DTAω , by finding the accepting

BSCCs in the region graph, the ω-regular acceptance condition is proven to be reducible

to the finite paths case, i.e., the reachability problem.

Chapter 8 concludes each part and discusses the future work.

1.3 Origins of the Chapters and Credits

• Chapter 3 and 4 are an extension of [HK07a] and [DHK08], and the recent jour-

nal version [HKD09]. Chapter 5 has partially appeared in [HKD09], where the

CTMC part was originally in [HK07b].

1. [HK07a] Tingting Han and Joost-Pieter Katoen. Counterexamples in prob-

abilistic model checking. In TACAS, LNCS 4424, pages 72–86, 2007.

2. [HK07b] Tingting Han and Joost-Pieter Katoen. Providing evidence of likely

being on time: Counterexample generation for CTMC model checking. In

ATVA, LNCS 4762, pages 331–346, 2007.

3. [DHK08] Berteun Damman, Tingting Han, and Joost-Pieter Katoen. Regu-

lar expressions for PCTL counterexamples. In QEST, pages 179-188, IEEE

CS Press, 2008.

4. [HKD09] Tingting Han, Joost-Pieter Katoen, and Berteun Damman. Coun-

terexample generation in probabilistic model checking. IEEE Trans. Soft-

ware Eng., 35(2):241–257, 2009.

• Chapter 6 is an extension of [HKM08a], where together with Alexandru Mereacre,

I worked out the symbolic algorithm for generating the synthesis region. The non-

symbolic algorithm in Chapter 6 is new and not part of this paper.

5. [HKM08a] Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre.

Approximate parameter synthesis for probabilistic time-bounded reachabil-

ity. In RTSS, IEEE CS Press, pages 173–182, 2008.

• Chapter 7 is an extension of [CHKM09a], where together with Taolue Chen and

Alexandru Mereacre, I defined the product model as well as the region construc-

tion of the product and I also worked actively on the recursive equations for
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computing the reachability probability. The part regarding Muller acceptance

condition in Chapter 7 is new and is not part of this paper.

6. [CHKM09a] Taolue Chen, Tingting Han, Joost-Pieter Katoen, and Alexan-

dru Mereacre. Quantitative model checking of continuous-time Markov

chains against timed automata specification. In LICS, pages 309–318, IEEE

CS Press, 2009.

• The following of my publications are not included in this dissertation:

7. [CHK08] Taolue Chen, Tingting Han, and Joost-Pieter Katoen. Time-

abstracting bisimulation for probabilistic timed automata. In TASE, pages

177–184, IEEE CS Press, 2008.

8. [HKM08b] Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre.

Compositional modeling and minimization of time-inhomogeneous Markov

chains. In HSCC, LNCS 4981, pages 244–258, 2008.

9. [CHKM09b] Taolue Chen, Tingting Han, Joost-Pieter Katoen, and Alexan-

dru Mereacre. LTL model checking of time-inhomogeneous Markov chains.

In ATVA, LNCS, to appear, 2009.

Suggested Way of Reading. Due to the diversity of the topics and heavy usage of

symbols in the dissertation, it is difficult to unify the notations while obeying the con-

ventions for all the chapters. In other words, overloading is unavoidable. However, for

each part, the notation is consistent and unambiguous, so readers are kindly requested

to take a local instead of a global view of notations throughout this dissertation. More-

over, since most of the results presented here are originated from the publications that

I have worked as a coauthor, I shall use “we” instead of “I” in this dissertation.
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Chapter 2

Preliminary

2.1 Probabilistic Models

2.1.1 Discrete-Time Markov Chains

Let AP be a fixed, finite set of atomic propositions ranged over by a, b, c, . . . .

Definition 2.1 (FPS) A fully probabilistic system is a triple (S,P, L), where:

• S is a finite set of states;

• P : S ×S → [0, 1] is a sub-stochastic matrix, i.e., ∀s ∈ S.
∑

s′∈S P(s, s′) ∈ [0, 1];

• L : S → 2AP is a labeling function which assigns to each state s ∈ S the set L(s)

of atomic propositions that are valid in s.

Definition 2.2 (DTMC) A (labeled) discrete-time Markov chain D is a FPS

(S,P, L) where P is a stochastic matrix, i.e.,
∑

s′∈S P(s, s′) = 1 for any s ∈ S.

Intuitively, a DTMC is a Kripke structure in which all transitions are equipped with

discrete probabilities such that the sum of outgoing transitions of each state equals one.

A state s in D is called absorbing (resp. sinking) if P(s, s) = 1 (resp. P(s, s′) = 0 for

s′ ∈ S). Note that if a state in a DTMC D is made sinking, then D becomes an FPS.

W.l.o.g., we assume a DTMC (or FPS) to have a unique initial state.

Definition 2.3 (Paths) Let D = (S,P, L) be a DTMC. An infinite path ρ in D is

an infinite sequence s0·s1·s2 · · · of states such that ∀i > 0. P(si, si+1) > 0. A finite

path σ is a finite prefix of an infinite path.

Let Pathsω
D(s) and Paths⋆

D(s) denote the set of infinite and finite paths in D that

start in state s, respectively. The subscript D is omitted when it is clear from the

9
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Figure 2.1: An example DTMC D

context. For state s and finite path σ = s0 · · · sn with P(sn, s) > 0, let σ·s denote the

path obtained by extending σ by s.

Let τ denote either a finite or infinite path. Let |τ | denote the length (or hop count)

of τ , i.e., |s0·s1 · · · sn| = n, |s0| = 0 and |τ | = ∞ for infinite τ . For 0 6 i 6 |τ |, τ [i] = si

denotes the (i+1)-th state in τ . We use τ [..i] to denote the prefix of τ truncated at

length i (thus ending in si), formally, τ [..i] = τ [0]·τ [1] · · · τ [i]. We use Pref (τ) to denote

the set of prefixes of τ , i.e., Pref (τ) = {τ [..i] | 0 6 i 6 |τ |}. Similarly, τ [i..] and τ [i..j]

denote the suffix starting from τ [i] and the infix between τ [i] and τ [j], respectively.

Probability Measure on Paths. A DTMC D induces a probability space. The

underlying σ-algebra is defined over the basic cylinder set induced by the finite paths

starting in the initial state s0. The probability measure PrDs0
(briefly Pr) induced by

(D, s0) is the unique measure on this σ-algebra where:

Pr
{
ρ ∈ Pathsω

D(s0) | ρ[..n] = s0 · · · sn︸ ︷︷ ︸
Cyl(s0···sn)

}
=

∏

06i<n

P(si, si+1).

The probability of finite path σ = s0 · · · sn is defined as P(σ) =
∏

06i<n P(si, si+1). Note

that although Pr(Cyl(σ)) = P(σ), they have different meanings: Pr is a measure on

sets of infinite paths whereas P refers to finite ones. A set C of finite paths is prefix

containment free if for any σ, σ′ ∈ C with σ 6= σ′, it holds that σ /∈ Pref (σ′). The

probability of a prefix containment free set C is P(C) =
∑

σ∈C P(σ). Note that paths

in C induce disjoint cylinder sets.

Example 2.4 Fig. 2.1 illustrates a DTMC with initial state s0. AP = {a, b} and L

is given as L(si) = {a}, for 0 6 i 6 2; L(t1) = L(t2) = {b} and L(u) = ∅. t2 is an

absorbing state. σ1 = s0·u·s2·t1·t2 is a finite path with P(σ1) = 0.1× 0.7× 0.5× 0.7 and

|σ1| = 4, σ1[3] = t1. ρ1 = s0·(s2·t1)ω is an infinite path. �

10
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2.1.2 Continuous-Time Markov Chains

Definition 2.5 (CTMC) A continuous-time Markov chain is a triple C = (S,R, L)

with S and L the same as in DTMCs and R : S × S → R>0 is the rate matrix.

W.l.o.g., we assume a CTMC to have a unique initial state s0. Given n the cardinality

of S, ~E = [E(s0), . . . , E(sn−1)] is the vector of exit rates, where E : S → R>0 is

the exit rate function with E(si) =
∑

s′∈S R(si, s
′). Intuitively, E(s) is the speed of

firing a transition from s, or the average delay in s. More precisely, with probability

(1 − e−E(s)·t) a transition is enabled within the next t time units provided that the

current state is s. The density function for this is den(s, t) = E(s)·e−E(s)·t, where∫ t
0 den(s, x)dx = 1 − e−E(s)·t.

Definition 2.6 (Alternative definition of CTMC) A CTMC C = (S,R, L) can

equivalently be represented as C = (S,P, E, L), where (S,P, L) is the embedded DTMC

of C and P(s, s′) = R(s,s′)
E(s) , if E(s) > 0 and P(s, s) = 1, if E(s) = 0.

In the following, we will use the two CTMC definitions interchangeably. If P(s, s′) > 0

for more than one state s′, a race between the outgoing transitions from s exists. The

probability of transition s→ s′ winning this race in time interval [0, t] is given by:

P(s, s′, t) = P(s, s′)·
(
1 − e−E(s)·t).

We define den(s, s′, t) = P(s, s′)·E(s)·e−E(s)·t. Note that P(s, s′, t) and den(s, s′, t1)
have the following relation:

P(s, s′, t) = P(s, s′)·
∫ t

0
den(s, t1) dt1 =

∫ t

0
den(s, s′, t1) dt1.

Definition 2.7 (Timed paths) Let C be a CTMC. An infinite timed path ρ is of the

form s0
t0−−→ s1

t1−−→ s2
t2−−→ · · · with si ∈ S and ti ∈ R>0 such that P(si, si+1) > 0 for

i > 0. Let Pathsn
C ⊆ S× (R>0×S)n be the set of paths of length n in C; the set of finite

paths in C is defined by Paths⋆
C =

⋃
n∈N

Pathsn
C and Pathsω

C ⊆ (S × R>0)
ω is the set of

infinite paths in C. PathsC = Paths⋆
C ∪ Pathsω

C denotes the set of all paths in C.

Note that ti are delays instead of absolute time stamps. All the definitions on paths

in DTMCs can be adopted here. Let τ denote a finite or infinite path in CTMC.

τ [i] = si and τ〈i〉 = ti denote the i-th state si and the time spent in si, respectively.

We use τ@t to denote the state occupied in τ at t ∈ R>0, i.e., τ@t = τ [i] where i is the

smallest index such that
∑i

j=0 τ〈j〉 > t. For finite path σ and ℓ = |σ|, σ〈ℓ〉 = ∞; and

for t >
∑ℓ−1

j=0 tj, σ@t = sℓ.

11
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Figure 2.2: An example CTMC C

Probability Measure on Paths. The definition of a Borel space on paths through

CTMCs follows [Var85][BHHK03]. A CTMC C with initial state s0 yields a probability

measure PrC on paths as follows: Let s0, . . ., sk ∈ S with P(si, si+1) > 0 for 0 6 i < k

and I0, . . ., Ik−1 nonempty intervals in R>0, Cyl(s0, I0, . . ., Ik−1, sk) denotes the cylinder

set consisting of all paths ρ ∈ Pathsω
C (s0) such that ρ[i] = si (i 6 k), and ρ〈i〉 ∈ Ii

(i < k). F(Pathsω
C (s0)) is the smallest σ-algebra on Pathsω

C (s0) which contains all sets

Cyl(s0, I0, . . ., Ik−1, sk) for all state sequences (s0, . . ., sk) ∈ Sk+1 with P(si, si+1) > 0

(0 6 i < k) and I0, . . ., Ik−1 range over all sequences of nonempty intervals in R>0. The

probability measure PrC on F(Pathsω
C (s0)) is the unique measure defined by induction

on k by PrC(Cyl(s0)) = 1 and PrC(Cyl(s)) = 0 if s 6= s0 and for k > 0:

PrC
(
Cyl(s0, I0, . . ., Ik−1, sk)

)
= PrC

(
Cyl(s0, I0, . . ., Ik−2, sk−1)

)

·
∫

Ik−1

P(sk−1, sk)E(sk−1)·e−E(sk−1)τdτ. (2.1)

The vector ~℘(t) = (℘0(t), . . . , ℘n−1(t)) gives the transient probability of the CTMC,

i.e., the probability of being in state si (0 6 i < n) at time t. The Chapman-Kolmogorov

equations describe the evolution of the transient probability distribution over time:

d~℘(t)

dt
= ~℘(t)Q,

n−1∑

i=0

℘i(t0) = 1, (2.2)

where t0 = 0 and ~℘(t0) is the initial condition. Note that ~℘(t0) = (1, 0, . . . , 0) if s0 is

the unique initial state. The matrix Q = R− diag( ~E) is the infinitesimal generator of

CTMC C and diag( ~E) is the diagonal matrix constructed from ~E.

Example 2.8 Fig. 2.2 illustrates a CTMC C in two equivalent forms. The embedded

DTMC is in Fig. 2.1. A finite path in C is σ = s0
2−→ s1

√
2−−−→ s2

0.3−−→ t2, where σ[2] =

12
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s2, σ〈1〉 =
√

2 and σ@3.41 = s1. An infinite path is ρ = s0
3.9−−→ (u 0.2−−→ )ω. The

probability to take the transition s0 → s1 within 5 time units is P(s0, s1, 5) = 0.6 ∗ (1−
e−10∗5) and the corresponding function den(s0, s1, 5) = 6 ∗ 10 ∗ e−10∗5. �

Uniformization. It is a well-known method (a.k.a. Jensen’s method or randomiza-

tion [Jen53]) for computing transient probabilities of a CTMC at specific time t. This

method reduces the evolution of a CTMC to the evolution of a DTMC subordinated to

a Poisson process. Intuitively, we pick the rate of the fastest state (or greater) as the

uniformization rate q and force (or normalize) all the other states to evolve with this

rate. Since now all the states take the same “rhythm” of evolution (as in a DTMC),

we can thus reduce the original CTMC to a DTMC, called uniformized DTMC. The

Poisson process relates the uniformized DTMC to the original CTMC in the way that

it captures with which probability a certain number of epochs evolve in the DTMC in

time [0, t]. Uniformization is attractive because of its excellent numerical stability and

the fact that the computational error is well-controlled and can be specified in advance.

Definition 2.9 (Uniformized DTMC) For CTMC C = (S,P, E, L), the uni-

formized DTMC is U = unif (C) = (S,U, L), where U is defined by U = I + Q
q with

q > maxi{E(si)} and Q = R−diag( ~E). For the case q = 0, U(s, s) = 1 for any s ∈ S.

In the rest of the dissertation, we always use U to denote unif (C). The uniformization

rate q can be any value no less than the shortest mean residence time. All rates in the

CTMC are normalized with respect to q. For each state s with E(s) = q, one epoch in

the uniformized DTMC corresponds to a single exponentially distributed delay with

rate q, after which one of its successor states is selected probabilistically. As a result,

such states have no additional self-loop in the DTMC. If E(s) < q, i.e., state s has,

on average, a longer state residence time than 1
q , one epoch in the DTMC might not

be “long enough”; hence, in the next epoch, these states might be revisited with some

positive probability. This is represented by equipping these states with a self-loop with

probability 1 − E(s)
q + R(s,s)

q .

The transient probability vector ~℘ C(t) =
(
℘C

0(t), . . . , ℘C
n−1(t)

)
at time t is computed

in the uniformized DTMC U as:

~℘ C(t) = (1, 0, . . . , 0) ·
∞∑

i=0

PP(i, qt)Ui =

∞∑

i=0

PP(i, qt)~℘U (i), (2.3)

where (1, 0, . . . , 0) is the initial distribution. Note that ℘U
j (i) characterizes the prob-

ability to be in state sj at i-th hop in the DTMC U , given the same initial distri-

bution as in the CTMC. ℘U
j (i) is determined recursively by ~℘U(i) = ~℘U (i−1)·U.

PP(i, qt) = e−qt (qt)i

i! is the i-th Poisson probability that i epochs occur in [0, t] when

the average rate is 1
qt

. The Poisson probabilities can be computed in a stable way
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Figure 2.3: The uniformized DTMC U

with the Fox-Glynn algorithm [FG88], thus avoiding numerical instability. The in-

finite summation problem is solved by introducing a required accuracy ε, such that

‖~℘ C(t)− ~̃℘ C(t)‖ 6 ε, where ~̃℘ C(t) =
∑kε

i=0 PP(i, qt)·~℘U(i) is the approximation of ~℘ C(t)
and kε is the number of terms to be taken in (2.3), which is the smallest value satisfying:

kε∑

i=0

(qt)i

i!
>

1 − ε

e−qt
= (1 − ε)·eqt. (2.4)

If qt is larger, kε tends to be of the order O(qt).

Example 2.10 For the CTMC C in Fig. 2.2, the uniformized DTMC U is shown in

Fig. 2.3 for different uniformization rates q = 16 and 20. �

We note that the larger q is, the shorter one epoch is. This indicates that the discretiza-

tion step is finer and thus it would take more rounds (a larger kε) to reach the same

error bound ε. In this dissertation, we take the uniformization rate q = maxi{E(si)}.

2.1.3 Markov Decision Processes

Definition 2.11 (Probability distribution) For a finite set S, a distribution is a

function ζ : S → [0, 1] such that
∑

s∈S ζ(s) = 1. With Distr(S) we denote the set of all

probability distributions on S.

Definition 2.12 (MDP) A Markov decision process is a triple M = (S,Steps , L)

where S and L are as in DTMCs and Steps : S → 2Distr(S) assigns to each state a set

of distributions on S.
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Figure 2.4: An example MDP M

An MDP exhibits a two-phase behavior: whenever the system is in state s, first a

probability distribution ζ ∈ Steps(s) is nondeterministically selected and then the

successor state is probabilistically chosen according to ζ.

Definition 2.13 (Paths in MDPs) Let M = (S,Steps , L) be an MDP. An infinite

path in M is a sequence ρ = s0
ζ1−−→ s1

ζ2−−→ s2 · · · s.t. for all i, si ∈ S, ζi+1 ∈ Steps(si)

and ζi+1(si+1) > 0. A finite path σ in M is a finite prefix of an infinite path.

Given a finite path σ = s0
ζ1−−→ · · · ζn−−→ sn, let first(σ) = s0 and last(σ) = sn. The

notations for set of finite and infinite paths are similar as those in DTMCs.

Example 2.14 An MDP M is illustrated in Fig. 2.4. There are two distribu-

tions ζ1, ζ2 in state s, one of which is nondeterministically selected in s. σ =

s ζ2−−→u ζ4−−→ s ζ2−−→u is a finite path. �

Definition 2.15 (Schedulers) Let M = (S,Steps , L) be an MDP. A scheduler of

M is a function G : Paths⋆
M → Distr(S) mapping every finite path σ ∈ Paths⋆

M to a

distribution G(σ) on S such that G(σ) ∈ Steps(last(σ)).

A scheduler resolves the nondeterminism by choosing a probability distribution

based on the process executed so far. Formally, if an MDP is guided by scheduler G

and has the following path σ = s0
ζ1−−→ · · · ζn−−→ sn as its history at the moment, then

it will be in state s in the next step with probability G(σ)(s).

In this dissertation, two types of schedulers will be mentioned: simple schedulers and

finite-memory (fm-) schedulers. We briefly introduce them here. A simple scheduler

always selects the same distribution in a given state. The choice only depends on the

current state and is independent of what happen in the history, i.e., which path led to

the current state. Differently, an fm-scheduler formulates its behavior by a deterministic

finite automaton (DFA). The selection of the distribution to be taken in M depends on

the current state (as before) and the current state (called mode) of the scheduler, i.e.,

the DFA. Simple schedulers can be considered as finite-memory schedulers with just a

single mode. The formal definitions can be found in [BK08] (Chapter 10).
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The basic cylinder and probability space of an MDP are constructed in a standard

way [BdA95]. For MDP M and a scheduler G, a Markov chain MG can be derived

[BdA95]. The state space of MG is in general infinite, however, if a scheduler is simple

or finite-memory, the resulting DTMC is finite. It suffices to consider simple schedulers

for model checking PCTL formulae without hop-bounded until operators. For the

PCTL formulae with hop-bounded until operators, fm-schedulers are required [BK98].

The problem of model checking ω-regular properties can be solved by an automata-

based approach [BK08].

As an important aspect for nondeterministic systems, fairness can be also taken

into consideration. The fairness assumptions (e.g. specified by an LTL formula) on the

resolution of the nondeterministic choices are constraints on the schedulers. Instead of

ranging over all schedulers, only the schedulers that generate fair paths (i.e., paths sat-

isfying the fairness assumption) are considered and taken into account for the analysis.

A scheduler is fair if it almost surely generates fair paths. It has been proven that it

suffices to only consider the finite-memory fair schedulers to model check the PCTL

and ω-regular properties.

2.2 Probabilistic Logics

2.2.1 Probabilistic Computation Tree Logic

Probabilistic computation tree logic (PCTL) [HJ94] is an extension of CTL in

which state-formulae are interpreted over states of a DTMC and path-formulae are

interpreted over infinite paths in a DTMC. The syntax of PCTL is:

Φ ::= tt | a | ¬Φ | Φ ∧ Φ | P⊲⊳p(φ)

where p ∈ [0, 1] is a probability, ⊲⊳ ∈ {<,6, >,>} and φ is a path formula defined

according to the following grammar:

φ ::= Φ U
I Φ | Φ W

I Φ

where I ⊆ N>0. The path formula Φ UI Ψ asserts that Ψ is satisfied within h ∈ I

transitions and that all preceding states satisfy Φ. For I = N>0 such path-formulae are

standard (unbounded) until-formulae, whereas in other cases, these are bounded until-

formulae U6h, point-interval until-formulae U=h, lower-bounded until formulae U>h and

interval until-formulae U[hl,hu], for h, hl, hu ∈ N>0. WI is the weak counterpart of UI

which does not require Ψ to eventually become true. In this dissertation we do not

consider the next-operator. The temporal operators ♦I and �I are obtained as follows,

where ff = ¬tt:

♦IΦ = tt U
I Φ and �IΦ = Φ W

I ff (2.5)
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Example 2.16 The formula P60.5(a U b) asserts that the probability of reaching a b-

state via an a-path is at most 0.5, and P>0.001(♦650error) states that the probability for

a system error within 50 steps exceeds 0.001. Dually, P<0.999(�
650¬error) states that

the probability for no error in the next 50 steps is less than 0.999. �

Semantics over DTMCs. Let DTMC D = (S,P, L). The semantics of PCTL

is defined by a satisfaction relation, denoted |=, which is characterized as the least

relation over the states in S (infinite paths in D, respectively) and the state formulae

(path formulae) satisfying:

s |= tt

s |= a iff a ∈ L(s)

s |= ¬Φ iff not (s |= Φ)

s |= Φ ∧ Ψ iff s |= Φ and s |= Ψ

s |= P⊲⊳p(φ) iff Prob(s, φ) ⊲⊳ p

Let Pathsω(s, φ) denote the set of infinite paths that start in state s and

satisfy φ. Formally, Pathsω(s, φ) = {ρ ∈ Pathsω(s) | ρ |= φ}. Then,

Prob(s, φ) = Pr{ρ | ρ ∈ Pathsω(s, φ)}. Let ρ be an infinite path in D. The se-

mantics of PCTL path formulae is defined as:

ρ |= Φ U
I Ψ iff ∃ i ∈ I.

(
ρ[i] |= Ψ ∧ ∀ 0 6 j < i. ρ[j] |= Φ

)
(2.6)

ρ |= Φ W
I Ψ iff either ρ |= Φ U

I Ψ or ∀ i 6 sup I. ρ[i] |= Φ (2.7)

For finite path σ, the semantics of path formulae is defined in a similar way by changing

the range of variable i to i 6 min{ sup I, |σ|}.

Definition 2.17 (Semantic equivalence) Let ≡ denote the semantic equivalence of

two PCTL1 formulae. For state formulae Φ1,Φ2 and path formulae φ1, φ2,

Φ1 ≡ Φ2 iff ∀s ∈ S. s |= Φ1 ⇐⇒ s |= Φ2

φ1 ≡ φ2 iff ∀ρ ∈ Pathsω. ρ |= φ1 ⇐⇒ ρ |= φ2

There is a close relationship between until and weak until. More precisely, for any

state s and PCTL-formulae Φ and Ψ:

P>p(Φ W
I Ψ) ≡ P61−p

(
(Φ ∧ ¬Ψ) U

I (¬Φ ∧ ¬Ψ)
)

(2.8)

P>p(Φ U
IΨ) ≡ P61−p

(
(Φ ∧ ¬Ψ) W

I (¬Φ ∧ ¬Ψ)
)

(2.9)

This relationship is used later on to show that counterexamples for formulae with

probability lower-bounds can be obtained using algorithms for formulae with upper-

bounds.
1This equivalence is also defined for PCTL

∗ and CSL.
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2. PRELIMINARY

Let φ = Φ UIΨ be an until-formula. Let Paths⋆(s, φ) denote the set of finite paths

starting in s that fulfill φ. For finite path σ, the relation |=min denotes the minimal

satisfaction of a PCTL path formula. Formally, σ |=min φ iff σ |= φ and σ′ 6|= φ for any

σ′ ∈ Pref (σ)\{σ}.

Example 2.18 For the PCTL state formula P60.95(a U b) and the DTMC D in

Fig. 2.1, let path σ = s0·s2·t1·t2. σ |= a U b but σ 6|=min a U b. s0 |= P60.95(a U b)

since Prob(s0, a U b) = 0.9. �

Let Paths⋆
min(s, φ) = {σ ∈ Paths⋆(s) | σ |=min φ}.

Lemma 2.19 For any state s and until path formula φ, Paths⋆
min(s, φ) is prefix con-

tainment free.

Proof: By contradiction. Assume Paths⋆
min(s, φ) is not prefix contain free, i.e., there ex-

ists σ, σ′ ∈ Paths⋆
min(s, φ) such that σ′ ∈ Pref (σ). Since σ ∈ Paths⋆

min(s, φ), σ |=min φ.

Due to the definition of |=min, for σ′ ∈ Pref (σ), σ′ 6|= φ, which contradicts σ′ |=min φ. �

Lemma 2.20 For any state s and until path formula φ, Prob(s, φ)=P (Paths⋆
min(s, φ)) .

Proof: Recall that for any finite path σ, it holds that Pr(Cyl(σ)) = P(σ). (⋆)

Prob(s, φ)
def.
= Pr { ρ ∈ Pathsω(s) | ρ |= φ }

= Pr

{ ∞⋃

i=0

{ ρ ∈ Pathsω(s) | σ ∈ Pref (ρ), σ |=min φ, |σ| = i }
}

= Pr

{ ∞⋃

i=0

{Cyl(σ) | σ ∈ Paths⋆(s), σ |=min φ, |σ| = i }
}

=
∞∑

i=0

{Pr(Cyl(σ)) | σ ∈ Paths⋆(s), σ |=min φ, |σ| = i }

(⋆)
=

∞∑

i=0

{P(σ) | σ ∈ Paths⋆(s), σ |=min φ, |σ| = i }

=
∑

σ∈Paths⋆
min(s,φ)

P(σ)

def.
= P (Paths⋆

min(s, φ)) �

Note that Lemma 2.19 and 2.20 only apply for until, but not for weak until formulae.

This is because the validity of a weak until formula might be witnessed by infinite paths
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2.2 Probabilistic Logics

(e.g., �Φ), which does not fit into the definition of minimal satisfaction (that requires

finite paths). In Chapter 3, we explore counterexamples for formulae of the form

P6p(Φ UI Ψ) with p 6= 0, 1. In Chapter 5, we will extend the results to P>p(Φ UI Ψ)

(i.e., the weak until operators) and other models and logics.

Semantics over MDPs. The syntax of PCTL as a logic for MDPs is the same as

for Markov chains. The satisfaction relation of PCTL state- and path- formulae over

MDP M = (S,Steps , L) is the same as in the DTMCs except for:

s |= P⊲⊳p(φ) iff for all schedulers G for M. ProbG(s, φ) ⊲⊳ p

where ProbG(s, φ) is the probability of the set of φ-paths in DTMC MG that start in

s.

It has been proven that for finite MDPs and any PCTL path formula φ, there

exists a finite-memory scheduler1 that maximizes or minimizes the probabilities for φ.

Thus for finite MDPs,

Prmax(s, φ) = max
G

PrG(s, φ) and Prmin(s, φ) = min
G

PrG(s, φ).

The PCTL model-checking problem on DTMCs [HJ94] and on MDPs [BdA95] can

be solved by a recursive descent procedure over the parse tree of the state-formula to

be checked. This also applies to the PCTL∗ and CSL (see the following subsections)

model checking problems.

2.2.2 PCTL∗

Like standard CTL we can extend PCTL to a richer logic PCTL∗ which allows the

negation and conjunction of path formulae and also the combination of temporal modal-

ities. In addition, every state formula is a path formula.

Definition 2.21 (PCTL∗ syntax) The syntax of PCTL∗ is as follows:

Φ ::= tt | a | ¬Φ | Φ ∧ Φ | P⊲⊳p(ϕ)

where p ∈ [0, 1] is a probability, ⊲⊳ ∈ {<,6, >,>} and ϕ is a path formula defined

according to the following grammar:

ϕ ::= Φ | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕ U ϕ

Other boolean and temporal operators ff, ∨, �, ♦ and W can be derived as in CTL∗.
The hop-bounded until operator is omitted here for simplicity. U6h can be recovered

1For unbounded-until-only path formulae, simple schedulers suffice.
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2. PRELIMINARY

by the aid of the next operator. We may interpret PCTL∗ state- and path- formulae on

DTMCs or MDPs. For state-formulae, the satisfaction relation is the same as PCTL

for DTMC and MDP, respectively. The satisfaction relation for path formulae is the

same as CTL∗, cf. [BK08] (Chapter 10). We won’t elaborate them here.

Note that PCTL is a sub-logic of PCTL∗. The semantic equivalence ≡ can be

defined in a similar way as in PCTL. If all the maximal state subformulae in the

PCTL∗ path formula are replaced by fresh atomic propositions, then we obtain an

LTL formula. For the syntax of LTL logic, please refer to [Pnu77]. The interpretation

of LTL formulae over DTMCs and MDPs is similar to that for PCTL∗ path formulae.

The model checking problem is to compute the probability of the set of paths in DTMC

or MDP satisfying the LTL formula.

2.2.3 Continuous Stochastic Logic

Continuous Stochastic Logic (CSL) [BHHK03] is a variant of the logic originally pro-

posed by Aziz et al. [ASSB00] and extends PCTL by path operators that reflect the

real-time nature of CTMCs: in particular, a time-bounded until operator.

Syntax and Semantics. The syntax of CSL state-formulae is defined as:

Φ ::= tt | a | ¬Φ | Φ ∧ Φ | P⊲⊳p(φ),

where p ∈ [0, 1] is a probability, ⊲⊳∈{<,6, >,>}. For t a non-negative real number or

t = ∞, φ is a path-formula defined according to the following grammar:

φ ::= Φ U
6t Ψ | Φ W

6t Ψ.

The newly introduced path formula Φ U6t Ψ asserts that Ψ is satisfied within t time

units and that at all preceding time instants Φ holds. We write a path in a CTMC

ρ ∈ Pathsω
C satisfies Φ U6t Ψ, denoted ρ |= Φ U6t Ψ, iff ρ@x |= Ψ for some x 6 t and

ρ@y |= Φ for all y < x. Φ W6t Ψ is the weak counterpart which does not require Ψ to

eventually become true. In this dissertation we don’t consider the next-operator and

the steady-state operator [BHHK03]. The operators ff, ♦6t and �6t are defined in a

similar way as in PCTL, so is the relationship between U6t and W6t.

Note that for t = ∞, Φ U6t Ψ denotes the time-unbounded until operator. As it

can be verified on the embedded DTMC (cf. Def. 2.6, page 11), counterexamples can

be obtained as for DTMCs. In the sequel, we therefore only consider t 6= ∞.

2.2.4 Linear Time Logic

The set of linear temporal logic (LTL) formulae over a set of atomic propositions AP

is defined as follows:
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2.2 Probabilistic Logics

Definition 2.22 (LTL syntax) Given a set of atomic propositions AP which is

ranged over by a,b,. . ., the syntax of LTL formulae is defined by:

ϕ ::= tt | a | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕ U ϕ.

The semantics of LTL over DTMCs (resp. MDPs) is interpreted by paths in DTMCs

(resp. MDPs). We omit the formal definition here and the reader are referred to

[Var85][CY95b] for details. The quantitative model checking problem is to compute

the probability of a set of paths that satisfy the LTL formula.
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Chapter 3

Counterexample Generation

This chapter considers the generation of counterexamples in probabilistic model check-

ing, in which it has already been established that a certain state refutes a given prop-

erty. In this chapter we concentrate on PCTL formulae of the form P6p(Φ UI Ψ) for

DTMCs. In this setting, typically there is no single path but rather a set of paths that

indicates why a given property is refuted. We consider two problems that are aimed to

provide useful diagnostic feedback for this violation: generating strongest evidences and

smallest counterexamples. The problems are transformed into shortest paths problems

in graph theory. The algorithms as well as the time complexity results are presented.

3.1 Evidences and Counterexamples

Let us first consider what a counterexample in our setting actually is. To that end,

consider the PCTL formula P6p(φ), where p ∈ (0, 1) and let φ = Φ UI Ψ for the

remainder of this subsection. We have:

s 6|= P6p(φ)
sem.⇐⇒ not (Prob(s, φ) 6 p)

⇐⇒ Prob(s, φ) > p
Lem.2.20⇐⇒ P (Paths⋆

min(s, φ)) > p.

So, P6p(φ) is refuted by state s whenever the total probability mass of all φ-paths

that start in s exceeds p. Even for unbounded until formulae, the validity can be shown

by finite paths as only paths that end in a Ψ-state contribute to Paths⋆
min(s, φ). This

indicates that a counterexample for s 6|= P6p(φ) is a set of finite paths starting in s

and minimally satisfying φ. Any finite path that contributes to the violation is called

an evidence. Note that for weak until formulae, the last step does not always hold. We

will discuss this in Chapter 5.
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3. COUNTEREXAMPLE GENERATION

Definition 3.1 (Evidence) An evidence for violating P6p(φ) in state s is a path

σ ∈ Paths⋆
min(s, φ).

The contribution of each evidence is characterized by its probability. Thus, an

evidence with the largest contribution is defined:

Definition 3.2 (Strongest evidence) An evidence σ ∈ Paths⋆
min(s, φ) is strongest

if P(σ) > P(σ′) for any evidence σ′ ∈ Paths⋆
min(s, φ).

A strongest evidence always exists and may not be unique. Dually, a strongest

evidence for violating P6p(φ) is a strongest witness for fulfilling P>p(φ). Evidently, a

strongest evidence is not necessarily a counterexample as its probability mass may be

(far) below p. We thus define a counterexample as follows:

Definition 3.3 (Counterexample) A counterexample for violating P6p(φ) in state

s is a set C of evidences for P6p(φ) such that P(C) > p.

A counterexample for state s is a subset of Paths⋆
min(s, φ). We will, at the moment,

not dwell further upon how to represent this set and assume that an abstract representa-

tion as a set suffices; a compact representation will be proposed in Section 4.2. Note that

the measurability of counterexamples is ensured by the fact that C ⊆ Paths⋆
min(s, φ) is

prefix containment free (cf. page 10); hence, P(C) is well-defined. Let CXp(s, φ) denote

the set of all counterexamples for P6p(φ) in state s. For C ∈ CXp(s, φ) and C’s superset

C ′: C ⊆ C ′ ⊆ Paths⋆
min(s, φ), it follows that C ′ ∈ CXp(s, φ), since P(C ′) > P(C) > p.

That is to say, any extension of a counterexample C with paths in Paths⋆
min(s, φ) is a

counterexample. This motivates the notion of minimality.

Definition 3.4 (Minimal counterexample) C ∈ CXp(s, φ) is a minimal coun-

terexample if |C| 6 |C ′|, for any C ′ ∈ CXp(s, φ).

As in conventional model checking, we are not interested in generating arbitrary

counterexamples, but those that are easy to comprehend, and provide a clear evidence

of the refutation of the formula. So, akin to shortest counterexamples for linear-time

logics, we consider the notion of a smallest counterexample. Such counterexamples are

required to be succinct, i.e., minimal, allowing easier analysis of the cause of refutation,

and most distinctive, i.e., their probability should exceed p more than all other minimal

counterexamples. This motivates the following definition:

Definition 3.5 (Smallest counterexample) C ∈ CXp(s, φ) is a smallest coun-

terexample if it is minimal and P(C) > P(C ′) for any minimal counterexample

C ′ ∈ CXp(s, φ).
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The intuition is that a smallest counterexample is the one that deviates most from

the required probability bound given that it contains a minimal number of paths.

Thus, there does not exist an equally sized counterexample that deviates more from

p. Strongest evidences, minimal or smallest counterexamples may not be unique, as

different paths may have equal probability. As a result, not every strongest evidence is

contained in a minimal (or smallest) counterexample. Whereas minimal counterexam-

ples may not contain any strongest evidence, any smallest counterexample contains at

least one strongest evidence. Using standard mathematical results we obtain:

Lemma 3.6 A finite counterexample for s 6|= P6p(φ) exists.

Proof: By contradiction. Assume there are only infinite counterexamples for s 6|=
P6p(φ). Let C = {σ1, σ2, . . .} be one such counterexample, i.e.,

∑∞
i=1 P(σi) > p. Since

P(σi) is positive for any i, it follows by standard arguments that

∞∑

i=1

P(σi)

︸ ︷︷ ︸
=d

= lim
j→∞

j∑

i=1

P(σi)

︸ ︷︷ ︸
dj

.

By the definition of limit, this means that

∀ǫ > 0. ∃Nǫ ∈ N. ∀n > Nǫ. |dn − d| < ǫ (3.1)

Take ǫ such that 0 < ǫ < d−p. By (3.1), for some n > Nǫ, |dn −d| < d−p, i.e., dn > p.

But then, the finite set C ′ = {σ1, . . . , σn} is also a counterexample as P(C ′) > p.

Contradiction. �

This lemma indicates that a smallest counterexample for s 6|= P6p(φ) is finite.

Remark 3.7 (Finiteness) For until-formulae with strict upper bounds on the proba-

bility, i.e., P<p(φ), a finite counterexample may not exist. This occurs when, e.g., the

only counterexample is an infinite set C of finite paths with P(C) = p. The limit of the

sum of the path probabilities (obeying a geometric distribution) equals p, but infinitely

many paths are needed to reach p. For instance, consider the DTMC in Fig. 3.1. The

violation of P< 1
2
(♦ a) in state s can only be shown by an infinite set of paths, viz. all

paths that traverse the self-loop at state s arbitrarily often and reach t.

Example 3.8 Consider the DTMC in Fig. 2.1 (page 10), for which s violates P61
2
(aU

b). Evidences are, amongst others, σ1 = s0·s1·t1, σ2 = s0·s1·s2·t1, σ3 = s0·s2·t1,
σ4 = s0·s1·s2·t2, and σ5 = s0·s2·t2. Their respective probabilities are 0.2, 0.2, 0.15,

0.12 and 0.09. σ = s0·s1·t1·t2 is not an evidence as it contains a proper prefix, s0·s1·t1,
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s tu
1
4

1
4

1

1
2

1

{a}
∅

∅

Figure 3.1: A DTMC with infinite counterexample for P< 1
2
(♦ a)

that satisfies a U b. The strongest evidences are σ1 and σ2, which are not unique. The

set C1 = {σ1, . . . , σ5} with P(C1) = 0.76 is a counterexample, but not a minimal one,

as the removal of either σ1 or σ2 also yields a counterexample. C2 = {σ1, σ2, σ4} is a

minimal but not a smallest counterexample, as C3 = {σ1, σ2, σ3} is minimal too with

P(C3) = 0.56 > 0.52 = P(C2). C3 is a smallest counterexample. �

In the remainder of the chapter, we consider the strongest evidence problem (SE),

that determines the strongest evidence for violation s 6|= P6p(φ). Subsequently, we

consider the corresponding smallest counterexample problem (SC).

3.2 Model Transformation

Prior to finding strongest evidences or smallest counterexamples, we modify the DTMC

and turn it into a weighted digraph. This enables us, as we will show, to exploit well-

known efficient graph algorithms to the SE and SC problems. Let Sat(Φ) = {s ∈ S |
s |= Φ} for any Φ. Due to the bottom-up traversal of the model-checking algorithm

over the formula φ = Φ U6h Ψ, we may assume that Sat(Φ) and Sat(Ψ) are known.

3.2.1 Step 1: Adapting the DTMC

We first define two PCTL state-formula-driven transformation on DTMCs.

Definition 3.9 For DTMC D = (S,P, L) and PCTL state formula Ψ,

• let D[Ψ] result from D by removing all the outgoing transitions from all the Ψ-

states in D, i.e., D[Ψ] = (S, P̃, L), where P̃(s, s′) = P(s, s′) for any s′ ∈ S, if

s /∈ Sat(Ψ) and 0 otherwise;

• let D〈tΨ〉 result from D by adding an extra state t /∈ S such that all outgoing

transitions from a Ψ-state are replaced by a transition to t with probability 1, i.e.,

D〈tΨ〉 = (S ∪ {t}, P̂, L̂), where

P̂(s, t) =

{
1 if s ∈ Sat(Ψ) or s = t

0 otherwise
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3.2 Model Transformation

and otherwise P̂(s, s′) = P(s, s′). L̂(t) = {att}, where at t /∈ L(s′) for any s′ ∈ S,

i.e., at t uniquely identifies being at state t and L̂(s) = L(s) otherwise.

To differentiate an absorbing state s where P(s, s) = 1, recall that a state is “sinking”

or a “sink” if P(s, s′) = 0 for any s′ ∈ S (page 9). Here D[Φ] is an FPS (cf. page 9).

Later we abuse the name DTMC also for FPS, because by adding an absorbing state

an FPS can be easily transformed into a DTMC. All the definitions and computation

for DTMCs can be applied to FPSs. Note that D[Φ][Ψ] = D[Φ∨Ψ] and in D〈tΨ〉 state

t can only be reached via a Ψ-state.

We adapt the DTMC D into D[¬Φ ∧ ¬Ψ]〈tΨ〉 (denoted D′ in the following). The

(¬Φ∧¬Ψ)-states are made sinking as they will refute the path formula Φ U6h Ψ. This

sub-step is standard when model checking DTMC against PCTL. All the (¬Φ ∧ ¬Ψ)-

states could be collapsed into a single state, but this is not further explored here. State

t is added to identify the goal states Ψ. The time complexity of this transformation

is O(n) where n = |S|. The following lemma shows that the validity of Φ U6h Ψ is

not affected by this amendment of the DTMC, and that computing the probability of

Φ U6h Ψ can be reduced to computing the reachability probability (with only one goal

state t).

Lemma 3.10 σ |=D
min Φ U6h Ψ iff σ·t |=D′

min♦6h+1at t, remark that PD(σ) = PD′

(σ·t).

Proof: We prove it from two directions:

• =⇒: If σ |=D
min Φ U6h Ψ and σ′ = σ·t, then due to the construction, σ′ is of the

following form:

σ′ = s0 · · · sℓ−1︸ ︷︷ ︸
|=Φ∧¬att

· sℓ︸︷︷︸
|=Ψ∧¬att︸ ︷︷ ︸

σ

· t︸︷︷︸
|=att

,

where 0 6 ℓ = |σ| 6 h and 1 6 ℓ + 1 = |σ′| 6 h + 1. Thus σ′ |=D′

min♦[1,h+1] at t.

Note that since at t cannot be reached at position 0, the hop constraint [1, h+ 1]

can be relaxed to 6 h+ 1. Thus, (i) σ′ |=D′

min♦6h+1 at t holds. For (ii),

P(σ′) =
∏

06i<ℓ

P′(si, si+1) ·P′(sℓ, t) =
∏

06i<ℓ

P(si, si+1) · 1 = P(σ) · 1 = P(σ).

• ⇐=: Similar. �

Proposition 3.11 (Correctness of Step 1) For any DTMC D, state s, and

PCTL formula Φ U6h Ψ (h ∈ N>0 ∪ {∞}) ,

ProbD(s,Φ U
6h Ψ) = ProbD

′

(s,♦6h+1at t).
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s0 s1 t1

u s2 t2

0.6
1
3

2
3

0.3
0.1

0.3

0.5

0.2

{a} {a} {b}

∅ {a} {b}

t

1

1

1 {at t}

Figure 3.2: Model transformation (Step 1): from D to D[¬a ∧ ¬b]〈tb〉

Proof: Due to Lemma3.10, it holds that the paths in Paths⋆
min

(
s,Φ U6h Ψ

)
and

Paths⋆
min

(
s,♦6h+1at t

)
have a one-to-one correspondence and that

PD
(
Paths⋆

min

(
s,Φ U

6h Ψ
))

= PD′
(
Paths⋆

min

(
s,♦6h+1at t

))
.

And due to Lemma2.20, the following holds

ProbD(s,Φ U
6h Ψ) = ProbD

′

(s,♦6h+1at t). �

Example 3.12 Given path formula a U b, applying the above transformation to the

DTMC D in Fig. 2.1 (page 10) yields the DTMC D′ = D[¬a ∧ ¬b]〈tb〉 illustrated in

Fig. 3.2. The (¬a ∧ ¬b)-state u is made sinking and both b-states (i.e., t1 and t2) are

equipped with a transition with probability 1 to the new absorbing state t (indicated by

a double circle). �

3.2.2 Step 2: Conversion into a Weighted Digraph

As a second preprocessing step, the DTMC obtained in the first step is transformed

into a weighted digraph, i.e., a triple G = (V,E,w) where V is a finite set of vertices,

E ⊆ V × V is a set of edges, and w : E → R>0 is a weight function.

Definition 3.13 (Weighted digraph of a DTMC) For DTMC D = (S,P, L),

the weighted digraph of D is GD = (V,E,w) where V = S, (v, v′) ∈ E iff P(v, v′) > 0,

and w(v, v′) = − log P(v, v′).

The edge weights are obtained by taking the negation of the logarithm of the corre-

sponding transition probabilities. Note that w(s, s′) ∈ [0,∞) if P(s, s′) > 0. Thus, we

indeed obtain a digraph with nonnegative weights. This transformation can be done in

O(m log 1
z ), where m is the number of non-zero elements in P and z = mins,s′∈S P(s, s′)

is the smallest probability appearing in the DTMC. We often omit the self-loop on ver-

tex t in GD, as it has weight 0.
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s0 s1 t1

u s2 t2

log 5
3 log 3

log 3
2

log 10
3

log 10

log 10
3

log 2

log 5

t

0

0

Figure 3.3: Model transformation (Step 2): from D[¬a ∧ ¬b]〈tb〉 to GD[¬a∧¬b]〈tb〉

Example 3.14 (Continuing Example 3.12) Applying this transformation to

DTMC D′ in Fig. 3.2 yields the weighted digraph in Fig. 3.3. Note the fact that

− log P(v, v′) = log P(v, v′)−1. Thus, − log P(s0, s1) = − log 3
5 = log(3

5 )−1 = log 5
3 . �

A path σ from s to t in the digraph G is a sequence σ = v0·v1 · · · vj ∈ V +, where

v0 = s, vj = t and (vi, vi+1) ∈ E, for 0 6 i < |σ| (|σ| denotes the length of σ). The

weight of finite path σ = v0·v1 · · · vj in graph G is w(σ) =
∑j−1

i=0 w(vi, vi+1). Path

weights in GD and path probabilities in DTMC D are related as follows:

w(σ) =

j−1∑

i=0

w(vi, vi+1) =

j−1∑

i=0

− log P(vi, vi+1)

= −
j−1∑

i=0

log P(vi, vi+1) = − log

j−1∏

i=0

P(vi, vi+1)

= − log P(σ)

Now the multiplication of probabilities in D corresponds to addition of weights in GD
and the next two lemmata directly follow:

Lemma 3.15 Let σ and σ′ be finite paths in DTMC D and its graph GD. Then:

P(σ′) > P(σ) iff w(σ′) 6 w(σ).

Proof: Since w(σ) = − log P(σ), it holds that

w(σ′) 6 w(σ) iff − log P(σ′) 6 − log P(σ)

iff log P(σ′) > log P(σ) iff P(σ′) > P(σ). �

This result implies that the most probable path between two states in DTMC D
equals the shortest path (i.e., the path with the least weight) between these states in

the weighted digraph GD.
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Let PathsG(s, t) denote the set of finite paths in G that start in s and end in t.

The paths in PathsG(s, t) form a total order under 6 wrt. the path weight function w.

In other words, paths in PathsG(s, t) can be ordered as σ(1), σ(2),... such that for any

0 6 i < j, w(σ(i)) 6 w(σ(j)). A k-th shortest path is σ(k). Notice that such a total order

is not necessarily unique (as paths may have equal weights), so a k-th shortest path

may also not be unique. However, for a fixed total order, a k-th shortest path is unique.

The k-th most probable path is defined in a similar way. Due to the non-uniqueness,

we aim at deriving arbitrary one smallest counterexample and won’t explore further

the priority between different smallest counterexamples.

Lemma 3.15 can be generalized to paths of a certain length (or, equivalently number

of hops), and to the second, third, etc. most probable paths. This yields:

Lemma 3.16 For any path σ from s to t in DTMC D with |σ| = h and k ∈ N>0, it

holds that σ is a k-th most probable path of h hops in D iff σ is a k-th shortest path of

h hops in GD.

Proof: Let Paths6h(s, t) be the set of paths in D and GD that start in s and end in t

with at most h hops.

• ⇐=: Assume σ(1), . . . , σ(k) are the 1-st, . . . , k-th shortest paths in Paths6h(s, t).

Applying Lemma 3.15, the following holds:

w(σ(1)) 6 w(σ(2)) 6 · · · 6 w(σ(k)) iff P(σ(1)) > P(σ(2)) > · · · > P(σ(k)).

Thus, σ(k) is the k-th most probable paths in Paths6h(s, t).

• =⇒: Similar. �

This lemma provides the basis for the algorithms in the following sections.

3.3 Finding Strongest Evidences

3.3.1 Unbounded Until — U

Based on Lemma 3.16 with k = 1 and h = ∞, we consider the well-known shortest

path problem. Recall that PathsG(s, t) is the set of finite paths in G between s and t.

Definition 3.17 (SP problem) Given a weighted digraph G = (V,E,w) and s, t ∈ V ,

the shortest path problem is to determine a path σ ∈ PathsG(s, t) such that w(σ) 6

w(σ′) for any path σ′ ∈ PathsG(s, t).

From Lemma 3.16 together with the transformation of a DTMC into a weighted di-

graph, it follows that there is a polynomial reduction from the SE problem for un-

bounded until to the SP problem. As the SP problem is in PTIME, it follows:
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3.3 Finding Strongest Evidences

Theorem 3.18 The SE problem for unbounded until is in PTIME.

Various efficient algorithms [Dij59][Bel58][CLRS01a] exist for the SP problem, e.g.,

when using Dijkstra’s algorithm, the SE problem for unbounded until can be solved in

time O(m+n log n), where m = |E| and n = |V |, provided appropriate data structures

such as Fibonacci heaps are used.

3.3.2 Bounded Until — U
6h

Lemma 3.16 for k = 1 and h ∈ N>0 suggests to consider the hop-constrained SP prob-

lem. Recall that PathsG
6h(s, t) is the set of paths in PathsG(s, t) with at most h hops.

Definition 3.19 (HSP problem) Given a weighted digraph G = (V,E,w), s, t ∈ V

and h ∈ N>0, the hop-constrained SP problem is to determine a path σ ∈ PathsG
6h(s, t)

such that w(σ) 6 w(σ′) for any path σ′ ∈ PathsG
6h(s, t).

The HSP problem is a special case of the (resource) constrained shortest path (CSP)

problem [MZ00][AMO93], where the only constraint is the hop count. Besides the

weight w on each edge, it may consume other resources w1, . . . , wc and the sum of

each resource should be bounded by the resource constraints λ1, . . . , λc, where c is

the number of resources. Weighted digraphs with multiple resources are obtained by

allowing multiple weights to edges.

Definition 3.20 (Multi-weighted digraph) G = (V,E, {w} ∪ {w1, . . . , wc}) is a

multi-weighted digraph where V and E are set of vertices and edges, respectively; w

is the main weight function and wi is the (secondary) weight function for resource i

(1 6 i 6 c).

Edge e ∈ E uses wi(e) > 0 units of resource i. The main weight (resp. weight i) of a

path σ is w(σ) =
∑

e∈σ w(e) (resp. wi(σ) =
∑

e∈σ wi(e)).

Definition 3.21 (CSP problem) Let G = (V,E, {w} ∪ {w1, . . . , wc}) be a multi-

weighted digraph with s, t ∈ V and λi the resource constraints, for 1 6 i 6 c. The

(resource) constrained SP problem is to determine a shortest path σ ∈ PathsG(s, t)

wrt. the weight w(σ) such that wi(σ) 6 λi for 1 6 i 6 c.

Intuitively, the CSP problem is to optimize the main objective function w(σ) and at

the same time guarantee that the secondary objective functions wi(σ) meet the upper

bounds λi. The CSP problem is NP-complete, even for a single resource constraint

(i.e., c = 1) [AMO93]. However, if each edge uses the same constant unit of that

resource (such as the hop count), the CSP problem can be solved in polynomial time,

cf. [GJ79], problem [ND30].
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Theorem 3.22 The SE problem for bounded until is in PTIME.

For h > n − 1, it is possible to use Dijkstra’s SP algorithm (as for unbounded until),

as a shortest path does not contain cycles. If h < n− 1, however, Dijkstra’s algorithm

does not guarantee to obtain a shortest path of at most h hops. We, therefore, adopt

the Bellman-Ford (BF) algorithm [Bel58][CLRS01a] which fits well to our problem as

it proceeds by increasing hop count. It can be readily modified to generate a shortest

path within a given hop count. In the remainder of the chapter, this algorithm is

generalized for computing smallest counterexamples. The BF algorithm is based on a

set of recursive equations; we extend it with the hop count h. We call this algorithm

BF6h to differentiate BF=h introduced later in Section 3.3.3. For v ∈ V , let π6h(s, v)

denote the shortest path from s to v of at most h hops (if it exists). Then:

π6h(s, v) =





s if v = s ∧ h > 0 (3.2)

⊥ if v 6= s ∧ h = 0 (3.3)

arg min
u∈S

{
w
(
π6h−1(s, u)·v

)
| (u, v) ∈ E

}
otherwise (3.4)

where ⊥ denotes the non-existence of such path. Note that ⊥·v = v for any v,

{⊥} = ∅, arg min ∅ = ⊥, P(⊥) = 0, and w(⊥) = ∞. The first two clauses are

self-explanatory. The last clause states that π6h(s, v) consists of the shortest path to

v’s direct predecessor u, i.e., π6h−1(s, u), extended with the edge (u, v). Note that

minu∈S{w
(
π6h−1(s, u)·v

)
| (u, v) ∈ E} is the weight of a shortest path; by means of

arg, such shortest path is obtained. It follows (cf. [Law76]) that π6h(s, v) characterizes

the shortest path from s to v in at most h hops, and can be obtained in time O(hm).

As h < n− 1, this is indeed in PTIME. Recall that for h > n− 1, Dijkstra’s algorithm

has a favorable time complexity.

Example 3.23 To illustrate the BF6h algorithm, we compute the shortest path

π64(s0, t) in the digraph in Fig. 3.3. The invocation relation of function π is shown in

Fig. 3.4. Note that we use probabilities instead of weights in the graph for clarity. The

transition probabilities are labeled on the edges. In order to compute π64(s0, t), the two

predecessors of t are considered such that π63(s0, t2) and π63(s0, t1) are invoked and the

corresponding probabilities P(π63(s0, t2))·1 and P(π63(s0, t1))·1 are stored in the boxes

to its right. Those values are known only when the results are returned from the next

level. Continuing the invocation, in order to compute π63(s0, t1), the two predecessors

of t1 are considered such that π62(s0, s1) and π62(s0, s2) are invoked. The invoca-

tion won’t terminate till the end of the computation chains derived by (3.2)(3.3). Note

that π62(s0, s2), π61(s0, s0) and π60(s0, s0) are invoked more than once, but are com-

puted only once using dynamic programming. To choose the minimal weight (maximal

probability) of a path we select the minimal value from the boxes attached to the path,
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π64(s0, t)
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Figure 3.4: An example run of the Bellman-Ford algorithm

which is labeled gray. Note that the two candidate paths for π63(s0, t1) have the same

minimal value. We choose one nondeterministically. The shortest path is obtained by

connecting the gray-labeled vertices from backwards. In this example, it is s0·s1·t1·t. �

Exploiting the Viterbi Algorithm. An alternative to the BF6h algorithm is to

adopt the Viterbi algorithm [For73][Vit67][VTdlH+05]. In fact, to apply this algorithm

the transformation into a weighted digraph is not needed. The Viterbi algorithm is

based on dynamic programming and aims to find the most likely sequence of hidden

states (i.e., a finite path) that result in a sequence of observed events (a trace). It is

used in the context of hidden Markov models, which are used in, e.g., speech recognition

and bioinformatics.

Let DTMC D be obtained after the first step described in Section 3.2.1, and suppose

that L(s) is extended with all subformulae of the formula under consideration that hold

in s. Note that these labels are known due to the recursive descent nature of the PCTL

model-checking algorithm. Let tr(σ) denote the projection of a path σ = s0·s1 · · · sh

on its trace, i.e., tr(σ) = L(s0)L(s1) · · ·L(sh). Recall that σ[..i] denotes the prefix of

path σ truncated at length i (thus ending in si), thus tr(σ[..i]) = L(s0)L(s1) · · ·L(si).

γ[..i] denotes the prefix of trace γ with length i+1. Note that the length of a trace is

one more than the length of the corresponding path, i.e., |tr(σ)| = |σ|+1. Let ̺(γ, i, v)

denote the probability of the most probable path σ[..i] whose trace equals γ[..i] and

reaches state v. Formally,

̺(γ, i, v) = max
tr(σ[..i])=γ[..i]∧σ∈Paths⋆(s0)

i−1∏

j=0

P(sj , sj+1) · 1v(si),

where 1v(si) is the characteristic function of v, i.e., 1v(si) = 1 iff si = v. The Viterbi
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algorithm provides an algorithmic solution to compute ̺(γ, i, v):

̺(γ, i, v) =





1 if s = v and i = 0

0 if s 6= v and i = 0

maxu∈S

{
̺(γ, i−1, u) ·P(u, v)

}
otherwise

By computing ̺(ΦhΨ, h, sh), the Viterbi algorithm determines the most probable

path σ = s0·s1 · · · sh that generates the trace γ = L′(s0)L′(s1) · · ·L′(sh) = ΦhΨ with

length h + 1. Here, L′(s) = L(s) ∩ {Φ,Ψ}, i.e., L′ is the labeling restricted to the

subformulae Φ and Ψ. For the SE problem for bounded until, the trace of the most

probable hop-constrained path from s to t is among {Ψat t,ΦΨat t, . . . ,Φ
hΨat t}. The

self-loop at vertex t with probability one ensures that all these paths have length h+ 1

while not changing their probabilities. For instance, the path with trace ΦiΨat t can

be extended so that the trace becomes ΦiΨat t
h+1−i, where i 6 h. Since the DTMC is

already transformed as in Step 1 (cf. page 26), we can obtain the most probable path

for Φ U6h Ψ by computing ̺
(
(Φ∨Ψ∨ at t)

h+1at t, h+ 1, t
)

using the Viterbi algorithm.

The time complexity is O(hm), as for the BF6h algorithm.

Viterbi algorithm provides more possibilities to implement the algorithm of com-

puting the strongest evidences. However, it has certain restrictions. For instance, it

can only deal with until formulae that have an upper-bound, i.e., U and U>h cannot be

handled by Viterbi algorithm (see Table 3.1, page 40). Another drawback is that when

some of the transition probabilities are very small or when the valid paths are very long,

the rounding-off error of doing successive multiplications may be much higher than first

having log and doing addition and finally transforming the log back to a probability.

In this sense, our algorithm may give a more precise result than the Viterbi algorithm.

3.3.3 Point Interval Until — U
=h

We now deal with the until operator with point intervals, i.e., U=h. Together with

the previous two cases, it forms the basis for the more general until form U[hl,hu] with

hu > hl > 0 in Section 3.3.4.

As the bounded until Φ U6h Ψ allows a path to reach a Ψ-state in less than h

hops, this justifies making all Ψ-states “absorbing” (connecting to t). However, in the

Φ U=h Ψ case, since the hop count is exact some (Φ ∧ Ψ)-states might be counted as a

Φ-state when the hop number is less than h and as a Ψ-state when it is exactly h. Let

us explain this by an example.

Example 3.24 Consider the DTMC D in Fig. 3.5(a). Note that the missing probabil-

ities from each state are omitted. The states labeled with different formulae are labeled
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{Φ ∧ Ψ}

(b) D[¬Φ]

Figure 3.5: Model transformation for U=h

with different gray shadings. Let formula φ = Φ U=5 Ψ. Consider the path

σ = s0·s1· t1︸︷︷︸
|=Φ∧Ψ

·s2·s1· t1︸︷︷︸
|=Φ∧Ψ

.

Due to the semantics of U=h, σ |= φ, where the first appearance of t1 is regarded as a

Φ-state and the second as a Ψ-state. �

Model Transformation for U=h. We turn the DTMC D into D[¬Φ ∧ ¬Ψ][¬Φ ∧
Ψ] = D[¬Φ]. This transformation is based on the following observation: once the

(¬Φ ∧ ¬Ψ)- and (¬Φ ∧ Ψ)-states are reached in less than h hops, any continuation of

the path will falsify the property. This is the main difference with the (Φ ∧ Ψ)-states.

Example 3.25 (Continuing Example 3.24) For the DTMC D in Fig. 3.5(a),

D[¬Φ] is shown in Fig. 3.5(b). �

On the transformed model, for each Ψ-state sΨ (including both (¬Φ ∧ Ψ)- and

(Φ ∧ Ψ)-states), the validity of ♦=hatsΨ
is to be checked. This can be justified by the

following proposition:

Proposition 3.26 For any DTMC D, state s, and PCTL formula Φ U=h Ψ,

ProbD(s,Φ U
=h Ψ) =

∑

v|=Ψ

ProbD[¬Φ](s,♦=hatv).

Proof: Due to the model transformation, all paths satisfying Φ U=h Ψ can only be of

the following form in D[¬Φ]:

σ = s0 · s1 · · · sh−1︸ ︷︷ ︸
|=Φ

· sh︸︷︷︸
|=Φ∧Ψ

or σ′ = s0 · s1 · · · sh−1︸ ︷︷ ︸
|=Φ

· sh︸︷︷︸
|=¬Φ∧Ψ

.
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On the other hand, any path in D satisfying Φ U=h Ψ, is of the above two forms and

is a (♦=hatv)-path in D[¬Φ]. Also because the set of paths Paths⋆
D[¬Φ](s,♦=hatv) for

v |= Ψ are pairwise disjoint, it holds that

Paths⋆
D(s,Φ U

=h Ψ) =
⋃

v|=Ψ

Paths⋆
D[¬Φ](s,♦=hatv).

It directly follows that

ProbD(s,Φ U
=h Ψ) =

∑

v|=Ψ

ProbD[¬Φ](s,♦=hatv). �

Proposition 3.26 together with Lemma3.16 suggests that the strongest evidences for

point-interval until can be reduced to computing several shortest paths with h hops,

which we define as the fixed-hop shortest path problem. Let PathsG=h(s, t) be the set of

paths in G from s to t with h hops.

Definition 3.27 (FSP) Given a weighted digraph G = (V,E,w), s, t ∈ V and h ∈
N>0, the fixed-hop SP problem is to determine a path σ ∈ PathsG=h(s, t) such that

w(σ) 6 w(σ′) for any path σ′ ∈ PathsG=h(s, t).

Let π=h(s, v) denote the FSP of h hops from s to v. In the following, we discuss

how π=h(s, v) can be computed.

π=h(s, v) =





s if v = s ∧ h = 0 (3.5)

⊥ if v 6= s ∧ h = 0 (3.6)

arg min
u∈S

{
w
(
π=h−1(s, u) · v

)
| (u, v) ∈ E

}
if v 6= s ∧ h > 0 (3.7)

Notice that the only difference with (3.2)-(3.4) (the BF6h algorithm) is that the ter-

mination condition in (3.2) is changed from “h > 0” to “h = 0” in (3.5) here. In other

words, those paths that reach s early (h > 0 when computed backwards) are now ruled

out by the condition h = 0. Only the paths that start in s with exactly h hops are

accepted. We call this algorithm BF=h. The complexity remains O(hm).

Proposition 3.28 The strongest evidence for s |= Φ U=h Ψ in D can be computed by

arg minv|=Ψ

{
w
(
π=h(s, v)

)}
in the graph GD[¬Φ].

The time complexity of obtaining the strongest evidence is O(hmn), where for each

v |= Ψ, it takes O(hm) and in the worst case there are n Ψ-states, which justifies

O(hmn).
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Example 3.29 (Continuing Example 3.24) For Φ U=5 Ψ in GD[¬Φ], there are two

Ψ-states t1 and t2. The shortest paths from s0 to t1, t2 are

π=5(s0, t1) = s0·s1·t1·s2·s1·t1 with probability 0.06615

π=5(s0, t2) = s0·s1·t1·s2·s1·t2 with probability 0.0189.

The strongest evidence is the one with a larger probability, i.e., π=5(s0, t1). �

Remark 3.30 The Viterbi algorithm can also be applied here. By computing the path

arg maxv|=Ψ

{
P

(
̺
(
(Φ ∨ Ψ)hΨ, h, v

))}
, we obtain the strongest evidence for the point-

interval until formula Φ U=h Ψ. The time complexity for coincides with that using

BF=h, i.e., O(hmn).

3.3.4 Interval Until — U
[hl,hu], U

>hl

We now deal with the until operator with general bounds U[hl,hu], where hu > hl > 0.

Since the cases U[hl,hu] and U>hl are similar, we discuss them both in this section.

Model Transformation. Let h = hu − hl if hu 6= ∞ and h = ∞ otherwise. Note

that U6∞ is U and ∞ + 1 = ∞. The DTMC D is transformed into two different

DTMCs: D[¬Φ] and D[¬Φ∧¬Ψ]〈tΨ〉. This transformation is justified by the observa-

tion that for each σ |= ΦU[hl,hu]Ψ, σ can be divided into two parts: the prefix σ[..hl] and

the suffix σ[hl..], where σ[..(hl−1)] |= �=hl−1 Φ, σ[hl] |= Φ∨Ψ and σ[hl..] |= ΦU6h Ψ or

Φ U Ψ, respectively, depending on hu. We first define the concatenation of two paths:

Definition 3.31 Given paths σ1 and σ2 where σ1[|σ1|] = σ2[0], the concatenation ◦ is

defined as σ1 ◦ σ2 = σ1 · σ2[1..]. We sometimes write σ1 ◦v σ2 if σ2[0] = v.

For instance, if σ1 = s0·s1 and σ2 = s1·s2, then σ1 ◦ σ2 = σ1 ◦s1 σ2 = s0·s1·s2. We have

the following proposition:

Proposition 3.32 For any DTMC D, state s, and PCTL formulae Φ U[hl,hu] Ψ, let

h = hu − hl. The following holds:

ProbD(s,Φ U
[hl,hu] Ψ) =

∑

s′|=Φ∨Ψ

ProbD[¬Φ](s,♦=hlats′)·ProbD[¬Φ∧¬Ψ]〈tΨ〉(s′,♦6h+1at t).

Proof: Let D1 = D[¬Φ] and D2 = D[¬Φ∧¬Ψ]〈tΨ〉. For any path σ |= Φ U[hl,hu] Ψ, due

to the semantics, σ is of the following form:

σ = s0 · s1 · · ·
σ[hl..]︷ ︸︸ ︷

shl︸ ︷︷ ︸
σ[..hl]

·shl+1 · · · sj = σ[..hl] ◦ σ[hl..],
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where j ∈ [hl, hu], and the prefix σ[..(hl−1)] |= �=hl−1 Φ and shl
|= Φ ∨ Ψ. Due to

the definition of D1, it holds that σ[..hl] |= ♦=hlatv for v |= Φ ∨ Ψ in D1. Similarly,

for the suffix σ[hl..] |= Φ U6h Ψ, for h = hu − hl. Due to the construction of D2,

σ[hl..]·t |= ♦[1,h+1] at t. Also because t cannot be reached at the 0-th position on path

σ[hl..]·t, the interval can be relaxed to [0, h + 1], i.e., σ[hl..]·t |= ♦6h+1 at t. It is also

clear that

P(σ) = P(σ[..hl]) · P(σ[hl..]) = P(σ[..hl]) · P(σ[hl..]·t).
Let

ΠD(v) =
{
σ ∈ Paths⋆

D(s,Φ U
[hl,hu] Ψ) | σ[hl] = v

}

be the set of Φ U[hl,hu] Ψ paths in D whose hl-th position is v. Then,

P
(
ΠD(v)

)
= P

(
PathsD1(s,♦=hlatv)

)
· P

(
PathsD2(v,♦6h+1at t)

)
.

As the sets ΠD(v) for v |= Φ ∨ Ψ are pairwise disjoint, we obtain:

P

(
PathsD(s,Φ U

[hl,hu] Ψ)
)

=
∑

v|=Φ∨Ψ

P

(
PathsD1(s,♦=hlatv)

)
·P
(
PathsD2(v,♦6h+1at t)

)
.

Applying Lemma 2.20 results in:

ProbD(s,ΦU
[hl,hu] Ψ) =

∑

v|=Φ∨Ψ

ProbD1(s,♦=hlatv)·ProbD2(v,♦6h+1at t). �

Note that Proposition 3.26 (for U=h) is a simplified version of Proposition 3.32 (for

U[hl,hu]). The latter, together with Lemma 3.16, suggests that the strongest evidences

for interval until can be reduced to computing several shortest paths in different graphs.

Recall the shortest path notations πG(s, u), πG=h(s, u) and πG
6h(s, u). Let πG[hl,hu](s, u)

denote the shortest path of hops in [hl, hu] from s to u in graph G. In the following,

we show how πG[hl,hu](s, u) can be computed:

πG[hl,hu](s, u) = arg min
σ1◦vσ2

{
w
(
πG=hl

(s, v)
︸ ︷︷ ︸

σ1

)
+ w

(
πG

6h(v, u)
︸ ︷︷ ︸

σ2

) ∣∣∣ v ∈M
}
, (3.8)

where h = hu − hl and M = {σ[hl] | σ ∈ PathsG(s)} is the set of intermediate states

that can be visited at the hl-th hop when starting from s.

Note that (3.8) computes any paths with length [hl, hu] in G. If those paths are

further required to satisfy Φ U Ψ, then the graphs should be adapted accordingly:

Proposition 3.33 The strongest evidence for Φ U[hl,hu] Ψ at state s in D is

arg min
σ1◦vσ2

{
w
(
πG1

=hl
(s, v)

)
︸ ︷︷ ︸

σ1

+w
(
πG2

6h+1(v, t)
)

︸ ︷︷ ︸
σ2

∣∣∣ v ∈M
}
,

where M = {σ[hl] | σ ∈ Paths⋆
G1

(s)}, G1 = GD[¬Φ], and G2 = GD[¬Φ∧¬Ψ]〈tΨ〉.
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Algorithm and Time Complexity. Now we discuss the algorithm and time

complexity of computing this strongest evidence.

1. Transforming D into G1 and G2 takes O(n) time, where n = |S|.

2. The set M can be obtained in a “breadth-first” manner by using a queue in G1.

The elements in the queue are of the form (state s, hop i), meaning “state s can

be visited in exactly i hops”. At first, (s0, 0) is put in the queue, after all its direct

successors, say (u1, 1), ..., (uj , 1) are put in the queue, (s0, 0) is removed from the

queue. This process is repeated until the head of the queue is (·, h). Note that if

a pair has already existed in the queue, we do not insert it twice.

For hop count i, each successor of the (·, i) should be checked, that is at most m

times, among which at most n vertices will be inserted, and before each insertion,

at most n vertices will be checked whether they have already been in the queue,

which comes to O(mn). There are hl hops in total, so the time complexity of this

step is O(hlmn).

3. Determine the shortest path πG1
=hl

(s, v) from s to each vertex v ∈ M of exactly

hl hops. As the result in Section 3.3.3, the complexity of computing one such

shortest path is O(hlm). Since each vertex in M should be computed, and in the

worst case, |M | = n; thus the time complexity of this step is O(hlmn).

4. In graph G2, determine the shortest path πG2
6h+1(v, t) from each vertex v ∈ M to

t within h + 1 hops. We apply Bellman-Ford algorithm (for U6h) or Dijkstra’s

algorithm (for U) as mentioned in Section 3.3.2 and 3.3.1. The time complexity

of this step is O(hmn) and O(mn+ n2 log n), respectively.

5. Determine the shortest path among |M | candidates, i.e.,

arg min
v∈M

{
w
(
π=hl

(s, v)
)

+ w
(
π6h+1(v, t)

)}
.

It takes O(log n) to choose the minimal one when heaps are used.

Since m > n and hu > hl, the total time complexity is O(humn) for U[hl,hu] and

O(hlmn+ n2 log n) for U>hl.

Remark 3.34 The Viterbi algorithm can be applied for U[hl,hu], but not to U>hl. For

similar reasons, the model transformation should be done in two phases and for each

intermediate state s ∈ M , the two most probable paths are computed in each phase,

where the most probable path among all the concatenations of those two paths is the

strongest evidence.

σ = arg max
v∈M

{
̺s0

(
(Φ ∨ Ψ)hl+1, hl, v

)
·̺v

(
(Φ ∨ Ψ ∨ at t)

hat t, h+ 1, t
)}

.
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Strongest Evidence

Until
Model

Path Time
Transformation

Problem
Algorithm

Complexity

Φ U Ψ GD[¬Φ∧¬Ψ]〈tΨ〉 SP Dijkstra O(m+ n log n)

Φ U6h Ψ GD[¬Φ∧¬Ψ]〈tΨ〉 HSP BF6h/ Viterbi O(hm)

Φ U=h Ψ GD[¬Φ] FSP BF=h/ Viterbi O(hmn)

GD[¬Φ] FSP
Φ U[hl,hu] Ψ GD[¬Φ∧¬Ψ]〈tΨ〉 + HSP

BF=h

+BF6h
/Viterbi O(humn)

GD[¬Φ] FSP BF=h

Φ U>hl Ψ GD[¬Φ∧¬Ψ]〈tΨ〉 + SP + Dijkstra
O(hlmn+ n2 log n)

Table 3.1: Overview of finding strongest evidence problems

Note that s in ̺s indicates the starting state of the path. The time complexity is

O(humn). The Viterbi algorithm can neither be applied on U>hl, nor on U, as the

number of hops to reach a Ψ-state is unbounded.

3.3.5 Summary

So far we have discussed the algorithms for finding strongest evidences, which are

summarized in Table 3.1. In the remainder of the chapter, we dwell on finding smallest

counterexamples.

3.4 Finding Smallest Counterexamples

Recall that a smallest counterexample is a minimal counterexample, whose probability

— among all minimal counterexamples — deviates maximally from the required prob-

ability bound. In this section, we investigate algorithms and their time complexity for

computing smallest counterexamples.

3.4.1 Unbounded Until — U

Lemma 3.16 is applicable here for k > 1 and h = ∞. This suggests to consider the

k shortest paths problem.

Definition 3.35 (KSP problem) Given a weighted digraph G = (V,E,w), s, t ∈ V ,

and k ∈ N>0, the k shortest paths problem is to find k distinct paths σ(1), . . . , σ(k) ∈
PathsG(s, t) (if such paths exist) such that 1) for 1 6 i < j 6 k, w(σ(i)) 6 w(σ(j)) and

2) for every σ ∈ PathsG(s, t), if σ /∈ {σ(1), . . . , σ(k)}, then w(σ) > w(σ(k)).
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3.4 Finding Smallest Counterexamples

Note that σ(i) denotes the i-th shortest path and for i 6= j, it is possible that w(σ(i)) =

w(σ(j)). Stated in words, the i-th shortest path is not necessarily “strictly shorter”

than the j-th one, for i < j.

Theorem 3.36 The SC problem for unbounded until reduces to a KSP problem.

Proof: We prove by contraposition that a smallest counterexample of size k, contains

k most probable paths. Let C be a smallest counterexample for φ with |C| = k, and

assume C does not contain the k most probable paths satisfying φ. Then there is a path

σ /∈ C satisfying φ such that P(σ) > P(σ′) for some σ′ ∈ C. Let C ′ = C \ {σ′} ∪ {σ}.
Then C ′ is a counterexample for φ, |C| = |C ′| and P(C) > P(C ′). This contradicts C

being a smallest counterexample. �

The question remains how to obtain k. Various algorithms for the KSP problem

require k to be known a priori. This is inapplicable in our setting, as the number of

paths in a smallest counterexample is not known in advance. We therefore consider

algorithms that allow to determine k on the fly, i.e., that can halt at any k and resume if

necessary. A good candidate is Eppstein’s algorithm [Epp98]. Although this algorithm

has the best known asymptotic time complexity, viz. O(m+n log n+k), in practice the

recursive enumeration algorithm (REA) by Jiménez and Marzal [JM99] prevails. This

algorithm has a time complexity in O(m+ kn log m
n ) and is based on a generalization

of the recursive equations for the BF algorithm. Besides, although REA itself cannot

deal with the k shortest hop-bounded shortest paths problem, it is readily adaptable to

the case for bounded h, as we demonstrate in the next subsection. Note that the time

complexity of all known KSP algorithms depends on k, and as k can be exponential in

the size of the digraph, their complexity is pseudo-polynomial.

3.4.2 Bounded Until — U
6h

Similar to strongest evidences for bounded until, we now consider the KSP problem

with constrained path lengths.

Definition 3.37 (HKSP problem) Given a weighted digraph G = (V,E,w), s, t ∈
V , h ∈ N>0 and k ∈ N>0, the hop-constrained KSP problem is to determine k shortest

paths in PathsG
6h(s, t).

Theorem 3.38 The SC problem for bounded until reduces to a HKSP problem.

To our knowledge, algorithms for the HKSP problem do not exist in the literature.

In order to solve the HKSP problem, we propose to adapt Jiménez and Marzal’s REA

algorithm [JM99]. The advantage of this algorithm is that k can be determined on
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the fly, an essential characteristic for our setting. For v ∈ V , let πk
6h(s, v) denote the

k-th shortest path in PathsG
6h(s, v) (if it exists). As before, we use ⊥ to denote the

non-existence of a path. We establish:

πk
6h(s, v) =





s if k = 1, v = s and h > 0 (3.9)

⊥ if h = 0 and
(
v 6= s or (v = s ∧ k > 1)

)
(3.10)

arg minσ

{
w(σ) | σ ∈ Qk

6h(s, v)
}

otherwise (3.11)

where Qk
6h(s, v) is defined by:

Qk
6h(s, v) =





{
π1

6h−1(s, u
′)·v | (u′, v) ∈ E

}

if k = 1, v 6= s, h > 0 or k = 2, v = s, h > 0 (3.12)
(
Qk−1

6h (s, v) − {πk′

6h−1(s, u)·v}
)
∪
{
πk′+1

6h−1(s, u)·v
}

if k > 1, h > 0, and ∃u, k′.
(
πk−1

6h (s, v) = πk′

6h−1(s, u)·v
)

(3.13)

∅ otherwise (3.14)

Let us explain these equations. The k-th shortest path of length h is chosen from a

set Qk
6h(s, v) of “candidate” paths. This principle is identical to that in the Bellman-

Ford equations given earlier. In particular, if this set contains several shortest paths,

a nondeterministic selection is made. The main difference with the BF equations is

the more complex definition of the set of candidate paths. Eq. (3.12) of Qk
6h(s, v) are

the base cases and will become clear later. Let k > 1, h > 0 and v 6= s. By the

inductive nature, the set Qk−1
6h (s, v) is at our disposal. Assume that the path πk−1

6h (s, v)

has the form s · · · u·v where prefix s · · · u is the k′-th shortest path between s and u

(for some k′) of at most h − 1 hops, i.e., s · · · u equals πk′

6h−1(s, u). Then Qk
6h(s, v) is

obtained from Qk−1
6h (s, v) by replacing the path s · · · u·v (as it just has been selected)

by the path πk′+1
6h−1(s, u)·v, if this exists. Thus, as a result of the removal of a (k− 1)-st

shortest path which reaches v via u, say, the set of candidate paths is updated with

the next shortest path from s to v that goes via u. If such path does not exist (i.e.,

equals ⊥), then the candidate set is not extended (as {⊥} = ∅). In case there is no

k′ such that πk−1
6h (s, v) can be decomposed into a k′-th shortest path between s and

some direct predecessor u of v, it means that Qk−1
6h (s, v) is empty, and we return the

empty set (3.14). Let’s go back to (3.12). For k = 1, v 6= s, h > 0, we need to define the

candidate path set explicitly, since we cannot apply (3.13) where the path for k = 0

does not exist. Likewise for k = 2, v = s, h > 0, the shortest path from s to s is s, i.e.

π1
6h(s, s) = s cannot be rewritten in the form of π1

6k−1(s, u)·s as π1
6k−1(s, u) does not

exist. This justifies the two conditions for (3.12).

Lemma 3.39 Eq. (3.9)-(3.14) characterize the hop-constrained k shortest paths from s

to v in at most h hops.
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3.4 Finding Smallest Counterexamples

Proof: This proof goes along similar lines as [JM99]. Let X k
6h(s, v) denote the

set of k shortest paths from s to v in at most h hops. Each path in X k
6h(s, v)

reaches v from some vertex u ∈ Pred(v) = {w ∈ V | (w, v) ∈ E}. In order to

compute πk
6h(s, v), we should consider for every u ∈ Pred(v), all paths from s to

u that do not yield a path in X k−1
6h (s, v). However, since k1 < k2 implies that

w
(
πk1

6h−1(s, u)
)

+ w(u, v) 6 w
(
πk2

6h−1(s, u)
)

+ w(u, v), only the shortest of these paths

needs to be taken into account when computing πk
6h(s, v). Thus we can associate to

(v, h) a set of candidate paths Qk
6h(s, v) among which πk

6h(s, v) can be chosen, that

contains at most one path for each predecessor u ∈ Pred(v). This set Qk
6h(s, v) is

recursively defined by (3.12)-(3.14). �

Adapted Recursive Enumeration Algorithm (aREA6h). Eq. (3.9)-(3.14) pro-

vide the basis for the adapted REA for the HKSP problem (denoted as aREA6h).

In the main program (Alg. 1), first the shortest path from s to t is determined using,

e.g., BF6h. Then, the k shortest paths are determined iteratively using the subroutine

NextPath (Alg. 2). The computation terminates when the total probability mass of

the k shortest paths so far exceeds the bound p (Alg. 1, line 4). Recall that p is the

upper probability bound of the PCTL formula to be checked. Note that Q[v, h, k] in

the algorithm corresponds to Qk
6h(s, v). The paths in the priority queue Q[v, h, k] are

ordered wrt. their weights. When k = 1, Q[v, h, k − 1] and πk−1
6h (s, v) do not exist and

are ∅ and ⊥, respectively. Q[v, h, k] is constructed explicitly in two cases (Alg. 2, lines

4-5) and inherits from Q[v, h, k−1] for the remaining cases (line 12). In the latter case,

σ′ is the path σ = πk−1
6h (s, v) without the last state v, i.e., σ = σ′·v; u is the last state

on σ′, or equivalently the predecessor state of v on σ with σ = s · · · u·v and σ′ is the

k′-th shortest path from s to u within h−1 hops, i.e., σ′ = πk′

6h−1(s, u). In other words,

the function index (s · · · u, h−1) returns k′ where s · · · u is the k′-th shortest s-u path

within h−1 hops. The set Qk
6h(s, v) is updated according to (3.12)-(3.14) (Alg. 2, lines

6-13). In line 14, πk
6h(s, v) is selected from Qk

6h(s, v) according to (3.11).

Time complexity. Before we analyze the time complexity of the algorithm, we first

prove that the recursive calls to NextPath to compute πk
6h(s, t) visit, in the worst case,

all the vertices in πk−1
6h (s, t), which is at most h.

Lemma 3.40 Let k > 1 and v ∈ V . If NextPath(v, h, k) calls NextPath(u, h−1, j) then

vertex u occurs in πk−1
6h (s, v).

Proof: Consider NextPath(v, h, k) and let πk−1
6h (s, v) = u1 · · · uℓ with u1 = s and

uℓ = v. Let ki be the index such that πki

6h−1(s, ui) = u1 · · · ui, for 0 < i 6 ℓ.

As πk−1
6h (s, v) = π

kℓ−1

6h−1(s, uℓ−1)·v, NextPath(v, h, k) needs to recursively invoke

NextPath(uℓ−1, h−1, kℓ−1+1) in case the path π
kℓ−1+1
6h−1 (s, uℓ−1) has not been computed
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3. COUNTEREXAMPLE GENERATION

Algorithm 1 Hop-constrained k shortest paths

Require: weighted digraph G, states s, t, h ∈ N>0, p ∈ [0, 1]

Ensure: C = {π1
6h(s, t), . . . , πk

6h(s, t)} with P(C) > p

1: compute π1
6h(s, t) by BF6h;

2: k := 1;

3: pr := P(π1
6h(s, t));

4: while pr 6 p do

5: k := k + 1;

6: πk
6h(s, t) := NextPath(t, h, k);

7: pr := pr + P(πk
6h(s, t));

8: end while

9: return π1
6h(s, t), . . . , πk

6h(s, t)

Algorithm 2 NextPath(v, h, k)

Require: weighted digraph G, πk−1
6h (s, v) (if it exists),

and candidate path set Q[v, h, k−1] (if it exists)

Ensure: πk
6h(s, v)

1: PriorityQueue Q[v, h, k];

2: if k = 1, v = s, h > 0 then return s;

3: if (h = 0) ∧ ((k > 1 ∧ v = s) ∨ (v 6= s)) then return ⊥;

4: if (k = 1, v 6= s, h > 0) ∨ (k = 2, v = s, h > 0) then

5: Q[v, h, k] := {π1
6h−1(s, u

′)·v | (u′, v) ∈ E};
6: else

7: Path σ′ := πk−1
6h (s, v) \ {v};

8: State u := last(σ′);

9: Int k′ := index (σ′, h− 1);

10: if πk′+1
6h−1(s, u) is not computed yet then

11: πk′+1
6h−1(s, u) := NextPath(u, h−1, k′+1);

12: Q[v, h, k] := Q[v, h, k−1];

13: Q[v, h, k].enqueue
(
πk′+1

6h−1(s, u)·v
)
;

14: return Q[v, h, k].dequeue();
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yet. By a similar reasoning, the path π
kℓ−1

6h−1(s, uℓ−1) is of the form π
kℓ−2

6h−2(s, uℓ−2)·uℓ−1,

and NextPath(uℓ−1, h−1, kℓ−1+1) may need to invoke NextPath(uℓ−2, h−2, kℓ−2+1),

and so on. In the worst case, this sequence of recursive calls covers the vertices

uℓ, uℓ−1, . . . , u1 and ends when it either reaches π1
6h′(s, s) for some 0 < h′ 6 h, or a

hop bound zero. This conforms to the termination conditions (3.9)(3.10) or Alg. 2

lines 2-3 hold. �

To determine the computational complexity of the algorithm, we assume the can-

didate sets to be implemented by heaps (as in [JM99]). The k shortest paths to a

vertex v can be stored in a linked list, where each path πk
6h(s, v) = πk′

6h−1(s, u)·v is

compactly represented by its length and a back pointer to πk′

6h−1(s, u). Using these

data structures, we obtain:

Theorem 3.41 The time complexity of the aREA6h is O(hm+ hk log(m
n )).

Proof: The computation of the first step takes O(hm) using the BF6h algorithm.

Due to Lemma 3.40, the number of recursive invocations to NextPath is bounded by

h, the maximum length of πk−1
6h (s, t). At any given time, the set Qk

6h(s, v) contains

at most |Pred(v)| paths where Pred(v) = {u ∈ V | (u, v) ∈ E}, i.e., one path for

each predecessor vertex of v. By using heaps to store the candidate sets, a minimal

element can be determined and deleted (cf. Alg. 2, line 14) in O(log |Pred(v)|) time.

Insertion of a path (as in Alg. 2, line 5 and 13) takes the same time complexity.

Since
∑

v∈V |Pred(v)| = m,
∑

v∈V log |Pred(v)| is maximized when all vertices have

an equal number of predecessors, i.e., |Pred(v)| = m
n . Hence, it takes O(h log(m

n ))

to compute πk
6h(s, v). We have k such paths to compute, yielding O(hm+hk log(m

n )). �

Note that the time complexity is pseudo-polynomial due to the dependence on k

which may be exponential in n. As in our setting, k is not known in advance, this

cannot be reduced to a polynomial time complexity.

Example 3.42 To illustrate the aREA6h algorithm, we compute the shortest paths

of at most 4 hops from s0 to t in the digraph in Fig. 3.3. The process of comput-

ing π1
64(s0, t) (Fig. 3.6(a)) coincides with that for π64(s0, t) (Fig. 3.4, Example 3.23,

page 32). The set of boxes attached to each path is actually the candidate path set of the

path. The values in the gray boxes in Fig. 3.6(a) are the shortest paths for the respective

pairs of vertices.

To compute the second shortest path π2
64(s0, t), since the values in the gray boxes

in Fig. 3.6(a) are already used, they should be removed and replaced by the values of

π2
61(s0, s0), π

2
61(s0, s0)·s1, π2

61(s0, s0)·s1·t1, π2
61(s0, s0)·s1·t1·t, which are marked with

∗ in Fig. 3.6(b). Note that the ∗ marked positions are just the gray labeled position
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in the last round (Fig. 3.6(a)). In this example, both π1
61(s0, s0) and π2

61(s0, s0) are

needed for computing two different candidate paths. We then pick the minimal weights

(maximal probability) from each candidate path set and the result is labeled gray.

The same applies to π3
64(s0, t) as in Fig. 3.6(c). The shortest paths can be recov-

ered by tracing back the minimal valued boxes. For instance, π1
64(s0, t) = s0·s1·t1·t,

π2
64(s0, t) = s0·s1·s2·t1·t and π3

64(s0, t) = s0·s2·t1·t. �

3.4.3 Point Interval Until — U
=h

Based on Proposition 3.28 in Section 3.3.3, there are two levels in choosing a strongest

evidence in a DTMC D for ΦU=hΨ. The inner level is to decide for a fixed state v |= Ψ

the shortest path, and the outer level is to decide the shortest path among all the s-v

paths for all v |= Ψ. When generating the smallest counterexample for Φ U=h Ψ, the

two-level scheme remains the same, and for the inner level a KSP algorithm for exactly

h hops is applied.

For the inner level, we define the k fixed-hop shortest paths problem as follows:

Definition 3.43 (FKSP problem) Given a weighted digraph G = (V,E,w), s, t ∈
V , h ∈ N>0 and k ∈ N>0, the fixed-hop KSP problem is to determine k shortest paths

in PathsG=h(s, t).

Let πk
=h(s, v) denote the k-th shortest path in Paths

GD[¬Φ]

=h (s, v), which is computed

by the following equations:

πk
=h(s, v) =





s if k = 1 ∧ v = s ∧ h = 0 (3.15)

⊥ if k = 1 ∧ v 6= s ∧ h = 0 (3.16)

arg min
σ

{
w(σ)

∣∣∣ σ ∈ Qk
=h(s, v)

}
if v 6= s ∧Qk

=h(s, v) 6= ∅ (3.17)

where Qk
=h(s, v) is a set of candidate paths among which πk

=h(s, v) is chosen. The

candidate sets are defined by:

Qk
=h(s, v) =





{
π1

=h−1(s, u)·v
∣∣∣ (u, v) ∈ E

}

if k = 1 ∧ v 6= s or k = 2 ∧ v = s (3.18)(
Qk−1

=h (s, v) − {πk′

=h−1(s, u)·v}
)
∪
{
πk′+1

=h−1(s, u)·v
}

if k > 1 and ∃u, k′. πk−1
=h (s, v) = πk′

=h−1(s, u)·v (3.19)

The above equations are a variant of the aREA6h algorithm in Section 3.4.2 and

we denote it as aREA=h.

For the outer level, we define ιk to be the k-th strongest evidence for the formula

Φ U=h Ψ as follows:

ιk = arg min
σ

{
w(σ)

∣∣∣ σ ∈ Zk
}
,
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π1
64(s0, t)
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Figure 3.6: An example run of the aREA6h algorithm
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where Zk is the candidate path set for the k-th strongest evidence defined as:

Zk=





{
π1

=h(s, s′)
∣∣∣ s′ |= Ψ

}
if k = 1 (3.20)

(
Zk−1−πk′

=h(s, u)
)
∪
{
πk′+1

=h (s, u)
}

if k>1 and ∃k′, u, s.t. ιk−1=πk′

=h(s, u)(3.21)

The size of Zk is the size of the set M of intermediate states. In the worst case,

|Zk| = n. The time complexity for computing Z1 is O(hmn), and for computing the

successive k − 1 paths, it needs O (hk log n), where n is the cardinality of Zk. For

detailed explanation, refer to Theorem 3.41 (cf. page 45). The total time complexity of

computing the strongest evidence is O
(
hmn+ hk log n

)
.

3.4.4 Interval Until — U
[hl,hu], U

>hl

According to Section 3.3.4, the strongest evidence for the formula ΦU[hl,hu]Ψ (resp. s |=
Φ U>hl Ψ) is computed by two phases. The first phase is to obtain a shortest s-v path

σ1 of exactly hl hops in graph G1 = GD[Φ] and the second phase looks for the shortest

v-t path σ2 of at most (hu − hl + 1) hops (resp. with no hop constraints) in graph

G2 = GD[¬Φ∧¬Ψ]〈tΨ〉. A strongest evidence is σ1◦vσ2 for all v in the set of intermediate

states M (cf. Section 3.3.4 for more details).

A smallest counterexample consists of the first k strongest evidences, which is re-

duced to computing the k shortest such concatenated paths where each path σ = σ1◦σ2

has the following properties: |σ| ∈ [hl, hu]; σ[0] = s and σ[|σ|] = t; σ1 ∈ Paths⋆
G1

(s) and

σ2 ∈ Paths⋆
G2

(v), where v ∈M . Let πk
[hl,hu](s, t) denote the k-th shortest such path and

recall that h = hu − hl. We establish the following equations:

πk
[hl,hu](s, t) = arg min

σ1◦σ2

{
w(σ1) + w(σ2)

∣∣∣ σ1 ◦ σ2 ∈ Qk
[hl,hu](s, t)

}
,

where Qk
[hl,hu](s, t) is a set of candidate paths among which πk

[hl,hu](s, t) is chosen. As

is shown, the candidate paths in Qk
[hl,hu](s, t) are of the form σ1 ◦ σ2. The candidate

sets are defined by:

Qk
[hl,hu](s, t) =





{
π1

=hl−1(s, u) ◦ π1
6h+1(u, t) | u ∈M

}
if k = 1 (3.22)

(
Qk−1

[hl,hu](s, t) −
{
πk1

=hl
(s, u) ◦ πk2

6h+1(u, t)
})

∪
{
πk1+1

=hl
(s, u) ◦ πk2

6h+1(u, t), π
k1
=hl

(s, u) ◦ πk2+1
6h+1(u, t)

}

if k > 1 and ∃u, k1, k2 such that

πk−1
[hl,hu](s, t) = πk1

=hl
(s, u) ◦ πk2

6h+1(u, t) (3.23)

If k = 1, π1
[hl,hu](s, t) coincides with π[hl,hu](s, t) in Section 3.3.4. If hl = hu, πk

[hl,hu](s, t)

coincides with πk
=hl

(s, t) in Section 3.4.3.
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Remark 3.44 In the second phase, making the Ψ-states absorbing and connecting to

t is required. Otherwise, we might not get a prefix containment free set of paths. This

can be seen by the following example. Given the formula φ = aU[1,2] b and the DTMC

in Fig. 3.7(a). Consider two paths σ1 = s0·t1 and σ2 = s0·t1·t2. According to the

semantics, σ1, σ2 |= φ. However, P(σ1) + P(σ2) = 2. It is because σ2 ∈ Pref (σ1), i.e.,

the set {σ1, σ2} is not prefix containment free. This can be fixed by adding a new state

t. Note that in this example D and D[¬a] are the same. In D[¬a], the only state that

can be reached in hl = 1 step is t1. In D[¬a∧¬b]〈tb〉, from t1, the only possible path to

t is t1·t. Thus, we only obtain path σ1.

s0 t1
1

{a ∧ b}

t2
1

{a ∧ b}{a ∧ b}

(a) D and D[¬a]

s0 t1

{a ∧ b}

t2

{a ∧ b}{a ∧ b}

t

1
1

1

{at t}

(b) D[¬a ∧ ¬b]〈tb〉

Figure 3.7: An example showing the necessity of adding t in the second phase

This indicates that the minimal satisfaction also applies in the U[hl,hu] case. Now

we explain how the algorithm works. Suppose the (k−1)-th shortest path is πk1
=hl

(s, v)◦
πk2

6h+1(v, t), in order to compute the k-th (k > 1) shortest path πk
[hl,hu](s, t), two new

paths πk1+1
=hl

(s, v) in graph G1 and πk2+1
6h+1(v, t) in graph G2 will be computed. To show

that two (instead of one) candidate paths should be added, we use the following lattice

in Fig. 3.8. It shows that the possible replacement of πk1 ◦v π
k2 (short for πk1

=hl
(s, v) ◦

πk2
6h+1(v, t)) is either πk1+1 ◦v π

k2 or πk1 ◦v π
k2+1, but definitely not πk1+1 ◦v π

k2+1.

Since w
(
πk1+1 ◦v π

k2
)

and w
(
πk1 ◦v π

k2+1
)

are “incomparable”, they both should be

added into Qk
[hl,hu](s, t) for πk

[hl,hu](s, t).

w(πk1+1 ◦v π
k2)

w(πk1 ◦v π
k2)

w(πk1 ◦v π
k2+1)

w(πk1+1 ◦v π
k2+1)

6 6

6 6

Figure 3.8: Adding two new candidate paths

Example 3.45 To illustrate this most general case, we show how to compute the small-

est counterexample for s0 6|= P60.38(a U[3,4] b) for the DTMC in Fig. 2.1. The trans-
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Figure 3.9: Computing smallest counterexample for s 6|= P60.38(a U[3,4] b)

formed DTMCs are as in Fig. 3.9. It is to compute paths π1
[3,4](s0, t), . . . , π

k
[3,4](s0, t)

s.t.
∑k

i=1 P
(
πi

[3,4](s0, t)
)
> 0.38. We list the shortest paths with their probabilities:

G1 M G2

π1
=3(s0, s2) s0·s1·s2·s2 0.08 s2 π1

62(s2, t) s2·t1·t 0.5

π2
=3(s0, s2) s0·s2·s2·s2 0.012 π2

62(s2, t) s2·t2·t 0.3

π1
=3(s0, t1) s0·s1·s2·t1 0.2 t1 π1

62(t1, t) t1·t 1

π2
=3(s0, t1) s0·s2·s2·t1 0.03

π1
=3(s0, t2) s0·s1·s2·t2 0.12 t2 π1

62(t2, t) t2·t 1

π2
=3(s0, t2) s0·s2·s2·t2 0.018

• k = 1:

Q
1
[3,4](s0, t) =

n
π

1
=3(s0, s2) ◦ π

1
62(s2, t)| {z }

0.04

, π
1
=3(s0, t1) ◦ π

1
62(t1, t)| {z }

0.2

, π
1
=3(s0, t2) ◦ π

1
62(t2, t)| {z }

0.12

o
π1

[3,4](s0, t) = π1
=3(s0, t1) ◦ π1

62(t1, t) = s0·s1·s2·t1·t
P

= 0.2 < 0.38

• k = 2:

Q
2
[3,4](s0, t) =

n
0.04, π

2
=3(s0, t1) ◦ π

1
62(t1, t)| {z }

0.03

, π
1
=3(s0, t1) ◦ π

2
62(t1, t)| {z }

0

, 0.12
o

π2
[3,4](s0, t) = π1

=3(s0, t2) ◦ π1
62(t2, t) = s0·s1·s2·t2·t

P
= 0.32 < 0.38

• k = 3:

Q
3
[3,4](s0, t) =

n
0.04, 0.03, π

2
=3(s0, t2) ◦ π

1
62(t2, t)| {z }

0.018

, π
1
=3(s0, t2) ◦ π

2
62(t2, t)| {z }

0

o
π3

[3,4](s0, t) = π1
=3(s0, s2) ◦ π1

62(s2, t) = s0·s1·s2·s2·t1·t
P

= 0.36 < 0.38

• k = 4:

Q
4
[3,4](s0, t) =

n
π

2
=3(s0, s2) ◦ π

1
62(s2, t)| {z }

0.006

, π
1
=3(s0, s2) ◦ π

2
62(s2, t)| {z }

0.0024

, 0.03, 0.018
o

π4
[3,4](s0, t) = π1

=3(s0, s2) ◦ π1
62(s2, t) = s0·s2·s2·t1·t

P
= 0.39 > 0.38

The removal of 0.2 in k = 1 has two replacement for k = 2: 0.03 and 0. Likewise,

the removal of 0.12 in k = 2 is replaced by 0.018 and 0. The procedure stops at k = 4

and the smallest counterexample is {πi
[3,4](s0, t) | 1 6 i 6 4}. �
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Algorithm and Time Complexity. To compute πk
[hl,hu](s, t), the following steps

will be taken:

1. Computing the intermediate vertex set M in G1 costs O(hlmn), cf. Section 3.3.4.

2. Computing Q1
[hl,hu](s, t) (resp.Q1

>hl
(s, t)) costs O(humn) (resp. O(hlmn +

n2 log n)), cf. Section 3.3.4.

3. Compute the successive k − 1 paths. We distinguish the two cases Φ U[hl,hu] Ψ

and Φ U>hl Ψ. For each k, two new paths σ1 = πk1+1
=hl

(s, v) and σ2 =

πk2+1
6h+1(v, t) (resp. σ′2 = πk2+1(v, t)) should be computed, combined and added

into Qk
[hl,hu](s, t). The following argument is based on the proof of Theorem 3.41.

• Case Φ U[hl,hu] Ψ: In this case, σ1 can be computed by aREA=h and σ2 by

aREA6h. In each round, the function Nextpath is invoked hl and h+1 times

for σ1 and σ2, respectively. For round i, there are |M | + i − 1 elements in

Qi. This is illustrated in Table 3.2. Recall that O(|M |) = n. The total time

complexity to compute the successive k − 1 paths is

O
(
(hl + h)

(
log(n+ 1) + · · · + log(n + k − 1)

))

= O
(
hu log

(
(n+ 1) · · · (n+ k − 1)

))
= O

(
hu log

(n+ k)!

n!

)
.

#calls of NextPath for
i-th

σ1 σ2 σ′2
take min from Qk

round
(aREA=h) (aREA6h) (REA)

O(log |Qk|)

1 hl h+ 1 n+ 1 log n

2 hl h+ 1 n+ 1 log(n+ 1)
...

...
...

...
...

k hl h+ 1 n+ 1 log(n+ k − 1)

Table 3.2: Time complexity for computing the next k − 1 paths

• Case Φ U>hl Ψ: In this case, σ1 coincides with the previous case and σ′2 can

be computed by the REA algorithm [JM99]. The only difference here is the

number of invocation of NextPath in each round, which is n + 1 instead of

h+ 1. The extra 1 is due to the new state t. Likewise, the time complexity

of computing the successive k − 1 paths is O
(
(hl + n) log (n+k)!

n!

)
.

The total complexity is O
(
humn+hu log (n+k)!

n!

)
for case ΦU[hl,hu]Ψ and O

(
hlmn+

n2 log n+ (hl + n) log (n+k)!
n!

)
for Φ U>hl Ψ.
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3.5 Summary

In this chapter we have provided the theoretical and algorithmic foundations for coun-

terexample generation in probabilistic model checking, in particular for discrete-time

Markov chains. The main contributions are:

• formally defining (strongest) evidences and (smallest) counterexamples for model

checking DTMC against PCTL of the form P6p(Φ UI Ψ);

• casting of the concepts of strongest evidence and smallest counterexample as

(variants of) shortest path (SP) problems;

• proposing new algorithm aREA and its variants for computing differently

bounded KSP problems.

Table 3.3 gives an overview of which algorithms can be applied when checking prop-

erties with (non-strict) probability upper bounds. All cases can be treated by standard

SP algorithms or their amendments. Note that n and m are the number of states and

transitions in the Markov chain, h, hl, hu are the hop bound in the formula, and k is

the number of shortest paths. These algorithms are central to counterexample genera-

tion for PCTL, both for upper and lower probability bounds and for other models and

logics. We will extend those results in Chapter 5.
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Strongest Evidence

Until
Model

Path Time
Transformation

Problem
Algorithm

Complexity

Φ U Ψ GD[¬Φ∧¬Ψ]〈tΨ〉 SP Dijkstra O(m+ n log n)

Φ U6h Ψ GD[¬Φ∧¬Ψ]〈tΨ〉 HSP BF6h/Viterbi O(hm)

Φ U=h Ψ GD[¬Φ] FSP BF=h/Viterbi O(hmn)

GD[¬Φ] FSP
Φ U[hl,hu] Ψ GD[¬Φ∧¬Ψ]〈tΨ〉 + HSP

BF=h

+BF6h
/ Viterbi O(humn)

GD[¬Φ] FSP BF=h

Φ U>hl Ψ GD[¬Φ∧¬Ψ]〈tΨ〉 + SP + Dijkstra
O(hlmn+ n2 log n)

Smallest Counterexample

Until
Model

Path Time
Transformation

Problem
Algorithm

Complexity

Eppstein O(m+ n log n+ k)
Φ U Ψ GD[¬Φ∧¬Ψ]〈tΨ〉 KSP

REA O(m+ kn log m
n )

Φ U6h Ψ GD[¬Φ∧¬Ψ]〈tΨ〉 HKSP aREA6h O(hm+ hk log(m
n ))

Φ U=h Ψ GD[¬Φ] FKSP aREA=h O(hmn + hk log n)

GD[¬Φ] KFSP aREA=h

Φ U[hl,hu] Ψ GD[¬Φ∧¬Ψ]〈tΨ〉 + HKSP + aREA6h O
(
humn+ hu log (n+k)!

n!

)

GD[¬Φ] FKSP aREA=h

Φ U>hl Ψ GD[¬Φ∧¬Ψ]〈tΨ〉 + KSP + REA
O
(
hlmn+ n2 log n+ (hl+n) log (n+k)!

n!

)

Table 3.3: Overview of the counterexample problems
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Chapter 4

Compact Counterexample

Representations

In this chapter, we propose an alternative way to represent a counterexample. Unlike

the path enumeration approach in Chapter 3, the regular expression based approach is

investigated. A need for using compact counterexample representation is demonstrated

by the size of the counterexample for the synchronous leader election protocol [IR90].

We use regular expressions for the succinct representation because they are commonly

known, are easy to understand, and may be very compact. The idea is to represent a

DTMC by a deterministic finite-state automaton (DFA, for short) and obtain regular

expressions by applying successive state elimination where the order of state elimination

is determined heuristically (e.g., [DM04][HW07]). The computation of the probability

of a regular expression is performed using the approach advocated by Daws [Daw04]

for parametric model checking of DTMCs. This boils down to a recursive evaluation

which is guaranteed to be exact (i.e., no rounding errors), provided the transition

probabilities are rational. We provide the details of this approach and show its result

when applied to the leader election protocol. We briefly argue that model reduction

such as bisimulation [LS91] and SCC elimination [lGM02] can be used to obtain even

more compact counterexamples. Finally, we show the generation of counterexamples

on the Crowds protocol [RR98], a protocol for anonymous web browsing that has been

adopted, among others, to Bluetooth [VSV05] and wireless Internet [AFHL04].

4.1 Motivation

Smallest counterexamples may contain an excessive number of evidences, which is il-

lustrated by the violation of s |= P60.9999(♦ a) in the DTMC in Fig. 4.1. The smallest

counterexample consists of the evidences s·(u·s)0·u·t, . . . , s·(u·s)k−1·u·t, where (u·s)i is

a short form of traversing the loop s·u·s for i times and k is the smallest integer such
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s u t
0.01

1

0.99 {a}
1

∅∅

Figure 4.1: A DTMC with excessive number of evidences

that 1 − 0.99k−1 > 0.9999 holds. As a result, the smallest counterexample has k = 689

evidences. In fact, the large number of evidences degrades the significance of each

evidence. It also provides too much information to easily locate the reason of violation.

To illustrate that such phenomena also occur in real-life cases, we made a prototypi-

cal implementation (in Python [Dam08]) to enable generating counterexamples for more

practical case studies. Our implementation uses the same input format as the proba-

bilistic model checker MRMC [KKZ05]. Using the export facilities of PRISM [KNP04],

counterexamples can be generated for various case studies.

Case Study — Synchronous Leader Election Protocol. Let us report on one

case study: synchronous leader election protocol [IR90]. In this protocol, N processes

are arranged in a unidirectional ring to elect a leader. For this purpose, they randomly

select an identity (id, for short) according to a uniform distribution on {1, . . . ,K}.
We call each such selection by all processes a configuration. By means of synchronous

message passing, processes send their ids around the ring till every process sees all the

ids of others, and can thus determine whether a leader (the one with the highest unique

id) can be elected. If yes, the protocol terminates; if no, a new round will be started.

Example 4.1 If N = 4 and K = 3, then a possible configuration is (id1 = 1, id2 =

3, id3 = 3, id4 = 1). Under this configuration, there are no unique ids, thus a new round

should be started. Another possible configuration is (id1 = 2, id2 = 3, id3 = 3, id4 = 1).

It has two unique ids (id1 = 2 and id4 = 1), among which the highest id, i.e. process 1

will be elected as the leader. �

We intend to find a counterexample for formula P6p(♦ leader elected), where

leader elected characterizes the global state of the protocol in which a leader has been

selected. It is clear that a leader will be elected eventually. What interests us, is the

number of evidences needed to converge to probability 1. Especially, we are interested

in the relationship between the number of evidences and the bound p and R, where R

is the round number. Starting a new round means that each process re-selects an id

and repeats the procedure.

4.1.1 Experimental Results

To find the number of evidences contained in a counterexample, we used the PRISM-

model of the protocol [Pri] and ran the counterexample generation using our imple-
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Figure 4.2: Probability vs. number of evidences for leader election (N = 4)

mented algorithm. The results for a fixed N (N = 4) and varying K are depicted in

Fig. 4.2, where the y-axis is the accumulated probability and the x-axis (log-scale) is

the number of evidences that are contained in a counterexample. The abrupt changes

in the curves correspond to the start of a new round, i.e., a new election, in the proto-

col. As the probability of all evidences in one round is the same, the curves in Fig. 4.2

are actually piecewise linear if the x-axis were not log-scale. The curves shift more to

the right when K increases since there are more possible configurations and thus more

evidences. The larger K is, the more quickly the probability of the counterexample

approaches 1. This is due to the fact that it is less probable that no process selects

a unique id. All curves approach 1, which indicates that almost surely eventually a

leader will be elected. The number of evidences in a counterexample, however, grows

drastically to millions; whereas the probability of having elected a leader decreases

drastically in each round, thus the probability per-evidence decreases tremendously.

4.1.2 Mathematical Analysis

To obtain more insight into this rapid growth of the size of a counterexample, we carry

out a brief combinatorial analysis. Let us first consider the number of possibilities

(denoted W (N,K)) of putting N labeled balls into K labeled boxes such that each box

contains at least two balls. Actually, W (N,K) characterizes the number of possibilities

of assigning K ids to N processes such that each id is assigned to more than one process,

in which case a leader is not selected. W (N,K) can be solved by using the “associated
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Figure 4.3: The leader election model

Stirling number of the second kind (S2)” [Com74]:

W (N,K) =

min(⌊N/2⌋,K)∑

j=1

S2(N, j)
K!

(K − j)!
, (4.1)

where S2(N,K) = K·S2(N − 1,K) + (N − 1)·S2(N − 2,K − 1) indicates the number

of ways to put N labeled balls into K unlabeled boxes. Obviously, it makes no sense

to have more than ⌊N/2⌋ boxes, or else it would be impossible to allocate all the balls

in the right way. The factor K!
(K−j)! expresses that there are K! ways to permute the

boxes (including the empty ones); for these empty boxes the order does not matter, so

we divide by (K − j)!.
The non-recursive equation for S2(N,K) is:

S2(N,K) =

K∑

i=0

(−1)i

(
N

i

)


K−i∑

j=0

(−1)j (K−i−j)N−i

j!(K−i−j)!


. (4.2)

For each round in the leader election protocol, the number of possibilities for a process

to choose an id is KN . Thus, the probability that N processes with K ids elect a leader

in round R, denoted by P (N,K,R), is:

P (N,K,R) =

(
W (N,K)

KN

)R−1 KN −W (N,K)

KN
, (4.3)

where
(

W (N,K)
KN

)R−1
is the probability that a leader is not elected in the first (R−1)

rounds and KN−W (N,K)
KN indicates the probability that a leader is elected in the R-th

round.

We now calculate the probabilities of each evidence per round using (4.3). The

model of the synchronous leader election protocol is depicted in Fig. 4.3. When we

start a new round, there are KN possible configurations, among which in W (N,K)

(square states, unsuccessful) configurations no unique id will be selected. For these

states, we start the next round, while in KN−W (N,K) (round-angle states, successful)

configurations a unique id will be selected with a leader elected. Thus:
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Proposition 4.2 The number of evidences that can reach the state leader elected in

the R-th round is:

#Evi(N,K,R) = W (N,K)R−1 ·
(
KN −W (N,K)

)
.

Proposition 4.2 shows that the number of evidences is exponential in R. Note that

W (N,K) is exponential in N and K, which makes #Evi(N,K,R) double exponential.

The number of evidences thus grows extremely fast. This results in two problems.

First, it leads to storage problems as counterexamples may simply get too large to be

kept in memory. Secondly, and more importantly, counterexamples will be incompre-

hensible to the user. We therefore need to find ways to reduce the number of evidences

in a counterexample, and to obtain a compact and user-friendly representation. To

that purpose we suggest to use regular expressions.

4.2 Regular Expression Counterexamples for Unbounded

Reachability

This approach is inspired by classical automata theory and is based on representing

sets of paths by regular expressions. A major difference with usual regular expres-

sions is that we need to keep track of the transition probabilities. To tackle this, we

adopt the approach proposed by Daws [Daw04]. He uses regular expressions to repre-

sent sets of paths and calculates the exact rational value of the probability measure in

DTMC model checking (provided all transition probabilities are rational). We adapt

this approach to obtain compact representations of counterexamples. We restrict to

the reachability properties, i.e., no nested formulae. This restriction is due to tech-

nical reasons that will become clear later (page 66). The main idea is to consider a

counterexample as a set of probable branches (sub-expressions) that go from the initial

state to the goal state and to provide a function to evaluate the probability measure of

those expressions. We first consider the unbounded reachability properties and assume

that the DTMC at our disposal has been subject to the transformation in Step 1,

cf. Section 3.2.1. For other bounded reachability forms, we will discuss in Section 4.3.

4.2.1 Turning A DTMC into An Automaton

Definition 4.3 (DFA of a DTMC) For DTMC D = (S,P, L) with initial

state ŝ ∈ S and goal state t, let the deterministic finite automaton (DFA)

AD = (S′,Σ, s̃, δ, {t}), where:

• S′ = S ∪ {s̃} is the state space with start state s̃ /∈ S;

• Σ =
{(

P(s, s′), s′
)
| P(s, s′) > 0

}
∪
{
(1, s̃)

}
⊆ (0, 1] × S is the (finite) alphabet;
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Figure 4.4: An example DTMC D and its automaton AD

• δ ⊆ S′×Σ×S′ is the transition relation such that δ (s, (p, s′)) = s′ iff P(s, s′) = p,

and δ(s̃, (1, ŝ)) = ŝ;

• t ∈ S is the accepting state.

The automaton is equipped with a start state s̃ with a transition of probability one

to the initial state of D. Symbols in the alphabet are pairs (p, s) with p a probability

and s a state. Transition s
p→ s′ in D is turned into a transition from s to s′ labeled

with (p, s′). (Obviously, this yields a deterministic automaton.) This is a slight, though

important deviation from [Daw04], where labels are just probabilities. The probabilities

are needed to determine the path probabilities (see Def. 4.5), while the target states

are used for recovering the evidences. For simplicity, probability labels are omitted if

they are clear from the context.

Example 4.4 Fig. 4.4 (left) depicts an abstract example of a DTMC D with initial

state ŝ = s1 and goal state t = s4, and its DFA AD (right). The new start state is

s̃ = s0, which has a transition equipped with symbol (1, s1) to s1. �

4.2.2 Evaluation of Regular Expressions

Regular expressions will be used to represent a counterexample C. Let R(Σ) be the

set of regular expressions over the finite alphabet Σ. It contains the elements of Σ,

the empty word ε, and is closed under union (|), concatenation (.) and Kleene star (∗).
Let L(r) ∈ Σ∗ denote the regular language (a set of words) described by the regular

expression r ∈ R(Σ) and L(Σ) denote the regular language that can be generated by

any regular expression over Σ. The length |z| and |r| denote the number of symbols

in the word z and regular expression r, respectively. For instance, for the alphabet

Σ = {a, b, c}, the regular expression r = a∗.(b|c) ∈ R(Σ) can generate the word z =

aaac ∈ L(r), where |r| = 3 and |z| = 4. We sometimes omit . and write r.r′ as rr′ for

short.

To determine the probability of a counterexample C (denoted P(C)) from its regular

expression r, we define the evaluation function as follows:
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Definition 4.5 ([Daw04], Evaluating regular expressions) Let val : R(Σ) 7→ R

be defined as:

val(ε) = 1 val(r|r′) = val(r) + val(r′)

val((p, s)) = p val(r.r′) = val(r) × val(r′)

val(r∗) =

{
1, if val(r) = 1

1
1−val(r) , otherwise

(4.4)

If we limit the transition probabilities to be rational values, then exact values are

obtained. It can be seen by the following theorem:

Theorem 4.6 Let r be the regular expression for DFA AD = (S′,Σ, s̃, δ, {t}) where

D = (S,P, L) with initial state ŝ. Then:

val(r) = P
(
Paths⋆

min(ŝ,♦ att)
)
.

Proof: The theorem is stated in [Daw04] without a proof. We prove it here by structural

induction over r. Since it is a folklore [Kle56] that the regular expression r generates

the same language as the automaton with s̃ the start state and t the accepting state,

it consequently holds that L(r) = Paths⋆
min(ŝ,♦ att). Let P(r) denote the probability

of the set Paths⋆
min(ŝ,♦ att). It remains to show that val(r) = P(r).

The regular expression r between s̃ and t can be read as the labeling of the transition

from s̃ to t, i.e., s̃ r−→ t. We distinguish the following cases:

• If r = ε, then s̃ = t and the reachability probability is 1, i.e., P(r) = 1
def.
= val(ε).

• If r = (p, t), there is only one step from s̃ to t and the probability is p, i.e.,

P((p, t)) = p
def.
= val((p, t)).

• If r = r1|r2, it can be seen as that there are two possible paths to reach from

s̃ to t, labeled with r1 and r2, respectively. The probability is thus the sum of

the probability of the two paths, see Fig. 4.5(a). By the induction hypothesis,

P(r1) = val(r1) and P(r2) = val(r2), thus

P(r1|r2) = P(r1) + P(r2)
I.H.
= val(r1) + val(r2)

def.
= val(r).

• If r = r1.r2, it can be seen as that there are two successive (or concatenated)

paths to reach from s̃ to t, labeled with r1 and r2, respectively. The probability is

thus the product of the probability of the two subpaths, see Fig. 4.5(b). Similarly,

P(r1.r2) = P(r1) × P(r2)
I.H.
= val(r1) × val(r2)

def.
= val(r).
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(a) r1|r2
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(b) r1.r2

s̃ t
r2

r1

(c) r∗1r2

Figure 4.5: The intuition of function val(r)

• If r = r∗1 and val(r1) = 1 (the first case in (4.4)), then s̃ = t and P(r) = 1 = val(r).

If val(r1) < 1 (the second case in (4.4)), then there exists r2 6= ε such that

r = r∗1r2, see Fig. 4.5(c). Due to the geometrical series,

P(r) =

∞∑

i=0

P(r1)
i · P(r2) =

1

1 − P(r1)
· P(r2)

I.H.
=

1

1 − val(r1)
· val(r2) def.

= val(r∗1) · val(r2)

def.
= val(r∗1r2) = val(r). �

Note that r∗1 cannot stand alone unless val(r1) = 1, otherwise there must exist an

outgoing transition with probability at most 1 − val(r1) > 0. This explains why there

exists r2 6= ε. For val(r1) < 1, val(r∗1) is not interpreted as a probability (since it is

greater than 1) but as the sum of an infinite set of probabilities (
∑∞

i=0 val(r
i
1)).

In the following, we define a maximal union subexpression which plays the role

of a compact evidence, i.e., the evidences in a compact counterexample (the regular

expression counterexample):

Definition 4.7 r1 is a maximal union subexpression (MUS) of a regular expression

r if r = r1 |r2 modulo (R1)-(R3), for some r2 ∈ R(Σ), where:

(R1) r′ ≡ r′ | ε
(R2) r′1 | r′2 ≡ r′2 | r′1
(R3) r′1 | (r′2 | r′3) ≡ (r′1 | r′2) | r3

(R1)-(R3) are equations and ≡ denotes the language equivalence between regular

expressions. r1 is maximal because it is at the topmost level of a union operator. If

the topmost level operator is not union, then r1 = r (cf. R1). A regular expression

represents a set of paths and each MUS can be regarded as a main branch from the

start state to the accepting state.
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Example 4.8 A regular expression for the automaton AD in Fig. 4.4 (right) is:

r0 = s1s3s
∗
3s4︸ ︷︷ ︸

r1

| s1(s2|s3s∗3s2)(s5s3s∗3s2)∗s5s3s∗3s4︸ ︷︷ ︸
r2

.

r1 and r2 are the MUSs of r0 with val(r1) = 1 × 0.3 × 1
1−0.5 × 0.3 = 0.18 and

val(r2) = 0.82. We can distribute | over . in r2 and obtain two more MUSs in-

stead: r3 = s1s2(s5s3s
∗
3s2)

∗s5s3s∗3s4 and r4 = s1s3s
∗
3s2(s5s3s

∗
3s2)

∗s5s3s∗3s4. The regular

expressions r1, r3 and r4 characterize all paths from s1 to s4, which fall into the above

three branches. Note that r1 cannot be written as s1s
+
3 s4, since from the full form of

r1 = (1, s1)(0.3, s3)(0.5, s3)
∗(0.3, s4), the probability of the first s3 is different from that

of s∗3. �

4.2.3 Regular expressions as counterexamples

The equivalence of DFAs and regular expressions, as well as converting DFAs to regular

expressions has been widely studied. Several techniques are known, e.g., the transitive

closure method [Kle56], Brzozowski’s algebraic method [Brz64][BS86], and the state

elimination method [DK01][Lin01]. The state elimination method is based on remov-

ing states one by one, while labeling transitions by regular expressions. It terminates

once only the start and accepting state remain; the transition connecting these states

is labeled with the resulting regular expression. This technique is suitable for manual

inspection but is less straightforward to implement. The transitive closure method gives

a clear and simple implementation but tends to create rather long regular expressions.

The algebraic method is elegant and generates reasonably compact regular expressions.

For a more detailed comparison, see [Neu05]. In order to obtain a minimal counterex-

ample in an on-the-fly manner, we take the state elimination method. This allows

us to stop once the value of the obtained regular expression exceeds the probability

threshold. The algebraic method does not support this.

By using regular expressions for representing counterexamples, we will, instead

of obtaining evidences one by one, derive a larger number of evidences at a time,

which hopefully yields a quick convergence to the required probability threshold and

a clear explanation of the violation. As a result, we will not insist on obtaining the

smallest counterexample but instead prefer to find the branches (MUSs) with large

probabilities and short length. Thus, a (good) regular expression should be:

(i) shorter (wrt. its length), to improve comprehensibility;

(ii) more probable, such that it is more informative and the algorithm will terminate

with less MUSs;

(iii) minimal, where a compact counterexample is minimal if the omission of any of

its MUSs would no longer result in a counterexample.
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However, it has been recently proven that (i) the size of a shortest regular expression

of a given DFA cannot be efficiently approximated [GS07]. Therefore, it is not easy to,

e.g., by state elimination, compute an optimal removal sequence for state elimination in

polynomial time [HW07]. We could adapt the heuristics proposed in e.g. [HW07][DM04]

to get a better order to eliminate states. For (ii), we could take the advantage of the

SP algorithms as well as the model-checking results. The states on the more probable

evidences should be eliminated first. The minimality (iii) will be guaranteed by the

following algorithm.

We take the following iterative strategy: In each iteration, we take the strongest

evidence σ = s̃·ŝ·s1· · ·sj ·t in the remaining automaton — recall that this amounts to

an SP problem — and eliminate all the intermediate states on σ (i.e., ŝ, s1, . . . , sj)

one by one according to a recently proposed heuristics [HW07]. After eliminating a

state, possibly a new MUS rk, say, is created where k MUSs have been created so far,

and val(rk) can be determined. If
∑k

i=1 val(ri) > p, then the algorithm terminates.

Otherwise, the transition labeled with rk is removed from the automaton and either a

next state is selected for elimination or a new evidence is to be found, cf. Alg. 3.

Algorithm 3 Regular expression counterexamples

Require: DFA AD = (S,Σ, s̃, δ, {t}), and p ∈ [0, 1]

Ensure: regular expression r ∈ R(Σ) with val(r) > p

1: A := AD; pr := 0; Priority queue q := ∅; k := 1;

2: while pr 6 p do

3: σ := the strongest evidence in A by Dijkstra’s algorithm;

4: forall s′ ∈ σ \ {s̃, t} do q.enqueue(s′); endforall;

5: while q 6= ∅ do

6: A := eliminate(q.dequeue());

7: rk := the created MUS;

8: pr := pr + val(rk);

9: A := eliminate(rk);

10: if (pr > p) then break; else k := k + 1;

11: endwhile;

12: endwhile;

13: return r1 | . . . | rk;

Priority queue q keeps the states to be eliminated in the current iteration. Those

states come from the current strongest evidences. The order in which states are de-

queued from q is given by the heuristics in [HW07], which will be briefly introduced

later. The function “eliminate(·)” can both eliminate states and regular expressions,

where the latter simply means the deletion of the transitions labeled with the regular

expression.

Example 4.9 Let us apply the algorithm to AD of Fig. 4.4 and consider P60.7(♦ s4).
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(e) Eliminate s3

Figure 4.6: An example of state elimination

In the first iteration, s0·s1·s2·s5·s3·s4 is found as the strongest evidence. Assuming

the order to eliminate the states by [HW07] is s5, s2, s1, s3 (this will be explained in

Example 4.13), we obtain the regular expression r0 = s1(s3|s2s5s3)(s3|s2s5s3)∗s4 with

val(r5) = 1. The process of the elimination is illustrated in Fig. 4.6. Since all states are

eliminated and the threshold 0.7 is exceeded, the algorithm terminates. This expression

gives a clear reason that traversing the cycle s3 or s2s5s3 infinitely many times causes

the probability exceeding 0.7.

Let us change the elimination order to s5, s1, s3, s2. Then the regular expression

is r1 = s1s3s
∗
3s4 | s1s2(s5s3s∗3s2)∗s5s3s∗3s4. After eliminating s3, the first MUS r2 =

s1s3s
∗
3s4 is generated and the probability is 0.18 < 0.7. The algorithm continues (i.e.,

eliminates s2) to find more MUSs, till r1 is found. Note that r1 is longer than r0, and

thus less intuitive to comprehend. The cycles s3 and s3s2s5 are however indicated.

Let us pick a less probable evidence s0·s1·s3·s4 to be eliminated in the first ite-

ration. After eliminating s1 and s3, the resulting expression is r2=s1s3s
∗
3s4. Then

r2 is removed from the automaton and the strongest evidence in the remaining au-

tomaton is s0·s2·s5·s4. After eliminating s5, s2, we obtain the regular expression:

s1s2(s5s3s
∗
3s2)

∗s5s3s∗3s4. The final regular expression is again r1 and the analysis in

the last case applies. �

Proposition 4.10 The regular expression counterexample generated by Alg. 3 is min-

imal.
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This property immediately follows from the fact that Alg. 3 terminates immediately

once the cumulative probability exceeds the threshold. We would like to emphasize

that the regular expression representation is not applicable to formulae with nested

probabilistic operators, e.g., P6p1

(
♦P6p2(♦ a)

)
. However, this is not a real constraint

in practice, since those formulae are rarely used [Gru08]. In addition, it is important

to mention that the algorithm in this section not only applies to non-strict probabil-

ity bounds, but also to strict bounds as, e.g., P<p(♦ a). For instance, consider the

DTMC in Fig. 3.1 (page 26). The regular expression counterexample for the violation

of P< 1
2
(♦ a) in state s is s∗t with probability 1

2 . Recall that the KSP characterization

in Chapter 3 only works for the non-strict probability bounds.

Example 4.11 (Leader election protocol revisited) We conclude this section by

reconsidering the leader election protocol. For the original DTMC, the regular expres-

sion, denoted r(N,K), is:

start .
(
(u1| · · · |ui) .next .start

)∗
. (s1| · · · |sj) .leader ,

where start , next and leader are the obvious short forms. The regular expression

lists all the unsuccessful configurations, as well as the successful ones. As a result,

|r(N,K)| = KN+4. Compared to the number of evidences computed directly, i.e.,∑R
i=1 #Evi(N,K, i), |r(N,K)| is much shorter, but it still has an exponential length.

On the other hand, however, the structure of r(N,K) clearly indicates the reason of

violation, i.e., the repeated unsuccessful configurations followed by a successful one. �

4.2.4 Heuristics to Obtain Shorter Regular Expressions

For the completeness of the algorithm, we now explain how the heuristics work to

determine the order of the states to be eliminated. A detailed description of the

state elimination algorithm can be found in [Woo87]. As summarized in [GH08], two

groups of algorithms have been studied on choosing the elimination order: the first

group has a tail-recursive specification and are most easily implemented by an itera-

tive program [DM04][EKSW05][MMR05]; the other is based on the divide-and-conquer

paradigm [HW07], suggesting a recursive implementation. Here we pick one represen-

tative from each group: [DM04] and [HW07] and show the main ideas.

4.2.4.1 Least Priced State First

The approach by Delgado and Morais [DM04] calculates for each state a price1, which

indicates how “expensive” it is to remove this state. The least priced state will be

removed first.
1In the original text, it is called “weight”. We use “price” to differentiate the weight in a weighted

digraph in Chapter 3.
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Let AD = (S′,Σ, s̃, δ∗, {t}) be a nondeterministic finite automaton (NFA). Note

that we allow the extended transition relation, which is the transitive closure of δ such

that if r is a regular expression, then δ∗ ⊆ S × R(Σ) × S. Graphically, the regular

expression r is labeled on the edge between s and s′. For a state we define In and Out

to be the number of edges going into and out from it. Let |r(k)
in | (resp. |r(k)

out |) denote

the size (i.e., the number of symbols) of the regular expression on the k-th incoming

(resp. outgoing) edge, not including the self-loop. Similarly, |rloop | denotes the size of

the regular expression on the self-loop (if any) on the state.

Example 4.12 For state s3 in Fig. 4.6(b), In = Out = 2, and

| r(1)in︸︷︷︸
s3

| = 1 | r(2)in︸︷︷︸
s5s3

| = 2 | r(1)out︸︷︷︸
s2

| = | r(2)out︸︷︷︸
s4

| = 1 | rloop︸︷︷︸
s3

| = 1. �

Formally, using the convention
∑0

j=1a
(j)= 0, the price of a state s can be computed as:

price =
In∑

j=1

(
|r(k)

in | × (Out − 1)
)

︸ ︷︷ ︸
sum of in-edge price

+
Out∑

j=1

(
|r(k)

out | × (In − 1)
)

︸ ︷︷ ︸
sum of out-edge price

+ |rloop | × (In × Out − 1)︸ ︷︷ ︸
sum of loop price

.

Intuitively, the price of the graph is the sum of the sizes of all regular expressions on

the edges of the graph. The price of a state given above characterizes the price that

will be added to the price of the graph by removing that state. The time to compute

the price of states is negligible. The price of s3 in the above example is 8.

As is shown by experiments in [DM04], “less price” does not necessarily mean

“better choice”. Some more strategies are taken to improve the heuristics, but these

are more time-consuming. We don’t elaborate on these extensions here.

4.2.4.2 Structure-Oriented Chopping

Han and Wood viewed the problem from the perspective of the structure of the au-

tomaton [HW07]. Essentially, the states on the important positions, denoted as bridge

states, should be eliminated as late as possible. Bridge states sb (i) are neither the start

state s̃ nor the accepting state t; (ii) appear at least once on each s̃-t path; and (iii)

once a path visited sb, it will never visit the states prior to sb again. For instance, the

automaton in Fig. 4.7(a) has bridge states s1 and s7.

Vertical Chopping. Using the bridge states we can divide the automaton A
into several sub-automata A1, . . . ,Ak. The chopping is illustrated as in Fig. 4.7(b).

Note that the language of the automaton does not change under the vertical chopping:

L(A) = L(A1).L(A2) . . .L(Ak). Consequently, r = r1.r2 . . . rk where r and ri are the

regular expressions in A and Ai, respectively. This takes O(|S| + |δ|) times.
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(a) Bridge states s1 and s7
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a

b

b

b

a

s7

b

a

(b) Vertical chopping at state s7

Figure 4.7: Vertical chopping

Horizontal Chopping. For each sub-automaton Ai that has been vertically

chopped (without bridge states), we can apply the horizontal chopping illustrated in

Fig. 4.8 to divide the automaton into Ai1, . . . ,Aiℓ. The language of the automaton does

not change under the vertical chopping: L(Ai) = L(Ai1)|L(Ai2)| . . . |L(Aiℓ). Conse-

quently, ri = ri1|ri2| . . . |riℓ where ri and rij are the regular expressions in Ai and Aij,

respectively. This takes O(|S| + |δ|) times.

s1

s2 s3 s4

s5 s6

s7

b

b

a a

b

a

b

b

a

s1

s5 s6

s7

b a

b

a

s1

s2 s3 s4

s7

b

a a

b

b

Figure 4.8: Horizontal chopping

Once the horizontal chopping is performed, some states become the bridge states of

the sub-automaton and the whole procedure of “finding bridge state - vertical chopping

- horizontal chopping” can be applied again, until no further chopping is possible. The
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removal of a sequence is easily done. In the worst case, it might be not able to perform

any vertical or horizontal chopping. Brute force can be instead applied.

Example 4.13 For the automaton in Fig. 4.6(a) (page 65), the bridge states are s1 and

s3. By vertical chopping, we obtain three sub-automata in Fig. 4.9.

s0 s1 s3 s4

s2 s5

s3

s2

s5

s3s2

s3

s1
s1 s3

s3

Figure 4.9: Vertical chopping of the automaton in Fig. 4.6(a)

For the automaton in the middle in Fig. 4.9, horizontal chopping can be further ap-

plied and it yields the two sub-automata in Fig 4.10. Note that the right sub-automaton

in Fig 4.10 has the bridge state s2. The above procedure means that s2 should be elimi-

nated after s5, while s1 and s3 should remain as they are start and accepting state. �

s0 s1 s3

s2 s5

s2

s5

s3s2

s3

s3
s1

s3

Figure 4.10: Horizontal chopping of the middle automaton in Fig. 4.9

4.3 Regular Expression Counterexamples for Bounded

Reachability

For bounded reachability formula ♦6h att, a regular expression, e.g. r = r1 | r∗2, may

not be valid because it is possible that the length of the words generated by r1 or the

expansion of r2 exceeds h. Thus, val(r) might be larger than the actual probability. In

order to obtain a precise valuation, we consider constrained regular expressions.
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4. COMPACT COUNTEREXAMPLE REPRESENTATIONS

Definition 4.14 (Constrained regular expressions) For r ∈ R(Σ) and h ∈ N>0,

r〈h〉 and r[h] are constrained regular expressions where L(r〈h〉) = {z ∈ L(r) | |z| 6 h}
and L(r[h]) = {z ∈ L(r) | |z| = h}.

Intuitively r〈i〉 (resp. r[i]) is the regular expression that can generate the set of

words with at most (resp. exactly) i symbols. In fact, L(r[h]) ⊆ L(r〈h〉) ⊆ L(r) and

L(r〈h〉) can be expressed equivalently by a union of possible enumerations, namely,

L(r〈h〉) = L
(
r[0] | r[1] | · · · | r[h]

)

= L
(
r[0]
)
∪ L

(
r[1]
)
∪ · · · ∪ L

(
r[h]

)
.

Example 4.15 Let r = abbc | (a | bc)∗ and h = 3. L(r〈3〉) =
⋃3

i=0 L(r[i]) and

L(r[0]) = {ε} L(r[2]) = {aa, bc}
L(r[1]) = {a} L(r[3]) = {aaa, abc, bca}

Note that abbc ∈ L(r) but abbc /∈ L(r〈3〉). �

Constrained regular expressions can be obtained in the same way as presented just

before, only their valuation is different:

Definition 4.16 For r ∈ R(Σ) and h ∈ N>0, the function val for r〈h〉 and r[h] is
defined by:

val(r〈h〉) =

h∑

i=0

val(r[h])

val(ε[h]) =

{
1, if h = 0

0, otherwise

val((p, s)[h]) =

{
p, if h = 1

0, otherwise

val((r1|r2)[h]) = val(r1[h]) + val(r2[h])

val((r1.r2)[h]) =

h∑

i=0

val(r1[i])·val(r2[h− i])

val(r∗[h]) = val(ε〈h〉) +

h∑

i=1

val(r[i]) · val(r∗[h− i])

Note that the complexity of the above evaluation function is, however, very high.

It remains to establish that constrained regular expressions are counterexamples for

bounded until-formulae.

Theorem 4.17 Let r be the regular expression for DFA AD = (S′,Σ, s̃, δ, {t}) where

D = (S,P, L) with initial state ŝ and h ∈ N>0. Then:

val(r〈h〉) = P
(
Paths⋆

min(ŝ,♦6hatt)
)

val(r[h]) = P
(
Paths⋆

min(ŝ,♦=hatt)
)
.
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4.4 Model Reduction

Proof: The proof is similar to the proof for Theorem4.6. Let P(r〈h〉) and P(r[h])

denote the probability of the set of paths Paths⋆
min(ŝ,♦6hatt) and Paths⋆

min(ŝ,♦=hatt),

respectively. Those two sets only contain paths with at most and exactly h hops,

respectively. We don’t elaborate to do the case distinction here. A general note is

that val(r[h]) only considers the probabilities of all paths with h hops. Furthermore,

val(r〈h〉) =
∑h

i=0 val(r[h]) guarantees that the probability of paths with more than h

hops will not be considered. �

For the more general bounded reachability properties ♦[hl,hu] att, due to the two-

phase nature specified in Section 3.3.4, it can be divided into generating r1[hl] in D1 =

D[¬Φ] and r2〈hu − hl + 1〉 (r2, if hu = ∞) in D2 = D[¬Φ ∧ ¬Ψ]〈tΦ〉. Thus, the regular

expression will be r1[hl].vr2〈hu −hl + 1〉, where v is the intermediate state on the hl-th

position and .v denotes the concatenation on state v. Recall that M is the set of all

intermediate states.

Corollary 4.18 Let r1 be the regular expression for DFA AD1 = (S′,Σ, s̃, δ, {v})
where D1 has initial state s and let r2 be the regular expression for DFA AD2 =

(S′′,Σ, ṽ, δ′, {t}) where D2 has initial state v and hl, hu ∈ N>0. Then:

∑

v∈M

val
(
r1[hl].vr2〈hu − hl + 1〉

)
= P

(
Paths⋆

min(ŝ,♦[hl,hu]att)
)
.

4.4 Model Reduction

Regular expression counterexamples are feasible when the excessive number of evi-

dences are caused by traversing loops. Clearly, the number of states also affects the

size of the regular expression. Thus, any model reduction prior to counterexample

generation would be helpful. Two strategies may be utilized to slim down the model

size, viz. bisimulation minimization and SCC minimization. Bisimulation minimiza-

tion [KKZJ07][LS91] lumps bisimilar states and yields a typically much smaller quo-

tient DTMC. Strongly-connected-component (SCC) minimization [lGM02][ADvR08],

instead, only lumps SCCs and also yields a quotient DTMC. It worth mentioning

the distributed implementation of both techniques: [BHKvdP08] for bisimulation and

[BCvdP09] for SCC minimization. An evidence [s0]R·[s1]R· · ·[sn]R in the quotient

DTMC represents a set of evidences in the original DTMC, viz., {s′0·s′1· · ·s′n | s′i ∈
[si]R and 0 6 i 6 n}, where [si]R is the equivalence class under equivalence R with si

as its representative. Note that the relation R can be bisimulation ∼ or SCC. Bisimu-

lation minimization preserves both unbounded and bounded probabilistic reachability

properties, while SCC minimization only preserves the former one.

In the following, we continue the leader election example to show the effect of the

model reduction on the size of the regular expression counterexamples.
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4. COMPACT COUNTEREXAMPLE REPRESENTATIONS

• The regular expression counterexample in the bisimulation quotient DTMC in

Fig. 4.11 is:

r∼(N,K) = start . (u.next .start )∗.s.leader ,

where u1, . . . , ui are wrapped as u; s1, . . . , sj as s in Fig. 4.3. Note that

|r∼(N,K)| = 6 is independent of N and K.

start

s

leader

u

next

NK−W (N,K)
NK 1

W (N,K)
NK

1

1

Figure 4.11: The bisimulation minimized model for leader election protocol

• The SCC-quotient DTMC is obtained by replacing the left half of the model

(an SCC) by the (macro) initial state start , as shown in Fig. 4.12. The regular

expression counterexample is:

rSCC(N,K) = start .(s1| · · · |sj).leader ,

where the intuition of staying in start is “still unsuccessful”.

start

s1

... NK −W (N,K)

sj

leader

1
NK−W (N,K)

1
NK−W (N,K)

1

1

Figure 4.12: The SCC-minimized model for leader election protocol

• Applying both bisimulation- and SCC-minimization techniques yields the model

in Fig. 4.13 and the regular expression counterexample is:

start

s

leader

1 1

Figure 4.13: The bisimulation- and SCC-minimized model for leader election protocol

Note that in this case, too much information is abstracted away such that it only

indicates that eventually with probability 1 a leader will be elected.
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Figure 4.14: Probability vs. number of evidences for Crowds protocol (N = 5)

4.5 Case Study

We now illustrate our techniques on a more serious example. The Crowds proto-

col [RR98] is aimed to provide users with a mechanism for anonymous Web browsing.

The main idea behind Crowds is to hide each user’s communication by routing ran-

domly within a group of similar users. Even if a local eavesdropper or a bad group

member observes a message being sent by a particular user, it can never be sure whether

the user is the actual sender, or is simply routing another user’s message.

The protocol works in the following way: 1) The sender selects a crowd member

at random (possibly itself), and forwards the message to it, encrypted by the corre-

sponding pairwise key. 2) The selected router flips a biased coin. With probability

1−PF, where PF (forwarding probability) is a parameter of the system, it delivers the

message directly to the destination. With probability PF, it selects a crowd member

at random (possibly itself) as the next router in the path, and forwards the message to

it, re-encrypted with the appropriate pairwise key. The next router repeats this step.

In our experiments, we assume that 1) if a sender has been observed by the bad

member twice, then it has been positively identified (Pos for short), thus the anonymity

is not preserved; 2) the bad member will deliver the message with probability 1, as in

[Shm04]. This protocol is executed every time a crowd member wants to establish an

anonymous connection to a Web server. We call one run of the protocol a session and

denote the number of sessions by R. Other parameters are the number N of good

members and the number M of bad members.

We take the Crowds protocol modeled using PRISM [Pri] and the property is
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Figure 4.15: Quotient DTMC for Crowds protocol (N = 2,M = 1, R = 2,PF = 0.8)

P6p(♦Pos) which characterizes the probability threshold that the original sender’s

id 0 is positively identified by any of the bad members. The relation between the

number of evidences and the probability threshold for different number of sessions R

is shown in Fig. 4.14 (N = 5, M = 1, PF = 0.8), both for the original DTMC and its

bisimulation quotient. As one evidence in the minimized model may represent a set of

evidences in the original model, given the same number of evidences, the cumulative

probability in the minimized model is higher than that in the original model. This is

illustrated in Fig. 4.14 by the fact that the curves for the minimized model are above

the ones for the original model. It also holds that the larger the round number we

allow, the larger the cumulative probability is, as the smaller round case is subsumed

in the larger round case. For instance, in the case of R = 2, only consecutively sending

to two bad member causes a Pos (shortly as BB); whereas in the case of R = 3, besides

BB, there are two more situations that causes Pos, viz. GBB and BGB (G represents

sending to a good member). This also explains why the curves overlap in the beginning

of the x-axis.

We choose a configuration with a small state space (N = 2, M = 1, R = 2,

and PF = 0.8) as this suffices to illustrate the algorithm. Bisimulation minimization

reduces the state space from 77 to 34; cf. the quotient DTMC in Fig. 4.15. To make the

figure comprehensible, sequences of states with probability 1 are depicted by a square

state. States i, G , B , Del, Pos represent initiating a new session, sending a message

to a Good member, to a Bad member, a message being Del ivered, a Positive result

obtained, respectively. G0 and G1 are the two good members, where G0 is assumed

always to be the original sender when a new session starts. G0 ∨G1 is a lumped state

where either G0 or G1 is reached. The subscripts a, b, ... are to distinguish the states

in similar situations. Since the goal state Pos can be reached by only the gray states,

the regular expression (thus the automaton) only depends on those states. Note that

Dela and Delb denote the end of the first session, while Delc and Delb denote the end
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4.6 Summary

of the second. Only the case that two messages are both delivered by the bad member

indicates a positive identification of the sender.

An intermediate automaton (see Fig. 4.16) can be derived after eliminating some

states. The start state s̃ of the automaton is also omitted. This shows the basic

structure of the model: ia and ic are the starting points of two sessions. The horizontal

transitions indicate the observation of G0 by the bad member, which lead to Pos. In

each session, a message can be forwarded to G0 or G1 many times (captured by the

self-loops). Once a message is delivered, a new session is assumed to be started (the

transitions back to ia and ic). Thus, a regular expression that can be generated from

the automaton is r = r0r
∗
1r2r

∗
3r4, where:

r0 = (1, ia),

r1 = (0.667,Ga)(0.267,G1a.Gb.Ga)
∗(0.4,G0a.ia),

r2 = (0.333,Ba.Delb.ic),

r3 = (0.667,Gd)(0.267,G1b.Ge.Gd)
∗(0.4,G0b.ic),

r4 = (0.333,Bc.Deld.Pos).

If we omit the probabilities and the subscripts and merge the stuttering steps G, then

we obtain:

r′ = i (G.(G1.G)∗G0.i)∗︸ ︷︷ ︸
good

. (B.Del.i)︸ ︷︷ ︸
bad

. (G.(G1.G)∗G0.i)∗︸ ︷︷ ︸
good

. B︸︷︷︸
bad

,

which is highly compact and informative in the sense that it indicates the observation

of the bad members twice with arbitrary number of observing the good members. r′

can be further compacted if the SCCs are identified and replaced by self-loops. In this

case, r′′ = i.i∗.(B.Del.i).i∗.B.

The probability of r is val(r) = 0.274, which coincides with the model checking

result. These probabilities depend, among others, on the parameters of the protocol (N ,

M , R, PF, etc.). For instance, the probability of the strongest evidence is ( M
N+M )R =

(1
3)2 = 1

9 , which loops 0 times at r1 and r3. The probability of r2 and r4 is a
1−a = 4

11 ,

where a is the probability of the inner loop: 1
N+M ·PF·(1 − M

N+M ) = 0.267, as is shown

in the intermediate automaton. Note that this closed-form expression can now be used

for arbitrary parameter values.

4.6 Summary

Motivated by some experimental results on the generation of counterexamples for

model-checking DTMCs, as an alternative and more compact way of enumerating

paths as counterexamples (KSP), we proposed to use regular expressions to represent
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(1, ia) ia ic Pos

Ga Gd

(0.333, Ba.Delb.ic) (0.333, Bc.Deld.Pos)

(0.667, Ga)(0.5 ∗ 0.8, G0a.ia) (0.667, Gd)(0.4, G0b.ic)

(0.267, G1b .Ge.Gd)(0.267, G1a.Gb.Ga)

Figure 4.16: A more compact automaton

counterexamples, which is shown to be correct, and yields promising results. Bisimu-

lation and SCC minimization may be explored to slim down the counterexample size.

Constrained regular expressions for bounded-until formulae is a topic for further study

as evaluating those regular expressions is expensive.
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Chapter 5

Extensions

So far we have considered the generation of counterexamples for PCTL formulae of

the form P6p(φ) (Chapter 3 and 4) and P<p(φ) (Chapter 4 only) for 0 < p < 1. In this

chapter, we will show how these results can be extended to

1. formulae with lower bound on probabilities, i.e., P>p(φ) and P>p(φ);

2. qualitative fragment of PCTL, i.e., P=1(φ) and P>0(φ);

3. other discrete-time models: MRMs and MDPs;

4. other logics: LTL and PCTL∗; and

5. the continuous-time model : CTMCs.

5.1 Lower Bounds

In order to generate counterexamples for formulae of the form P�p(φ) (� ∈ {>, >}),
we propose a reduction to the case with upper probability bounds. This is done by a

transformation of the given DTMC and PCTL formula, based on which the algorithms

presented before can be applied. For simplicity, we assume � => and all the reasonings

remain the same for � => except that infinite counterexamples can only be captured

by regular expressions rather than by path enumeration.

Recall that ≡ is the semantic equivalence (Def. 2.17, page 17) over PCTL or PCTL∗

formulae. For clarity, we use
PCTL

∗

≡ instead of ≡ when the right hand side is a PCTL∗

but not a PCTL formula (i.e., a PCTL∗\PCTL formula). For any interval I ⊆ N>0,

P>p

(
Φ U

I Ψ
)

≡ P61−p

(
(Φ ∧ ¬Ψ)︸ ︷︷ ︸

def
= Φ∗

W
I (¬Φ ∧ ¬Ψ)︸ ︷︷ ︸

def
= Ψ∗

)

PCTL
∗

≡ P61−p

(
(Φ∗

U
I Ψ∗) ∨ (�

IΦ∗)
)

(5.1)
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Eq. (5.1) is due to the semantics of WI . In the following, we show how

P61−p

(
(Φ∗ UI Ψ∗) ∨ (�IΦ∗)

)
can be further transformed to the form P61−p(Φ

′ UI′ Ψ′)
or the like, such that our earlier algorithms can be applied. As before, we distinguish

different bounds I.

5.1.1 Unbounded Until — U

Let atb be a new atomic proposition such that s |= atBΦ∗ iff s ∈ B where B is a BSCC

and B ⊆ Sat(Φ∗). Recall that a BSCC B is a maximal strongly connected subgraph

that has no transitions leaving B. For finite DTMCs, we have the following theorem:

Theorem 5.1 For any PCTL formulae Φ∗,Ψ∗, it holds that:

P61−p ((Φ∗
U Ψ∗) ∨ (�Φ∗))

PCTL
∗

≡ P61−p

(
(Φ∗

U Ψ∗) ∨ (Φ∗
U atBΦ∗ )

)
(5.2)

≡ P61−p

(
Φ∗

U (Ψ∗ ∨ atBΦ∗ )
)

(5.3)

Proof: To show (5.2), it is sufficient to prove that �Φ ≡ Φ U atBΦ
. To this end, for

any ρ ∈ Pathsω, it holds that ρ |= �Φ iff ∀i > 0. ρ[i] |= Φ. Since the DTMC is finite,

there exists a BSCC BΦ and s′ ∈ BΦ, such that ∃ i > 0. ρ[i] = s′, (i.e., ρ[i] |= atBΦ
)

and ∀j < i. ρ[j] |= Φ. Due to the semantics, ρ |= Φ U atBΦ
.

To show (5.3), it is sufficient to prove that Φ U (Ψ ∨ Ψ′)
PCTL

∗

≡ (Φ U Ψ) ∨ (Φ U Ψ′).
For any ρ ∈ Pathsω, it holds that

ρ |= (Φ U Ψ) ∨ (Φ U Ψ′)

iff ρ |= Φ U Ψ or ρ |= Φ U Ψ′

iff ∃ i > 0. ρ[i] |= Ψ and ∀j < i. ρ[j] |= Φ or

∃ i > 0. ρ[i] |= Ψ′ and ∀j < i. ρ[j] |= Φ

iff ∃ i > 0. ρ[i] |= Ψ ∨ Ψ′ and ∀j < i. ρ[j] |= Φ

iff ρ |= Φ U (Ψ ∨ Ψ′) �

Prior to explaining the algorithms, we define a model transformation DJΦK of D,

where we make P(s, s) = 1 iff s |= Φ (sΦ is made sinking). Note that in essence, this

transformation is the same as D[Φ] (page 26), where P(s, s) = 0 iff s |= Φ (sΦ is made

absorbing). We distinguish the two transformations only for technical reasons.

Algorithmically, we first transform DTMC D to DJ¬Φ∗ ∧ ¬Ψ∗KJΨ∗K =

DJ¬Φ∗ ∨ Ψ∗K. Those states are absorbing because the (¬Φ∗∧¬Ψ∗)-states will falsify

the path formula and the Ψ∗-states are the goal states. All BSCCs in DJ¬Φ∗∨Ψ∗K are

then obtained and the states in BΦ∗ are labeled with atBΦ∗ . The obtained DTMC now

acts as the starting point for applying all the model transformations and algorithms in

Chapter 3 and 4 to generate a counterexample for P61−p

(
Φ∗ U (Ψ∗ ∨ atBΦ∗ )

)
.
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5.1.2 Bounded Until — U
6h

For finite h, identifying all states in BSCCs BΦ∗ is not sufficient, as a path satisfying

2=h Φ∗ may never reach such a BSCC. Instead, we transform the DTMC D to DJ¬Φ∗∧
¬Ψ∗KJΨ∗K = DJ¬Φ∗ ∨ Ψ∗K as in the previous case. Let atΦ∗

h
be an atomic proposition

such that s′ |= atΦ∗
h

iff there exists σ ∈ Paths⋆(s) such that σ[h] = s′ and σ |= �=h Φ∗.
It directly follows that �6hΦ∗ ≡ Φ U=h atΦ∗

h
(†). Besides, since the Ψ∗-states are

absorbing in DJΨ∗K, it follows that Φ∗ U6h Ψ∗ ≡ (Φ∗ ∨ Ψ∗) U=h Ψ∗ (‡). We have the

following theorem:

Theorem 5.2 For any PCTL formulae Φ∗,Ψ∗, it holds in DTMC DJΨ∗K that:

P61−p

(
(Φ∗

U
6h Ψ∗) ∨ (�6hΦ∗)

)

PCTL∗

= P61−p

((
(Φ∗ ∨ Ψ∗) U

=h Ψ∗
)
∨ (Φ∗

U
=h atΦ∗

h
)
)

(5.4)

PCTL∗

= P61−p

((
(Φ∗ ∨ Ψ∗) U

=h Ψ∗
)
∨
(
(Φ∗ ∨ Ψ∗) U

=h atΦ∗
h

))
(5.5)

= P61−p

(
(Φ∗ ∨ Ψ∗) U

=h (Ψ∗ ∨ atΦ∗
h
)
)

(5.6)

Proof: (5.4) directly follows from (†) and (‡). The proof for (5.6) is very similar to

that for (5.3), except for adding the hop constraint. It remains to prove (5.5). For any

ρ ∈ Pathsω in DJΨ∗K, it holds that

ρ |=
(
(Φ∗ ∨ Ψ∗) U

=h Ψ∗
)
∨ (Φ∗

U
=h atΦ∗

h
)

iff ρ |= (Φ∗ ∨ Ψ∗) U
=h Ψ∗ or ρ |= Φ∗

U
=h atΦ∗

h

iff ρ[h] |= Ψ∗ and ∀ j < h. ρ[j] |= Φ∗ ∨ Ψ∗ or

ρ[h] |= atΦ∗
h

and ∀ j < h. ρ[j] |= Φ∗

iff⋆ ρ[h] |= Ψ∗ and ∀ j < h. ρ[j] |= Φ∗ ∨ Ψ∗ or

ρ[h] |= atΦ∗
h

and ∀ j < h. ρ[j] |= Φ∗ ∨ Ψ∗

iff ρ |= (Φ∗ ∨ Ψ∗) U
=h Ψ∗ or ρ |= (Φ∗ ∨ Ψ∗) U

=h atΦ∗
h

iff ρ |=
(
(Φ∗ ∨ Ψ∗) U

=h Ψ∗
)
∨
(
(Φ∗ ∨ Ψ∗) U

=h atΦ∗
h

)

Now we justify why iff⋆ holds. Let Paths1 = {ρ | ρ |= Φ∗ U=h atΦ∗
h
} and Paths2 =

{ρ | ρ |= (Φ∗ ∨ Ψ∗) U=h atΦ∗
h
}. Since all Ψ∗-states are made absorbing in DJΨ∗K, for

any path ρ ∈ Paths2 \ Paths1, ρ[h] 6= atΦ∗ . In other words, such ρ does not exist and

Paths2 \ Paths1 = ∅. Thus iff∗ holds. The remaining iff’s are easy to see.

�

Note that in this theorem, we use = instead of ≡ as the equivalence only holds in

DTMC DJΨ∗K but not in all DTMCs. = means the values of the probabilities are

equal.
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The problem of finding counterexamples for formula P>p(ΦU6hΨ) in D now reduces

to that of P61−p

(
(Φ∗ ∨ Ψ∗) U=h (Ψ∗ ∨ atΦ∗

h
)
)

in DJ¬Φ∗ ∨ Ψ∗K.

5.1.3 Point Interval Until — U
=h, Lower-Bounded Until — U

>h

For these two cases, a counterexample can be derived by checking the following two

equivalent until formulae. Here we omit the proofs since they are similar to the previous

two cases.

Theorem 5.3 For any PCTL formulae Φ∗,Ψ∗, it holds that:

P61−p

(
(Φ∗

U
=h Ψ∗) ∨ (�

=hΦ∗)
)

PCTL
∗

≡ P61−p

((
Φ∗

U
=h Ψ∗

)
∨ (Φ∗

U
=h atΦ∗

h
)
)

≡ P61−p

(
Φ∗

U
=h (Ψ∗ ∨ atΦ∗

h
)
)

Theorem 5.4 For any PCTL formulae Φ∗,Ψ∗, it holds that:

P61−p

(
(Φ∗

U
>h Ψ∗) ∨ (�>hΦ∗)

)

PCTL
∗

≡ P61−p

((
Φ∗

U
>h Ψ∗

)
∨ (Φ∗

U
>h atBΦ∗ )

)

≡ P61−p

(
Φ∗

U
>h (Ψ∗ ∨ atBΦ∗ )

)

Note that in two cases, D is transformed to DJ¬Φ∗∧¬Ψ∗K (or D[¬Φ∗∧¬Ψ∗]). In other

words, Ψ∗-states should not be made absorbing, since they may be visited several times

before hitting h hops.

5.1.4 Interval Until — U
[hl,hu]

The DTMC D is transformed into DJ¬Φ∗ ∧ ¬Ψ∗K. We note that

P61−p(Φ
∗
W

[hl,hu] Ψ∗)

≡ P61−p

(
(Φ∗

U
[hl,hu] Ψ∗) ∨ (�

[hl,hu]Φ∗)
)

≡ P61−p

(
(Φ∗

U
[hl,hu] Ψ∗) ∨ (�=huΦ∗)

)

≡ P61−p

(
(Φ∗

U
[hl,hu] Ψ∗)︸ ︷︷ ︸
φ1

∨ (Φ∗
U

=hu atΦ∗
hu

)
︸ ︷︷ ︸

φ2

)
(5.7)

Note that s |= atΦ∗
hu

iff s |= atΦ∗
hu

and s 6|= Ψ∗. However, (5.7) cannot be trans-

formed into an equivalent single-until formula. We therefore partition the set of paths

Paths(s,Φ∗ W[hl,hu] Ψ∗) into two sets Paths(s, φ1) and Paths(s, φ2). Note that by the
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Original formula Model trans. Reduced formula

P>p(Φ U Ψ) DJ¬Φ∗ ∨ Ψ∗K P61−p

(
Φ∗ U (Ψ∗ ∨ atBΦ∗ )

)

P>p(Φ U6h Ψ) DJ¬Φ∗ ∨ Ψ∗K P61−p

(
(Φ∗ ∨ Ψ∗) U=h (Ψ∗ ∨ atΦ∗

h
)
)

P>p(Φ U=h Ψ) DJ¬Φ∗ ∧ ¬Ψ∗K P61−p

(
Φ∗ U=h (Ψ∗ ∨ atΦ∗

h
)
)

P>p(Φ U>h Ψ) DJ¬Φ∗ ∧ ¬Ψ∗K P61−p

(
Φ∗ U>h (Ψ∗ ∨ atBΦ∗ )

)

P>p(Φ U[hl,hu] Ψ) DJ¬Φ∗ ∧ ¬Ψ∗K P61−p

(
(Φ∗ U[hl,hu] Ψ∗) ∨ (Φ∗ U=hu atΦ∗

hu
)
)

Table 5.1: Problem reduction for generating counterexamples for P>p(φ)

slightly different labeling atΦ∗
hu

(rather than atΦ∗
hu

) the two sets are disjoint, as for any

path ρ ∈ Paths(s,Φ∗ W[hl,hu] Ψ∗), if ρ[hu] |= Ψ∗ then ρ ∈ Paths(s, φ1); if ρ[hu] |= atΦ∗
hu

then ρ ∈ Paths(s, φ2).

A counterexample can be computed by first computing a counterexample for

P61−p(φ1). If such a counterexample C1 exists, then C1 is also a counterexample

for P61−p(Φ
∗ W[hl,hu] Ψ∗); otherwise let p′ = Prob(s, φ1) and then we compute a coun-

terexample C2 for P61−p−p′(φ2). C1∪C2 is a counterexample for P61−p(Φ
∗W[hl,hu]Ψ∗).

5.1.5 Summary

In the above explained way, counterexamples for different until-formulae with a lower

bound on their probabilities are obtained by considering formulae on slightly adapted

DTMCs with upper bounds on probabilities (cf. Table 5.1). Intuitively, the fact that

s refutes P>p(φ) is witnessed by showing that violating paths of s are “too probable”,

i.e., carry more probability mass than p.

5.2 Qualitative Fragment of PCTL

Quantitative questions relate to the numerical value of the probability with which the

property holds in the system; qualitative questions ask whether the property holds

with probability 0 or 1. Typically, a qualitative property can be checked using graph

analysis, i.e., by just considering the underlying digraph of the DTMC and ignoring

the transition probabilities. With the qualitative fragment of PCTL we can specify

properties that hold almost surely (i.e., with probability 1) or, dually, almost never

(i.e., with probability 0). The qualitative fragment of PCTL only allows 0 and 1 as

probability bounds and only covers unbounded (weak) until [BK08]. Formally,

Definition 5.5 ([BK08]) State formulae in the qualitative fragment of PCTL (over
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AP) are formed according to the following grammar:

Φ ::= tt | a | Φ ∧ Φ | ¬Φ | P>0(φ) | P=1(φ)

where a ∈ AP, φ := Φ1 U Φ2 is a path formula with state formulae Φ1,Φ2.

Due to the fact that P=0(φ) ≡ ¬P>0(φ) and P<1(φ) ≡ ¬P=1(φ), it suffices to only

consider formulae of the form P>0(.) and P=1(.). Qualitative PCTL is closely related

to CTL:

Lemma 5.6 ([BK08]) For state s of DTMC D, it holds that:

s |= P>0(a U b) iff s |= ∃(a U b)

s |= P=1(a U b) iff s |= ∀
(
∃(a U b) W b

)

As a result, a counterexample for a qualitative PCTL property is a counterexample

for the corresponding CTL formula. For the violation of CTL formula ∀
(
∃(aU b)W b

)

in state s, it suffices to find one path σ ∈ Paths⋆(s) such that σ |=
(
∃(a U b) ∧ ¬b

)
U(

¬∃(a U b) ∧ ¬b
)
. Counterexamples for formulae of the form ∃(a U b) can be obtained

using the techniques in [SG03].

5.3 Markov Reward Models

Both DTMCs and PCTL can be extended with costs, or dually, rewards, which can

specify standard and complex measures in a precise, unambiguous and clear manner.

A reward function w is added to the DTMC, which associates a real reward (or cost)

to any transition. Formally, wi : S × S → R>0 for 1 6 i 6 c, where c is the number of

resources in the model. wi(s, s
′) denotes the reward for resource i earned when taking

transition s→ s′. The cumulative reward along a finite path σ is the sum of the reward

on each transition along the path. Formally, wi(σ) =
∑|σ|−1

l>0 wi(σ[l], σ[l + 1]).

Let Ji ⊆ R>0 (1 6 i 6 c) be an interval on the real line and p ∈ [0, 1]. We use ~J to

denote the vector of intervals, i.e., ~J = {J1, . . . , Jc}. The formula P6p(Φ U ~J Ψ) asserts

that with probability at most p, Ψ will be satisfied such that all preceding states satisfy

Φ, and that the cumulative reward wi until reaching the Ψ-state lies in the interval

Ji, for 1 6 i 6 c. The formal semantics can be found in [AHK03]. Note that the hop

constraint 6 h can be considered as a reward constraint over a simple auxiliary reward

structure, which assigns cost 1 to each edge.

It holds that s 6|= P6p(Φ U ~J
Ψ) iff Prob(s,Φ U ~J

Ψ) > p. As before, we cast the SE

problem into an SP problem. Obviously, the weight (probability) of a path is of primary

concern, which is required to be optimal. The rewards are of secondary concern; they

are not required to be optimal but need to fulfill some constraints. This is exactly
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5.4 MDP, LTL and PCTL∗

an instance of the (resource) constrained shortest path (CSP) problem which is NP-

complete [HSP83]. Approximation or heuristic methods are surveyed in [KKKvM04].

There are some special cases of CSP problems. For the case c = 1 (a single resource)

and if this resource increases in a constant unit for each edge (e.g., hop counts), the

CSP problem, as is mentioned before, can be solved in PTIME. For the case c = 1 and

not with a uniformly allocated resource and the case for c = 2, the CSP problem is not

strong NP-complete since there are pseudo-polynomial algorithms to solve it exactly, in

which the computational complexity depends on the values of edge weights in addition

to the graph size [Jaf84]. The other cases are strong NP-complete problem.

For finding smallest counterexamples, we need to obtain k shortest paths subject to

multiple constraints, denoted k-CSP or KMCSP [LR01], which is NP-complete. The

KMCSP problem only received scant attention; an exact solution is given in [LR01].

5.4 MDP, LTL and PCTL∗

In this section we will deal with counterexample generation for probabilistic model

checking regarding Markov decision processes (MDPs), linear temporal logic (LTL),

and PCTL∗. Prior to this, we first show the relationship among various combinations

of different models and logics in Figure 6.2.

Let us explain the figure in more details. Two horizontal dashed lines classify all

these model checking problems according to the logic, i.e., PCTL, LTL and PCTL∗,
from bottom-up, respectively. The left vertical dashed line classifies them according

to the model, i.e., DTMC and MDP. In MDP, we further distinguish those with or

without fairness conditions by the right vertical dashed line. The solid arrow from A

to B means that the model checking problem of A can be reduced to that of B. The

reductions using the same technique are labeled with the same number, where:

• Reduction I transforms a PCTL∗ formula P⊲⊳p(ϕ) to an LTL formula ϕ′′ by

replacing all maximal state subformulae with fresh atomic propositions. Note that

we don’t deal with the next operator in PCTL formulae, as it is straightforward

to provide a set of successor states to which the sum of the one-step probability

refutes the probability bound.

• Reduction II transforms an LTL formula to a PCTL path formula (a reachability

property, to be exact) by constructing the product of the model (DTMC or

MDP) with the deterministic Rabin automaton that corresponds to the LTL

formula. The product remains to be a DTMC or MDP and it remains to calculate

the probability to reach certain “accepting states” in the product model.

• Reduction III is the link from MDPs to DTMCs, where a simple scheduler suffices

to induce a DTMC from an MDP as long as only hop-unbounded until operator

83



5. EXTENSIONS

PCTL+DTMC PCTL+MDP

LTL+MDP

PCTL∗+MDP

PCTL+MDP+fairness

LTL+MDP+fairness

PCTL∗+MDP+fairness

LTL+DTMC

PCTL∗+DTMC

IV + fm-scheduler

III + simple or fm- scheduler

II

II

I

I

II

I

a set of paths
+ +

a fm-scheduler

a set of paths

a simple or fm- scheduler

a set of paths

Counterexamples:

Figure 5.1: Probabilistic model checking lattice

is used in the path formulae. For other hop-bounded until operators, a finite

memory scheduler is required.

• Reduction IV reduces the MDP with fairness conditions to DTMCs, where a fair

scheduler should be investigated. Generally in this case, a finite-memory instead

of simple scheduler suffices [BK98].

We note that all those model checking problems form a lattice, where the least

element in the lattice is DTMC+PCTL. Recall that a counterexample for this is a

set of paths. The same can be applied on LTL+DTMC and PCTL∗+DTMC since

they both can be reduced to PCTL+DTMC. For MDPs without fairness, a simple or

fm-scheduler is additionally needed in order to get a DTMC. A counterexample is then

composed of two parts: a simple or fm-scheduler and a set of paths in the obtained

DTMC. For MDPs with fairness conditions, a finite-memory scheduler and a set of
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5.5 CTMC Counterexamples

paths form a counterexample. This is shown in the lower part of Fig. 6.2. Since all

cases can be finally reduced to model checking DTMC wrt. PCTL formulas, we omit

the details here.

5.5 CTMC Counterexamples

This section considers the generation of evidences and counterexamples for model check-

ing CSL [ASSB00][BHHK03] on CTMCs. For time-unbounded properties expressed in

CSL e.g. P60.5(Φ U Ψ), the algorithms in Chapter 3 and 4 can be exploited in the em-

bedded DTMC (cf. page 11). Properties that involve time, e.g. P60.5(Φ U6tΨ) (t ∈ R),

however, require other strategies. The continuous-time setting is unfortunately differ-

ent and more complicated than the discrete one. In particular, an evidence cannot be

a single timed path (an alternating sequence of states and time instants) as such paths

have probability zero. Instead, we consider symbolic evidences for Φ U6t Ψ, i.e., time-

abstract paths—finite state sequences—that satisfy ΦUΨ. A symbolic evidence induces

a set of concrete evidences, viz. the set of timed paths on the same state sequence whose

duration does not exceed t. A counterexample is a set of symbolic evidences such that

their probability sum exceeds p.

The main contribution of this section is an algorithm for computing informative

(symbolic) evidences and counterexamples, i.e., evidences with large probability and

small-sized but very probable counterexamples. We first indicate how the likelihood

of symbolic evidences can be computed, both numerically and analytically. The latter

approach exploits the fact that symbolic evidences are in fact acyclic CTMCs for

which closed-form solutions exist [MRT87] to compute the transient probability, and

thus the probability of the symbolic evidence (Lemma 5.10). We then consider the

problem of how to find symbolic evidences such that small counterexamples result. The

strategy from Chapter 3, i.e., using KSP algorithms on a discretized CTMC (obtained

by uniformization [Jen53]) is applied. Although the algorithm might not result in

an optimal sequence of evidences (i.e., generating smallest counterexample cannot be

guaranteed), it is simple, rather efficient, and the minimality of a counterexample can

be guaranteed.

5.5.1 The Likelihood of a Symbolic Evidence

We define a symbolic evidence for violating P6p(Φ U6t Ψ) in state s to be a finite time-

abstract path ξ ∈ Pathsmin(s,ΦUΨ). Actually, a symbolic evidence for φ = ΦU6tΨ is a

finite path that minimally satisfies ΦUΨ and it represents a set of (infinite) timed paths

in the CTMC, denoted Paths6t(ξ), such that (1) those paths have a common initial

state sequence, viz. ξ; and (2) the total duration of the prefix ending at the last state

of ξ is at most t. We define the probability of a symbolic evidence ξ to be P6t(ξ), and
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s0
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s1

s2

t1

t2
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{a} {a} {b}

∅ {a} {b}

Figure 5.2: An example CTMC C

it can be easily shown that for a set C of (prefix containment-free) symbolic evidences,

the probability is P(C) =
∑

ξ∈C P6t(ξ). A (symbolic) counterexample for P6p(φ) where

φ = Φ U6t Ψ is a set C of symbolic evidences for φ such that P(C) > p.

Example 5.7 For the CTMC C in Fig. 5.2 and CSL formula P60.45(a U61 b), the

symbolic evidences are ξ1 = s0·s2·t2, ξ2 = s0·s1·s2·t2, ξ3 = s0·s1·t1, and so on. These

paths all minimally satisfy a U b in the embedded DTMC. The symbolic evidence ξ2
contains e.g. the following CTMC path: s0

0.5−−→ s1
0.25−−−→ s2

0.05−−−→ t2 ∈ Paths61(ξ2), as

the duration of the path is 0.5 + 0.25 + 0.05 < 1. Without specifying the details (will

become clear later), the probabilities of the symbolic evidences are: P61(ξ1) = 0.24998,

P61(ξ2) = 0.24994 and P61(ξ3) = 0.16667. C = {ξ1, ξ2} is a counterexample since

P(C) > 0.45, but C ′ = {ξ1, ξ3} is not. �

Assume we have symbolic evidence ξ = s0·s1· · ·sl at our disposal. The probability

P6t(ξ) of this evidence—in fact, the probability of all concrete evidences of ξ up to

time t—is given by:

∫ t

0

(
den(s0, s1, t0)︸ ︷︷ ︸

one step

·
(
· · ·(
∫ t−

Pl−2
i=0 ti

0
den(sl−1, sl, tl−1) · dtl−1)· · ·

)

︸ ︷︷ ︸
the rest s1···sl

)
dt0 (5.8)

where den(s0, s1, t0) is the probability density function (cf. page 11) of s0 −→ s1 winning

the race at time instant t0 in the interval [0, t]. The corresponding probability is thus

derived by the outermost integral. Suppose the transition s0 −→ s1 takes place at time

instant t0. Then the possible time instant for the second transition s1 → s2 to take

place is in [0, t− t0]. This determines the range of the second outermost integral. The

rest is likewise. The innermost integral determines the residence time in state sl−1, the

one-but-last state in ξ.

To avoid computing this (somewhat involved) integral directly by numerical tech-

niques we resort to a simpler technique. The main idea is to isolate the time-abstract
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Figure 5.3: CTMC Cξ1 induced by symbolic evidence ξ1

path ξ from the entire CTMC. This yields a simple acyclic CTMC, i.e., an acyclic

phase-type distribution [Neu81] which can be solved either analytically or numerically.

Transformation into an Acyclic CTMC. Consider CTMC C and CSL path-

formula φ = Φ U6t Ψ. Note that the CTMCs are assumed to have been subject to the

transformation CJ¬Φ ∧ ¬ΨKJΨK = CJ¬Φ∨ΨK (cf. [BHHK03], or the discrete-time case,

page 78). For each evidence ξ, we may compute its probability by first constructing a

CTMC Cξ and then computing some transient probability in Cξ.

Definition 5.8 (CTMC induced by symbolic evidence) Let C = (S,P, E, L) be

a CTMC and ξ = s0·s1 · · · sl be a symbolic evidence in which all states are pairwise

distinct 1. The CTMC Cξ induced by ξ on C is defined by Cξ = (Sξ,Pξ , Eξ, Lξ) where:

• Sξ = {s0, . . . , sl, sf} with sf 6∈ S;

• Pξ(si, si+1) = P(si, si+1), Pξ(si, sf ) = 1 − Pξ(si, si+1) for 0 6 i < l and

Pξ(s, s) = 1 for s = sl or s = sf ;

• Eξ(si) = E(si) and Eξ(sf ) = 0;

• Lξ(si) = L(si) and Lξ(sf ) = {trap}.

Stated in words, Cξ is the CTMC obtained from C by incorporating all states in ξ,

and deleting all outgoing transitions from these states except si −→ si+1. The total

probability mass of these omitted transitions becomes the probability to move to the

trap state sf . It follows directly that Cξ is acyclic when ignoring the self-loops of the

absorbing states.

Example 5.9 Consider CTMC C in Fig. 5.2 and symbolic evidence ξ1 = s0·s2·t2. The

induced CTMC Cξ1 is shown in Fig. 5.3. �

1This is not a restriction since it is always possible to rename a state along ξ while keeping e.g. its

exit rate and labeling the same.
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The following result states that computing the probability of symbolic evidence ξ boils

down to a (standard) transient analysis of the induced CTMC by ξ.

Lemma 5.10 For CTMC C and symbolic evidence ξ for φ = Φ U6t Ψ, PC
6t(ξ) =

℘
Cξ
sl

(t), where ℘
Cξ
sl

(t) is the transient probability of being in state sl, the last state of ξ,

at time t given the initial state s0 in the CTMC Cξ.

Proof: Since ξ is a symbolic evidence, it follows that

PC
6t(ξ) = Pr

{
ρ ∈ Pathsω

C (s0) | ξ = abs(ρ)[..l] ∧ ∃x 6 t. ρ@x = sl

}
.

Note that the function abs abstracts a timed path to be a time-abstract path and ρ′[..l]
is the prefix until sl in path ρ′. Since the Ψ-state sl is made absorbing in C, it follows

that once ρ reaches sl at time instant x, it will stay there at all later time instants.

This reduces the above equation to

PC
6t(ξ) = Pr

{
ρ ∈ Pathsω

C (s0) | ξ = abs(ρ)[..l] ∧ ρ@t = sl

}
.

Due to the construction of Cξ, only the paths that go along ξ can reach sl. Moreover,

sl is made absorbing and the exit rate of each state on ξ as well as their rate to its

successor on ξ remain unchanged. Thus,

PC
6t(ξ) = Pr

{
ρ ∈ Pathsω

Cξ
(s0) | ρ@t = sl

}
= ℘

Cξ
sl

(t). �

This result enables us to exploit the well-known algorithms for the transient analysis

of CTMCs to determine the likelihood of a symbolic evidence. By uniformization

techniques, it yields an approximate solution up to an a priori user-defined accuracy

and is part of the standard machinery in model checkers such as PRISM [KNP04]

and MRMC [KKZ05]. Alternatively, we can exploit the fact that Cξ is acyclic (when

ignoring the self-loops at the absorbing states) and use the closed-form expression for

transient distributions in acyclic CTMCs as proposed by Marie et al. [MRT87]. This

yields an exact solution.

5.5.2 Finding Probable Symbolic Evidences

The remainder of the section is concerned with determining (symbolic) counterexamples

and symbolic evidences. As in conventional model checking, the intention is to obtain

comprehensible counterexamples. We interpret this as counterexamples of minimal

cardinality (i.e., it would not be a counterexample when lacking any symbolic evidence it

contains). The framework for generating such counterexamples iteratively is presented

in Alg. 4.

88



5.5 CTMC Counterexamples

Algorithm 4 Minimal counterexample generation for CTMCs

Require: CTMC C, CSL formula P6p(Φ U6t Ψ)

Ensure: C = {ξ1, . . . , ξk} with P(C) > p

1: k := 1; pr := 0;

2: while pr 6 p do

3: determine symbolic evidence ξk;

4: compute P6t(ξ
k);

5: pr := pr + P6t(ξ
k);

6: k := k + 1;

7: end while;

8: return ξ1, . . . , ξk;

The termination of this algorithm is guaranteed as the violation of the property

has been already established prior to invoking it. Evidently, the smaller the index k is,

the more succinct the counterexamples are. We have already shown how to determine

P6t(ξ), i.e., the probability of a symbolic evidence (cf. line 4). It remains to clarify

how symbolic evidences can be obtained in such a way that small counterexamples

may result (line 3). As symbolic evidences are just state sequences, the first idea is to

reduce the CTMC to a DTMC and adapt the algorithms (KSP and its variants) in

Chapter 3.

Model Discretization. There are two ways to discretize a CTMC: the embedded

DTMC and the uniformized DTMC. First consider the uniformized DTMC U and

its variant U⊗ where all the self-loops are removed. Note that U⊗ is an FPS instead

of a DTMC. If U⊗ is normalized, we would obtain the embedded DTMC of C. The

embedded DTMC does not involve any timing aspects as the probabilities therein only

characterize the races of transitions after the delay, while the probabilities in U⊗ also

take delays into consideration. In particular, with less probable outgoing transitions

from state s, it is more probable (and thus takes longer) to stay in s.

While a set of paths (traversing the same loop(s) for different times) in U corre-

sponds to the same time-abstract path in C (many-to-one), each path in U⊗ corresponds

to a time-abstract path in C (one-to-one). This explains why we consider U⊗ instead

of U . Besides, the probability of the removed self-loops (viz., delays) can be recovered

easily by taking one minus the total probability of a state.

To obtain a sequence of symbolic evidences (line 3 in Alg. 4), the KSP algorithm can

be applied to the weighted digraph for U⊗. We omit the details here. Since every path

the KSP algorithm generates is a symbolic evidence, it greatly decreases the time of

computation, thus the whole procedure may terminate rather quickly. However, since

the time bound in the property is not considered, it cannot always guarantee that the

more probable symbolic evidence is generated earlier, i.e., P6t(ξ
i) > P6t(ξ

j) for i < j
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Figure 5.4: Model transformation

might be possible. The following example illustrates this.

Example 5.11 Consider the CTMC C in Fig. 5.2 and formula Φ U6t Ψ. The uni-

formized DTMC U and U⊗ with the uniformization rate q = 20 are illustrated in

Fig. 5.4. For symbolic evidences ξ2 = s0·s1·s2·t2 and ξ3 = s0·s2·t1, the probabilities are

shown in the following table:

ξ2 = s0·s1·s2·t2 ξ3 = s0·s2·t1
U⊗ 0.100 < 0.045

C t = 0.1 0.04478 < 0.06838

C t = 1 0.24994 > 0.16362

For different time bounds (i.e., t = 0.1 and 1), the order of the probabilities of two

symbolic evidences in C might be reversed, however, this cannot be reflected by their

probabilities in U⊗, which has only one fixed order. Note that the probabilities of the

two paths in U⊗ are computed as in DTMCs. �

This implies that for symbolic evidences ξ and ξ′ and arbitrary time bound t,

PU⊗

(ξ) > PU⊗

(ξ′) cannot guarantee that PC
6t(ξ) > PC

6t(ξ
′). A direct consequence is that

the sequence of generated symbolic evidences might not be optimal. The counterexam-

ples may thus be less comprehensive, because evidences with large probability might

not be included, instead more low-probability evidences are contained. In [HK07b]

we proposed an algorithm that attempts to overcome this problem by taking the time

bound into account and some heuristics to improve its performance. This algorithm

may derive a better sequence of evidences than the one stated above, however, it usu-

ally takes much more time. We therefore omit the details here and refer the reader to

[HK07b].
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5.6 Summary

In this chapter we extend the work in Chapter 3 and 4 to more probabilistic models and

logics. We first discuss the path enumeration approach (Chapter 3). For most of the

extensions, e.g., formulae with lower-bounds on probability, MDPs or even CTMCs,

they can be reduced to the base case, i.e., DTMC with P6p(φ). For counterexamples

for the qualitative fragment of PCTL due to its equivalence with CTL formulae,

the reduction to CTL counterexample generation becomes natural. Counterexamples

for Markov reward models follow the similar scheme as the base case, but require

more advanced shortest paths algorithms (NP-complete). When considering the regular

expression counterexample approach (Chapter 4), it is applicable when a DTMC and

a reachability property is at our disposal, which is true for most cases above except for

the reward models. The problem now becomes that in a weighted automaton, given

two states and a reward bound, how to generate a regular expression that corresponds

to the set of paths between the two states whose accumulative reward is less than the

bound. This might be an interesting future work.

5.6.1 Related Work

Counterexample generation for probabilistic model checking and the possible applica-

tion of counterexamples are recently a hot research topic. We summarize some of the

most relevant works here:

Directed Explicit State Space Search. Aljazzar and Leue investigated to ap-

ply directed explicit state space search to counterexample generation in DTMC and

CTMC model checking of PCTL and CSL properties in [AHL05][AL06]. The pre-

sented search algorithms can explore the state space on the fly and can be further

guided by heuristics to improve the performance of the algorithm. The algorithms

are implemented based on PRISM and a number of case studies has been reported to

illustrate its applicability, efficiency and scalability.

Counterexamples for cpCTL. Andrés and van Rossum [AvR08] introduced the

logic cpCTL, which extends PCTL with conditional probability, allowing one to ex-

press that the probability that “φ is true given that ψ is true” is at least p. The

algorithms for model checking DTMCs as well as MDPs against cpCTL have been

studied. Furthermore, the notion of counterexamples for cpCTL model checking was

presented together with an algorithm to generate such counterexamples. A counterex-

amples for DTMCs is defined along the similar fashion as in this dissertation but with

a pair of measurable sets of paths. This pair of sets of paths consists of the set of the

“condition” paths and the “event” paths. (Recall the conditional probability charac-
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terizes the probability of certain event given certain condition.) The counterexamples

for MDPs contain additionally a scheduler.

Counterexamples for LTL. Schmalz, Varacca and Völzer proposed in [SVV09]

how to present and compute a counterexample in probabilistic LTL model checking for

DTMCs. In qualitative probabilistic model checking, a counterexample is presented as

a pair (α, γ), where α and γ are finite words such that all paths that extend α and have

infinitely many occurrences of γ violate the specification. In quantitative probabilistic

model checking, a counterexample is presented as a pair (W,R) where W is a set of

such finite words α and R is a set of such finite words γ. Moreover, it is also presented

how the counterexample can help the user to identify the underlying error in the system

through an interactive game with the model checker.

Counterexamples for MDPs.

• Andrés, D’Argenio and van Rossum [ADvR08] also observed the potential prob-

lem of the excessive number of evidences and proposed the notion of “witnesses”

that groups together the evidences belonging to the same (macro) evidence in the

SCC-quotient DTMC or MDP. A SCC minimization algorithm was presented

and it turns out that the problem of generating counterexamples for general

properties over MDPs can be reduced, in several steps, to the easy problem of

generating counterexamples for reachability properties over acyclic DTMCs.

• The algorithm of SCC minimization in a Markov chain has been proposed by le

Guen and Marie [lGM02].

• Aljazzar and Leue also considered generating counterexamples for MDPs against

a fragment of PCTL viz. path formulae with hop-unbounded until operator in

[AL09]. Three methods are presented and compared through experiments. The

first two methods are the one proposed in this thesis and its improved version

by using K∗ algorithm [AL08b] instead of Eppstein’s algorithm or REA. The

third method applies K∗ directly on MDPs to collect the most probable MDP

execution traces contributing to the violation. AND/OR trees are then adopted to

adequately extract from the collected execution sequences the most informative

counterexample and to compute its probability. The experiments demonstrate

the conditions under which each method is appropriate to be used.

Probabilistic CEGAR for MDPs.

• Hermanns, Wachter and Zhang discussed how counterexample-guided abstrac-

tion refinement can be developed in a probabilistic setting [HWZ08]. By using
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predicate abstraction for a guarded command language, an MDP is derived. The

probabilistic reachability property was studied. Counterexamples are applied to

guide the abstraction-refinement in a novel way using the strongest evidence idea

of this dissertation: a counterexample is a finite set afp of abstract finite paths

carrying enough abstract probability mass. The problem of computing the real-

izable probability mass of afp is formulated in terms of a weighted MAX-SMT

problem. The set afp is built incrementally in an on-the-fly manner, until ei-

ther enough probability is realizable, or afp cannot be enriched with sufficient

probability mass to make the probability threshold realizable, in which case the

counterexample is spurious.

• Chadha and Viswanathan presented a CEGAR framework for MDPs, where an

MDP M is abstracted by another MDP A defined using an equivalence on the

states of M [CV08]. A counterexample for an MDP M and property Ψ will be a

pair (E ,R), where E is an MDP violating the property Ψ that is simulated by M
via the relation R. This simulation relation is implicitly assumed to be part of the

counterexample. Besides the definition for the notion of a counterexample, the

main contributions were the algorithms to compute counterexamples, check their

validity and perform automatic refinement based on an invalid counterexample.

Bounded Model Checking for Counterexample Generation. Wimmer,

Braitling and Becker [WBB09] proposed to apply bounded model checking to gen-

erate counterexamples for DTMCs. Novel optimization techniques like loop-detection

are applied not only to speed up the counterexample computation, but also to re-

duce the size of the counterexamples significantly. Some experiments were reported to

demonstrate the practical applicability of the method.

Counterexample Visualization. Aljazzar and Leue presented an approach to sup-

port the debugging of stochastic system models using interactive visualization [AL08a].

It is to facilitate the identification of causal factors in the potentially very large sets of

execution traces that form counterexamples in stochastic model checking. The visual-

ization is interactive and allows the user to focus on the most meaningful aspects of

a counterexample. The visualization method has been implemented in the prototype

tool DIPRO and some case studies were reported.

Proof Refutations for Probabilistic Programs. McIver, Morgan and Gonzalia

studied the convincing presentation of counterexamples to a proposed specification-

to-implementation claim spec ⊑ imp (refinement) in the context of probabilistic sys-

tems [MMG08]. A geometric interpretation of the probabilistic/demonic semantic do-

main allows both refinement success and refinement failure to be encoded as linear sat-
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isfaction problems, which can then be analyzed automatically by an SMT solver. This

allows the generation of counterexamples in an independently and efficiently checkable

form. In many cases the counterexamples can subsequently be converted into “source

level” hints for the verifier.
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Chapter 6

Parameter Synthesis

This chapter studies a parametric version of CTMCs, a novel variant of CTMCs in

which rate expressions over variables (or parameters) with bounded range indicate the

average speed of state changes. The rate expressions are expressed using polynomial

rings over reals, allowing e.g., 3ϑ1·ϑ2 or ϑ3
1−ϑ1·ϑ2. Given a time-bounded reachability

property with a probability threshold, the main task is to find the set of parameter

values (forming the synthesis region) that can guarantee the validity of the property

on the derived CTMCs.

To this end, we propose a symbolic and a non-symbolic approach to approximate

the synthesis region. The symbolic approach amounts to solving a polynomial function

over the rate parameters, while the non-symbolic approach is to first instantiate the

parameters and then reduce the problem to the non-parametric CTMC case. Both

approaches are based on a grid discretization on the parameter ranges together with

a refinement technique. The feasibility of each proposed approach is shown by syn-

thesizing the parameter ranges for a storage system that incorporates error checking,

i.e., after each operation (read/write), there is a possibility to check whether an error

occurred [CY95a]. Finally we compare the two approaches and analyze the respective

error bound and time complexity.

6.1 Parametric CTMCs

Parameters and Constraints. For a set X of m variables (or parameters)

x1, . . . , xm, expressions in the polynomial ring R[X ] over the reals R are formed by

the grammar:

ϑ ::= c | x | ϑ+ ϑ | ϑ·ϑ,

where ϑ ∈ R[X ], c ∈ R and x ∈ X . The operations + and · are addition and multi-

plication, respectively. A valuation is a function v : X → R assigning a real value to
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6. PARAMETER SYNTHESIS

a variable. We assume that all variables have a closed interval with finite bounds as

the range of possible values, i.e., v(xi) ∈ [li, ui] and li, ui ∈ R, for 1 6 i 6 m. The set

of all valuation functions is RX . ϑ[v] denotes the valuation of polynomial ϑ ∈ R[X ] by

instantiating xi ∈ X by v(xi). Note that we do not restrict to linear expressions as this

will not simplify matters in our setting (as explained later).

An atomic constraint is of the form ϑ ⊲⊳ c, where ϑ ∈ R[X ], ⊲⊳ ∈ {<,6, >,>} and

c ∈ R. A constraint is a conjunction of atomic constraints. A valuation v satisfies

the constraint ϑ ⊲⊳ c if ϑ[v] ⊲⊳ c. A region ζ ⊆ RX is a set of valuations satisfying a

constraint.

Definition 6.1 (pCTMCs) A parametric continuous-time Markov chain over the set

X of parameters is a triple C(X ) = (S,R(X ), L), where S is a finite state space, L is the

labeling function and R(X ) : S × S → R[X ] is the parametric rate matrix.

As in CTMCs, we assume s0 to be the unique initial state for simplicity. The parametric

infinitesimal matrix Q(X ) and the exit rate vector ~E(X ) are defined in a similar way as

R(X ).

Definition 6.2 (Instance CTMCs) For pCTMC C(X ) and valuation function v,

C(X )[v] (or simply C[v] when X is clear from the context) is the instance CTMC of

C(X ) obtained by instantiating xi ∈ X by v(xi).

For a pCTMC C(X ) = (S,R(X ), L) over the set of parameters X = {x1, . . . , xm}, the

initial region ζ0 satisfies the following constraints:

m∧

i=1

li 6 xi 6 ui

︸ ︷︷ ︸
range constraints

∧
∧

s,s′∈S

R(X )(s, s′) > 0

︸ ︷︷ ︸
rate constraints

, (6.1)

where
∧m

i=1 li 6 xi 6 ui is the set of range constraints of the parameters and∧
s,s′∈S R(X )(s, s′) > 0 is the set of rate constraints ruling out the negative rates.

Note that we assume each parameter xi is bounded by li and ui. This is a reasonable

assumption in practice since those parameters usually have some physical meanings

(e.g., speed, height, temperature, etc.) that mostly have an upper- and lower-bound.

The regions satisfying the range and rate constraints are called range region (ζrange)

and rate region (ζrate), respectively. Note that ζ0 = ζrange ∩ ζrate .

Example 6.3 In Fig. 6.1(a), we illustrate a pCTMC over {x1, x2} with the range

constraints: 0 6 x1 6 2.5 and 0 6 x2 6 2. The rate constraints are as follows:

2x1 + 4 > 0 ∧ 2 − x2 > 0 ∧ x2 − x1 + 1 > 0 ∧ x2
1 − x2 > 0.
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Figure 6.1: pCTMCs and related concepts

ζrange is the rectangular area in Fig. 6.1(b), while ζrate is the area between the two

curves. The initial region ζ0 is the shaded area. Any point in ζ0 will induce an instance

CTMC, e.g., for the valuation v(x1) = 1.5, v(x2) = 1, the instance CTMC is shown

in Fig. 6.1(c). �

6.2 Probabilistic Time-Bounded Reachability

In this chapter, we consider a very important fragment of CSL, i.e., the probabilistic

time-bounded reachability properties, i.e., given a set of goal states, labeling with goal ,

does the probability of reaching those goal states within time t lie in the interval [pl, pu]?

This is formalized in CSL as P[pl,pu](♦6tgoal ), where 0 6 pl 6 pu 6 1. Note that the

interval [pl, pu] may also be open, or half-open. The following lemma states that the

reachability probability can be reduced to computing the transient probability:

Lemma 6.4 ([BHHK03]) Given a CTMC C = (S,R, L), and sg ∈ S an absorbing

state:

Prob(s0,♦6tgoal ) =
∑

sg|=goal

℘sg(t), (6.2)
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where Prob(s0,♦6tgoal ) is the reachability probability of sg from s0 within t time units

and ℘sg(t) is the transient probability of state sg at time t.

This lemma also applies to pCTMCs in the sense that every valuation v ∈ ζ0 will

induce an instance CTMC, to which this lemma applies. Without loss of generality,

we assume sg is the unique goal state and write ♦6tsg instead. In the remainder of

this section, we focus on deriving an expression for ℘sg(t) with parameters in X . The

expression for ℘sg(t) (the reachability probability) is the basis of solving the synthesis

problem symbolically.

6.2.1 Computing Uniformization Rate q

Given pCTMC C(X ) = (S,R(X ), L) with the set X of parameters and initial region ζ0,

the uniformization rate q is at least the largest number that an exit rate can take in

ζ0. Formally,

q > max
16i6n

{
max
v∈ζ0

{
E(X )(si)[v]

}}
(6.3)

Note that q is a constant. It suffices to first maximize each expression E(X )(si) (the

objective function) within the closed region ζ0 (the inner max), and then take the

maximum out of n candidates (the outer max), where n = |S|. Typically, we take the

minimal value of q that fulfills (6.3), i.e., > is replaced by =. Prior to discussing how

to obtain a solution to (6.3), we first give an example:

Example 6.5 For the pCTMC in Fig. 6.1(a) and the initial region ζ0 in Fig. 6.1(b),

the exit rate of s0 and s1 is given by the expressions g0(x1) := 3− x1 and g1(x1, x2) :=

x2
1 + 2x1 − x2 + 4, respectively. The maximal value of g0 in ζ0 is 3 and 13.75 for g1.

Therefore, we take the uniformization rate q = 13.75. The uniformized pCTMC for

this rate is shown in Fig. 6.1(d). �

In general, determining the inner max in (6.3) boils down to solving a nonlinear

programming (NLP) problem [Avr03], where the constraints are provided by the initial

region. Note that both the objective function E(X )(si) and the constraints (6.1) are

polynomial expressions. For some special cases, e.g., one parameter or linear expression

rates, the NLP problem can be simplified. Fig. 6.2 summarizes the techniques that can

be applied. The highest degree of the objective function and constraints is indicated

along the y-axis, whereas the number of variables xi of the objective function and

constraints is indicated along the x-axis. Each dot represents a combination. We

partition the x-y plane into 5 areas (indicated (I) through (V)) by dashed lines, where

the dots in the same area can be solved by the techniques specified in the graph. In

details:
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Figure 6.2: Methods for maximizing polynomials under constraints

• For the case of one parameter and degree at most 4 (area (I)), the maximal value

can be obtained by first deriving a closed-form expression and then solving the

expression. For polynomials of higher degree, this is impossible as proven by

Galois [Ste89]. In particular, the Galois’ theory states that it is not possible to

give an algebraic formula for the zeros of a polynomial of degree 5 and higher.

• For the case of one parameter x and the degree at least 5 (area (II)), standard

root-finding algorithms can be applied. To be more precise, the roots of the first

derivative of the polynomial are to be found as the extreme values, among which

together with the boundary values of x we can obtain the maximal values of the

polynomial. The prevailing techniques are Newton’s method [Ham73], Sturm’s

method [HK88], Laguerre’s method [Lag83], to name a few.

• For the case of more than one parameter and degree one (area (III)), it boils

down to solving a linear programming problem [Sch98], where, amongst others,

the simplex algorithm [CLRS01b] and the interior point method [NW99] are well-

known solution techniques and are quite efficient.

• For the case of more than one parameter and degree from 2 to 20 (area (IV)), the

resultant-based techniques or Gröbner bases methods [Fro98] perform better than

branch-and-bound techniques (see below). Note that 20 is an estimation due to

performance considerations.

• The remaining cases (area (V)) are general NLP problems and can be solved

numerically by branch-and-bound techniques [Han92].
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By using the above algorithms in different cases, the inner max can be determined.

The outer max directly follows, so does the uniformization rate q. Given q, it is then

possible to obtain a uniformized pCTMC, based on which the transient probability (i.e.,

the reachability probability) can be computed. This is specified in the next subsection.

6.2.2 Computing the Symbolic Expressions of ~̃℘(t)

Recall that ~̃℘(t) is the ε-approximation of the transient probability vector ~℘(t).

The reachability probability to sg within time t equals ℘sg(t), and thus can be ε-

approximated by ℘̃sg(t). Similarly, we truncate the infinite sum of ~℘(t) to obtain ~̃℘(t).

Recall that kε is the truncation point in the infinite sum series of ~℘(t). kε is computed

in such a way ((2.4), page 14) that it is independent of the rates in the CTMC. This

implies that kε coincides with the non-parametric case.

The transient probability vector

~̃℘(t) = ~̃℘(0)·
kε∑

i=0

e−qt (qt)
i

i!
(P(X ))

i
(6.4)

can be computed by vector-matrix multiplication. For given q and t, e−qt (qt)i

i! is a

constant, while (P(X ))
i

contains parameters. Let degxi
(P(X )) denote the maximal

degree of parameter xi in all expressions in P(X ). For instance, degx1
(P(X )) = 2 and

degx2
(P(X )) = 1 for the pCTMC in Fig. 6.1(a). Note that degxi

(P(X )) = degxi
(R(X )).

The degree of a polynomial is the sum of the degrees of all its variables. Thus,
(
P(X )

)kε

has degree at most k̂ε, where

k̂ε = kε·
m∑

i=1

degxi
(P(X )). (6.5)

This is because at most kε times a vector-matrix multiplication will be taken and the

degree of one multiplier (the matrix) is
∑m

i=1 degxi
(P(X )). The order of degxi

(P(X ))

is O(K), where K := maxxi∈X degxi
(P(X )) is the maximal degree of the polynomial

expressions appearing in the pCTMC. Recall that kε tends to be of the order O(qt), if

qt is large. Thus, k̂ε is of order O(qtmK).

Given q and t, by (6.4) we can derive the transient probability ℘̃sg(t) which is a

polynomial function over the parameters x1, . . . , xm, i.e.,

f(x1, . . . , xm) =
∑

j=(i1,...,im)

aj·xi1
1 · · · xim

m , (6.6)

where iℓ 6 kε·degxℓ
(P(X )) (1 6 ℓ 6 m), and aj ∈ R. The degree of f is at most k̂ε.

In order to better explain (6.6), we will consider an example with an unrealisti-

cally small kε. Realistic kε’s are usually too large to derive a polynomial that can be

illustrated as an example and a small kε can already show the main idea of (6.6).
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Example 6.6 Consider the uniformized pCTMC in Fig. 6.1(d) and assume q = 13.75,

t = 1 and kε = 2. Then,

~℘(t) = ~℘(0)·
kε∑

i=0

e−qt (qt)
i

i!
(P(X ))

i
= ~℘(0)·e−qt ·

kε∑

i=0

(qt)i

i!
(P(X ))

i

= ~℘(0)·e−qt ·
(

(qt)0

0!
P(X )0 +

(qt)1

1!
P(X )1 +

(qt)2

2!
P(X )2

)

where ~℘(0) = (1, 0, 0) and

P(X ) =




1 − 3−x1
13.75

x2−x1+1
13.75

2−x2
13.75

2x1+4
13.75 1 − x2

1+2x1−x2+4
13.75

x2
1−x2

13.75

0 0 1


 .

The resulting polynomial is

f(x1, x2) = ~℘sg(t) =
1

2
e−qt ·(−x3

1 + x2
1x2 − x2

2 + x1x2 − 8.75x1 − 16.75x2 + 53),

where 1
2e

−qt = 5.3385 × 10−7. Note that degx1
(P(X )) = 2, degx2

(P(X )) = 1 and

K = max{2, 1} = 2. Furthermore, each power of x1 (resp. x2) in f(x1, x2) is less than

kε ∗ degx1
(P(X )) = 2 ∗ 2 = 4 (resp. kε ∗ degx2

(P(X )) = 2 ∗ 1 = 2) and the degree of

f(x1, x2) is at most kε
∑m

i=1 degxi
(P(X )) = 2 ∗ (2 + 1) = 6. �

Note that kε is usually much larger than degxi
(R(X )) and thus the degree of the

polynomial expression in (6.6) is not much affected if we would restrict rate expressions

in pCTMCs to be linear. This symbolic expression ℘̃sg(t) (i.e., f(x1, . . . , xm)) is the

basis of the symbolic synthesis approach in Section 6.4.

6.3 Parameter Synthesis Framework

The parameter synthesis problem we will consider is to determine all the values that

parameters can take such that the satisfaction of the property P[pl,pu](♦6tsg) is ensured

in any derived instance model. We define the synthesis region ζsyn ⊆ ζ0 to be the set

of valuations, such that each valuation (or point) v = (x′1, . . . , x
′
m) therein induces

an instance CTMC C[v], for which f(x′1, . . . , x
′
m) ∈ [pl, pu]. The main task is to find

the (approximate) synthesis region ζsyn . For the sake of easy visualization, we restrict

to pCTMCs with at most two parameters. Our techniques can be applied to more-

parameter cases, however, the computational complexity will grow drastically.
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Figure 6.3: An example synthesis region

6.3.1 Synthesis Regions

Given the pCTMC C(x1,x2) and property P[pl,pu](♦6tsg), the transient probability z =

f(x1, x2) defines a surface, see Fig. 6.3(a) for an (artificial) example. For z ⊲⊳ p ( ⊲⊳ ∈
{<,6, >,>} and constant p ∈ [0, 1]), the projection of the surface on the x1x2-plane

z = p (in particular in region ζrange) is a region ζ⊲⊳p with boundary curve ∇p. ζ⊲⊳p is

the set of points (x1, x2) such that f(x1, x2) ⊲⊳ p. The boundary curve ∇p is given by

f(x1, x2) − p = 0. The region ζ[pl,pu] is the intersection of ζ>pl
and ζ6pu , where pl and

pu are the probability bounds on the reachability property ♦6tsg.

Example 6.7 Consider the surface in Fig. 6.3(a). The shaded areas in Fig. 6.3(b) and

6.3(c) depict the region ζ>pl
and ζ6pu derived from the projection of this surface on

z = pl and z = pu. The intersection ζ>pl
∩ ζ6pu (Fig. 6.3(d)) is the synthesis region

ζ[pl,pu], given ζrange the rectangular area. �

Note that in general it is impossible to get the exact shape of the boundary curve

f(x1, x2) − p = 0 (as f(x1, x2) is a high-degree polynomial) as well as the exact syn-

thesis region. As a result, we use a set of linear line segments (or equivalently, a

set of linear inequations) to approximate the boundary curves, thus the approximate

synthesis region is a set of polygons. It is also called polygon(al) approximation in

102

Chapter5/figs/projection1.pstex
Chapter5/figs/proj2pl.pstex
Chapter5/figs/proj2pu.pstex
Chapter5/figs/proj2both.pstex


6.3 Parameter Synthesis Framework

the literature [Mon70][ABW90][JTW07]. We will provide two different approaches for

polygon approximation in Section 6.4 and 6.5. Prior to this, we first introduce dis-

cretization — the basis of the following approximation algorithms and then give the

general framework to synthesize polygon regions.

6.3.2 Discretization

Theoretically, every point in the initial region has to be checked for the satisfaction in

the induced CTMC. However, the initial region is dense, i.e., it contains uncountably

many points. A common approach to cope with this is to discretize the “continuous”

region and obtain only finitely many “sample” points, which might represent, or to be

more exact, approximate the original region.

Given the parameter set X = {x1, x2} and ζrange , we specify a discretization step

∆i ∈ R>0 for each parameter xi (i = 1, 2), such that ui − li = Ni∆i. Thus, the range

[li, ui] of values that variable xi can take is partitioned into Ni subintervals:

[
li, li+∆i

]
,
(
li+∆i, li+2∆i

]
, . . . ,

(
li+(Ni−1)∆i, li+Ni∆i

]
.

The values li + j∆i (0 6 j 6 Ni) are assigned the indices 0, 1, . . . , Ni. We thus obtain a

2-dimensional grid, where the grid points are of the form gp = (j1, j2) for 0 6 ji 6 Ni

with the valuation (l1 + j1∆1, l2 + j2∆2) and a grid cell is a smallest rectangle with grid

points as its four vertices. Two grid points gp = (i, j) and gp′ = (i′, j′) are adjacent

if |i − i′| + |j − j′| = 1. The region ζrange consists of at most (N1 + 1)(N2 + 1) grid

points and each point gp induces an instance CTMC C[gp] by the valuation of gp.

The transient probability ℘̃
C[gp]
sg (t) is computed by standard methods. A grid point gp

is positive (denoted gp = ⊤) if ℘̃
C[gp]
sg (t) ∈ (pl, pu); gp is neutral (denoted gp =⊥⊤) if

℘̃
C[gp]
sg (t) ∈ {pl, pu} and gp is negative (denoted gp = ⊥) otherwise.

It is important to realize that this yields a discretization in the sense that instead

of checking each point in the dense region ζrange , we only check the discrete grid points

as “samples”.

Example 6.8 Given the light gray range region ζrange formed by [l1, u1] and [l2, u2],

the grid discretization is as in Fig. 6.4(a), where ∆1 = ∆2. The grid indices are marked

with ∗ to distinguish them from the indices on the axes. Given the accurate synthesis

region as the dark gray area in Fig. 6.4(b), the positive and neutral grid points are

marked with circle and square, respectively. The negative grid points are marked with

nothing. �

It is usually convenient to choose a global ∆ (i.e., ∆ = ∆1 = ∆2) such that the

approximation error is the same in each dimension. From now on we will consider

only global ∆. Besides, since the grid points near the boundary curve are much more
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Figure 6.4: Grid discretization

important, it is possible to use a non-uniform grid, e.g., smaller grid steps near the

curve and larger grid steps away from the curve. Actually, in the second approach of

the polygon approximation (cf. Section 6.5), only the grid cells that are close to the

boundary curve are refined. This will become clear later.

6.3.3 General Framework

In this subsection, we present the general framework to obtain an approximate

synthesis region (cf. Alg. 5) which consists of two main steps:

• in Step 1, a first approximation ζ∗syn of the synthesis region is obtained while

ignoring the rate constraint ζrate . To achieve this, the grid discretization is first

applied (Step 1.1, Section 6.3.2), based on which the set of points ℑ needed for

constructing the polygon(s) is computed (Step 1.2). We consider two different

approaches to implement this step in Section 6.4 and 6.5, where several rounds

of refinements may be performed. Consequently, the points in ℑ are computed

differently. Having ℑ at our disposal, it then amounts to connect these points

(Step 1.3, Section 6.4.3) to form the polygon(s) ζ∗syn .

• in Step 2, ζsyn = ζ∗syn ∩ζrate is computed as the final synthesis region such that all

the points that will induce a negative rate (thus not a CTMC at all) are removed.

We first discretize the region ζrate (Step 2.1) by the same grid as in the end of

Step 1.2. This grid is not necessarily the same as the initial one in Step 1.1, as it

might have been refined. The intersection is then done by intersecting ζ∗syn and

ζrate (Step 2.2, Section 6.4.4).
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Algorithm 5 Framework for obtaining approximate synthesis regions.

Require: pCTMC C(x1,x2), formula P[pl,pu](♦6tsg),

initial discretization step ∆, termination discretization step ∆min

Ensure: approximate synthesis region ζsyn (a set of polygons)

1: compute ζ∗syn := ζ6pu
∩ ζ>pl

∩ ζrange ;

1.1: discretize ζrange on x1x2-plane by grid step ∆;

1.2: compute the set of points ℑ that are needed to form polygon(s);

1.2.1 if necessary, refine certain grids with ∆′ (∆min6∆′<∆); goto Step 1.2;

1.3: connect those obtained points to form approximate polygons (i.e., ζ∗syn);

2: compute ζsyn := ζ∗syn ∩ ζrate ;
2.1: discretize ζrate on x1x2-plane with the same grid (possibly being refined);

2.2: intersect ζ∗syn and ζrate ;

6.4 The Symbolic Approach

The symbolic approach is based on the expression ℘̃sg(t) derived in Section 6.2.2. The

main idea is that by solving some polynomials we find all intersection points (sometimes

short as int. pts.) between the boundary curves ∇pl
,∇pu and the grid lines. These

intersection points (forming the set ℑ) are then connected to approximate ∇pl
and ∇pu .

The resulting area bounded by the approximate curves is a set of polygons (polyhedra,

in case of more than 2 parameters). This idea is illustrated by the following example:

Example 6.9 (Continuing Example 6.8) For the boundary curve and the accurate

synthesis region ζ∗syn (the dark gray area) in Fig. 6.4(b). Besides the grid points, the

intersection points are marked with X . One possible approximate synthesis region is

the dark gray polygon in Fig. 6.4(c). �

Computing Intersection Points. To determine all intersection points between the

boundary curves ∇pl
and ∇pu and the grid lines, for each grid line xi = j∆ (i = 1, 2

and 0 6 j 6 Ni), we solve the following system of equations:
{
f(x1, x2) − pl = 0

xi = j∆

{
f(x1, x2) − pu = 0

xi = j∆

which boils down to finding the roots of a single variable polynomial function, which

in general can be solved by standard root-finding algorithms [Ham73][HK88][Pan00].

Since the polynomial function is usually of (very) high degree, the method in [SBFT03]

is more applicable. In total, we need to solve 2(N1 +N2 + 2) polynomials, as we have

2 curves and Ni + 1 grid lines in dimension i. Note that by increasing the number of

parameters in a pCTMC the total time needed to find all intersection points increases

exponentially. At the end of this step, we have obtained the set ℑ of intersection points.

Note that the size of ℑ might increase in the refinement process.
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(a) Set of Int. Pts. ℑ (b) Region 1 (c) Region 2 (d) Region 3

Figure 6.5: Ambiguity in connecting intersection points

6.4.1 Labeling Grid and Intersection Points

Given the set of intersection points ℑ, a natural question is how to connect them. Since

the boundary of the accurate region can be of arbitrary shape, the set ℑ might have

more than one way to be connected. We give the following example:

Example 6.10 For the set ℑ of intersection points indicated by X in Fig. 6.5(a), we

show in Fig. 6.5(b)-6.5(d) several possible ways to connect them. �

The following algorithm attempts to reduce or even resolve the potential ambiguity.

Data Structures. A polygon ζ is represented by a tree, such that one (positive)

grid point gp inside ζ is picked as the root and all other (positive) grid points in ζ

are internal nodes, while the intersection points (possibly neutral grid points) are leaf

nodes. This terminology will be used interchangeably in the remainder of this chapter.

Since the synthesis region may consist of more than one polygon (tree), we need a root

tag to indicate to which tree a leaf or an internal node belongs. A leaf or an internal

node without a root tag is called an orphan. The approximate synthesis region ζ∗syn is

represented by a set of polygons, i.e., sets of line segments.

Labeling Intersection Points and Grid Points. Labeling intersection and grid

points aims to determine to which polygon an intersection point belongs. This informa-

tion is the basis for the algorithm of connecting the intersection points (Section 6.4.3).

Let a, b, . . . denote grid points (◦/• for positive and △ for negative), 1, 2, . . . for inter-

section points (X ), and A,B, . . . for grid cells. We also use #IntPts(gp1, gp2) to denote

the number of intersection points between grid points gp1 and gp2 (gp1, gp2 inclusive).

We first notice the following facts:

Fact 6.11 Given two adjacent grid points gp1, gp2 with gp1 = ⊤,

1. if (gp2 = ⊤ and #IntPts(gp1, gp2) = 0) or (gp2 =⊥⊤ and #IntPts(gp1, gp2) = 1

where the intersection point is gp2) then gp1, gp2 belong to the same polygon;
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(a) #IntPts(curt , adj ) = 0 (b) #IntPts(curt , adj ) > 0

Figure 6.6: Labeling criteria

2. if gp2 = ⊥, then #IntPts(gp1, gp2) > 0.

Note that if gp2 =⊥⊤, then gp2 is an intersection point in ℑ. The labeling algorithm

will start with any positive grid point curt and label it as a root node of, say tree tree,

after which we search its four adjacent grid points adj . According to the above facts,

we have the following labeling criteria:

(i) if adj = ⊤ or ⊥⊤ and #IntPts(curt , adj ) = 0, then set adj ∈ tree;

(ii) if #IntPts(curt , adj ) > 0, then set ip ∈ tree , where ip is the intersection point

that is closest to curt .

Basically, (i) is based on Fact 1 and (ii) is based on Fact 2. #IntPts(curt , adj ) > 0

ensures that there exists at least one intersection point between curt and adj and

the closest one to curt must be on the same polygon as curt. The two criteria are

illustrated in Fig. 6.6, where the black filled grid points are curt and let adj be curt’s

upper neighbor. Fig. 6.6(a) shows the two cases of (i) where #IntPts(curt , adj ) = 0 and

adj = ⊤,⊥⊤, whereas Fig. 6.6(b) shows the three cases of (ii) where #IntPts(curt , adj ) >

0 and adj = ⊤,⊥⊤,⊥, respectively.

Let GP⊤ and GP⊤(tree) be the set of all positive grid points and positive grid points

assigned to the tree tree. We will continue labeling until GP⊤(tree) becomes stable (i.e.,

no more change on the labeling of any grid or intersection points). This means that

the labeling of this particular polygon (tree) is finished (thus GP⊤(tree) is obtained).

If GP⊤\GP⊤(tree) 6= ∅ (i.e., there exist other polygons), then another root node for a

new tree will be chosen and the labeling process will continue; otherwise the labeling

of all the points has been finished.

6.4.2 Refinement

As is typical for polygon approximation algorithms, the above labeling algorithm cannot

guarantee to find all regions correctly. We give some examples:
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Example 6.12 According to the labeling criteria, only point 1 in Fig. 6.7(a) will be

labeled to be in tree f, and 2, 3 will remain to be orphans (cf. Fig. 6.7(b) for the ap-

proximate regions). As another example, the grid points b, d in grid cell H are in the

same region, but since they are not adjacent, they will be identified as the roots of two

different trees (and thus give rise to two polygons). �

The main cause is that the grid is too coarse to have enough “sample points” that

can capture some of the fine details on the curves. This can be repaired by a grid

refinement, as explained below.

First we consider grid cells that do not have any grid point as an intersection point.

In other words, all the grid points are either positive or negative, but not neutral. Let

#leaves(gc) denote the number of intersection points on the four sides of grid cell gc.

For instance, grid cell H in Fig. 6.7(a) has four leaves. If a leaf point is the tangent point

between a boundary curve and one of the grid sides, then it will be counted twice (see

the intersection points 5 and 7 in Fig. 6.8(a) with #leaves(K) = 4 and #leaves(L) = 2).

We prove in the following that #leaves(gc) is always even.
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Lemma 6.13 Let gp1, gp2 be two adjacent grid points with labeling in {⊤,⊥}. Then

gp1 ⊙ gp2 = tt iff #IntPts(gp1, gp2) is even, and

gp1 ⊙ gp2 = ff iff #IntPts(gp1, gp2) is odd.

where gp ⊙ gp′ = tt if gp and gp′ have the same labeling (both are ⊤ or ⊥) and

gp ⊙ gp′ = ff otherwise.

Proof: Let #IntPts(gp1, gp2) = n and assume w.l.o.g. that gp1 = (c0, b) and gp2 =

(cn, b). We can divide the interval [c0, cn] between gp1 and gp2 into n sub-intervals

[ci, ci+1] (0 6 i 6 n) such that each sub-interval contains and only contains one in-

tersection point. Assume ∇(x1, x2) be the boundary curve. Let ∇b(x1) = ∇(x1, b) on

which the grid line x2 = b gp1 and gp2 are located. Since ∇(x1, x2) is continuous, it

holds that for any sub-interval [ci, ci+1] (0 6 i 6 n), ∇b(ci)·∇b(ci+1) < 0. It holds that

n is even iff
∏

06i6n

(
∇b(ci)·∇b(ci+1)

)
> 0 iff ∇b(c0)·∇b(cn) > 0 iff gp1⊙gp2 = tt,

n is odd iff
∏

06i6n

(
∇b(ci)·∇b(ci+1)

)
< 0 iff ∇b(c0)·∇b(cn) < 0 iff gp1⊙gp2 = ff.

�

Theorem 6.14 Given a boundary curve ∇(x1, x2) = 0 and a grid cell gc formed by

x1 = cl1, x1 = cu1 and x2 = cl2, x2 = cu2 . gc’s four grid points gpi (i ∈ {1, 2, 3, 4}) have

labeling in {⊤,⊥}, then

|∇(cl1, x2) = 0| + |∇(cu1 , x2) = 0| + |∇(x1, c
l
2) = 0| + |∇(x1, c

u
2 ) = 0| is even,

where |∇(c, x2) = 0| (resp. |∇(x1, c) = 0|) defines the number of x2 in [cl2, c
u
2 ] (resp. x1

in [cl1, c
u
1 ]) with which the respective equation holds.

Proof: We prove by contraposition. Let |∇(cl1, x2) = 0| = w1, |∇(cu1 , x2) = 0| = w2,

|∇(x1, c
l
2) = 0| = w3, |∇(x1, c

u
2 ) = 0| = w4 and suppose w1 + w2 + w3 + w4 is odd.

Without loss of generality, we distinguish two cases: (1) w1 is odd and w2, w3, w4

are even; (2) w1 is even and w2, w3, w4 are odd. Let the four grid points of gc be

gp1 = (cl1, c
l
2), gp2 = (cu1 , c

l
2), gp3 = (cu1 , c

u
2 ) and gp4 = (cl1, c

u
2) (cf. Fig. 6.8(b)). For case

(1), due to Lemma 6.13, gp1 ⊙ gp4 = ff and gp1 ⊙ gp2 = gp2 ⊙ gp3 = gp3 ⊙ gp4 = tt.

This means that W := (gp1 ⊙ gp4)⊙ (gp1 ⊙ gp2)⊙ (gp2⊙ gp3)⊙ (gp3 ⊙ gp4) =ff1, which

contradicts the fact that W = (gp1⊙gp1)⊙ (gp2⊙gp2)⊙ (gp3⊙gp3)⊙ (gp4⊙gp4) = tt.

1⊙ is actually the xnor operator, where tt⊙tt=tt, ff⊙ff=tt, tt⊙ff=ff, ff⊙tt=ff.
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For case (2), it is similar. �

For those grids that have neutral grid points, we can parallel move the grid with

a very small distance (e.g., 10−3∆) such that none of the four grid points are not

intersection points any more and then we can compute the intersection points of the

grid. This reduces the problem to the one that has been solved above, i.e., #leaves(gc)

is even.

We also define the number of positive grid points of a grid cell gc, denoted by

#GP⊤(gc). For instance, #GP⊤(H) = 2. Note that #GP⊤(gc) can be at most 4.

Where to Refine? Let us now explain when refinement is necessary. We list some

combinations of #leaves(gc) and #GP⊤(gc) in Table 6.1, each with an example grid

cell in Fig. 6.9. For different combinations, they might require a refinement (“to re-

fine?”=yes) or not (“to refine?”=no).

#leaves=2 #leaves=4
#GP⊤ example cell

to refine?
example cell

to refine?

0 A yes F yes

1 B no G yes

2 C no H yes

3 D no I yes

4 E yes J yes

Table 6.1: Refinement criteria

I
E F
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J

LG

H

K

B

D

C

(a) Accurate synthesis regions

E F
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D
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(b) Approximate synthesis regions

Figure 6.9: Refinement criteria: #leaves(gc) and #GP⊤(gc)

• #leaves(gc) = 2 ∧ #GP⊤(gc) ∈ {1, 2, 3}
We choose not to refine the grid gc in this case, as there is no ambiguity in

connecting the intersection points.
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• #leaves(gc) = 2 ∧ #GP⊤(gc) ∈ {0, 4}
A refinement is required in this case as some area is smaller than a grid cell, and

unknown or ambiguity arises (see grid cells A and E). Note A has only orphan

leaves and more than that the shape of their region is unknown. For E, all the

four vertices (intersection points) of the dark gray trapezoid belong to the same

polygon according to the algorithm, however, it is unknown how these four points

are connected as sides of a (larger) polygon.

• #leaves(gc) > 4

Typically, the more intersection points gc has, the more possible that some locally

abrupt behavior (or protuberances) of the boundary curve occurs in gc. This

happens when the area of interest is smaller than a grid cell. It means that the

discretization is too coarse and needs a refinement.

This can be seen by all the #leaves(gc) = 4 cases shown in the table, where grid

cells H, I, J split one connected region into two separated polygons, while grid cells

F and G have orphan leaves. None of those grid cells yield a close approximation.

For #leaves(gc) > 4, the grid cell gc will be refined due to the similar reasons.

• #leaves(gc) = 0 ∧ #GP⊤(gc) ∈ {0, 4}
The grid cell gc is assumed to be either completely outside the polygon

(#GP⊤(gc) = 0) or completely inside (#GP⊤(gc) = 4). Thus, there is no need

for refinement in this case.

How to Refine? The table can be used as a criterion to check whether or not a grid

cell needs to be refined. Once we have identified the suspicious grid cell gc, the following

question is how to refine it? There can be different strategies for refinement [Ste73], e.g.,

global vs. local; with uniform or non-uniform steps; how to reduce the discretization

steps, etc. The strategies highly depend on the application, i.e., the structure of the

polygons.

For the sake of simplicity, we consider one strategy, namely, the local and bisectional

refinement. To be more exact, we will refine locally the area of 9 grid cells with gc

in the center. Note that it is also possible to refine more or fewer (than 9) grid cells

as the “local area”. A new discretization with step size 1
2∆ will be performed on

those grid cells. The whole procedure (intersection points computation-labeling) is

repeated for the newly appeared grid points and intersection points. Note that in the

neighborhood of the new points, some old points might be re-labeled, e.g., the tree tag

being changed, or a tag being added to orphan points, etc. The labeling-refinement

procedure will continue until either the discretization step is less than the user-defined

∆min or there are no grid cells to be refined due to our criterion.
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(a) Actual boundary (b) Approx. boundary 1 (c) Approx. boundary 2

Figure 6.10: Connecting intersection points not uniquely

6.4.3 Constructing the Polygons

In case that the algorithm terminates before ∆min is reached, the refinement criterion

guarantees that there does not exist any grid cell with more than 2 intersection points.

Hence, obtaining polygon regions amounts to connecting the intersection points which

share the same root within the same grid cell, see Fig. 6.4(c). Otherwise (if ∆min is

reached), when there are only two intersection points in one grid, they can be connected

according to the same rule as above; when there are more than two, then we may connect

them arbitrarily. This might give rise to ambiguity (cf. Example 6.15) or omissions

(e.g., the rightmost circle in grid cell L in Fig. 6.9(a)). However, these regions are only

bounded in very limited areas, given a small discretization step. Thus, the undetected

areas can be safely ignored within the predefined error bound. Note that to obtain a

more precise approximation, we can take other discretization techniques, say, adding

diagonal lines as well. In this case, a cell is a triangle, where our algorithm can be

adapted easily.

Example 6.15 Given the accurate synthesis region and grid as in Fig. 6.10(a), there

are two ways to connect the intersection points as in Fig. 6.10(b) and 6.10(c). This

kind of ambiguity can be avoided if each grid cell has at most 2 intersection points. �

6.4.4 Region Intersection

By the end of the last section, we have derived the approximate synthesis region ζ∗syn
in terms of a set of polygons (represented by sets of linear inequations). Similarly, the

rate region ζrate can also be polygonally approximated in the above way. To intersect

the two regions, it suffices to take the intersection of the two sets of linear inequations.

Main Algorithm. So far we have explained each step of the framework (cf. Alg. 5).

The algorithm realizing the symbolic approach is shown in Alg. 6.
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6.4 The Symbolic Approach

Algorithm 6 Obtaining approx. synthesis regions symbolically

Require: pCTMC C(x1,x2), formula P[pl,pu](♦6t sg),

initial discretization step ∆, termination discretization step ∆⊥
Ensure: approximate synthesis region ζsyn (a set of polygons)

1: compute ζ∗syn := ζ6pu ∩ ζ>pl
∩ ζrange ;

1.1: discretize ζrange on x1x2-plane by grid step ∆;

1.2 /∗ compute the set of points ℑ that are needed to form polygon(s) ∗/
1.2.1 find all int. pts. between ∇pl

,∇pu with the grid lines;

/∗ label intersection and grid points with root tags ∗/
1.2.2 while (there exists a positive orphan grid point gp) do

1.2.3 make gp the root of a new tree;

1.2.4 gp is set as an unexplored tree node;

1.2.5 while (tree gp has unexplored node curt) do

1.2.6 curt is set to be explored;

1.2.7 for each (curt ’s adjacent node adj ) do

1.2.8 if (adj = ⊤ ∧ adj is orphan ∧ #IntPts(curt ,adj )=0) then

1.2.9 let adj have the same root as curt ;

1.2.10 adj is set as an unexplored tree node;

1.2.11 elseif (#IntPts(curt ,adj ) > 0)

1.2.12 find the leaf node lp closest to curt;

1.2.13 make lp’s root the same as curt ’s root;

1.2.14 end if;

1.2.15 end while;

1.2.16 end while;

/∗ refine the discretization steps, if necessary ∗/
1.2.17 if min{∆1,∆2} > ∆min then

1.2.18 for each (gc that should refined according to the criteria)

1.2.19 refine the nine grids with gc in the middle;

1.2.20 for the new grid points and intersection points, repeat from 1.2.1;

1.3: connect the obtained points in ℑ to form approximate polygons (i.e., ζ∗syn);

2: compute ζsyn := ζ∗syn ∩ ζrate ;
2.1: discretize ζrate on x1x2-plane with the same grid (possibly being refined);

2.2: intersect ζ∗syn and ζrate grid by grid;
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Figure 6.11: Error bound analysis

6.4.5 Efficiency and Accuracy

Time Complexity. In the worst case, the discretization step is ∆min and there are

Ni = ui−li
∆min

(i = 1, 2) subintervals. Obtaining the closed-formed expression of f(x1, x2)

(cf. (6.6)), takes O(n2qt) time by computing the transient probability vector. For the

initialization, 2(N1+N2+2) polynomial equations have to be solved with precision 2−β

where β is the bit precision. Using the algorithm in [Pan00], this is of the time complex-

ity O
(
k̂2

ε log(k̂ε) log(βk̂ε)
)
, where k̂ε is the degree of the polynomial f(x1, x2) (cf. (6.5)).

For the points labeling part, the time complexity is of the order of the number of grid

points, i.e., O(N1N2). Evaluating f(x1, x2) at each grid point takes O(k̂ε) time. To

sum them up, we have:

Theorem 6.16 The worst case time complexity of the symbolic synthesis region algo-

rithm is:

O
(
n2qt+ k̂εN1N2 + k̂2

ε log(k̂ε) log(βk̂ε)(N1+N2)
)
,

where k̂ε is of the order O(qtmK) with K the maximal degree of the polynomial expres-

sions in the pCTMC.

Error Bound. An important question is how accurate the derived synthesis region

is. Let us explain this by using Fig. 6.11(a), where the accurate region is the gray area

and its approximation is the dashed polygon. Let di be the distance between the line

segment approximating the curve and the tangent (with the same slope) to the curve in

the grid cell i. Let dmax = maxi{di} be the largest of such distance. It is, however, very

costly to compute every di and thus dmax. In practice, dmax is taken to be
√

∆2
1 + ∆2

2

which is the maximal value it can take. The top-rightmost distance in Fig. 6.11(a) is

very close to this upper bound.
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Figure 6.12: A storage system with probabilistic error checking (qc = 5)

Given the approximate polygon ζsyn (dashed polygon in Fig. 6.11(b)) and dmax, we

can construct polygons ζmax
syn (the largest polygon in Fig. 6.11(b)) and ζmin

syn (the smallest

polygon), where distance dmax is added and subtracted from the boundary of ζsyn ,

respectively. The points in ζmax
syn \ζmin

syn may induce a valid CTMC, while the points in

ζmin
syn always induce a valid CTMC. ζmin

syn can be regarded as the “safe” synthesis region.

6.4.6 Case Study

To see how the symbolic approach works in real-life cases, we apply it to a concrete

case study from the literature. A storage system with error checking incorporates

redundant data for discovery and recovery from errors caused by hardware or software

faults [CY95a]. The use of redundancy enhances the reliability of the storage system

but unavoidably degrades the system’s performance because of the extra processing

time required for error checking. Typically, on every request it is checked whether an

error has occurred or not. Probabilistic error checking can be applied to reduce the

error checking overhead. In particular, each access operation will be followed by an

error checking with probability r ∈ [0, 1], instead of almost surely (i.e., r = 1). Such a

storage system can be modeled by a pCTMC as indicated in Fig. 6.12.

The storage system is 1-correctable, i.e., the system can recover from a single error,

but fails (state F ) if two or more errors occur. We suppose that all access operations

(reads and writes) as well as the error checking are atomic and all delays involved (such

as arrivals, checks, etc.) are exponentially distributed. Access operation requests arrive

with rate λ and are served with rate µ; the hardware/software will fail with rate γ,

while the error checking takes place with rate σ. The arrived but not yet served requests

are queued. We assume a queue capacity qc = 5. The states of the pCTMC are of
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the form (i, j), where i is the number of queued access operation requests and j the

number of errors (0 or 1); an asterisk indicates that an error check is being performed.

The property of interest is P6p(♦6tsF ).

Typically, the probability r can be logically adjusted to guarantee some given speci-

fication. In the following, we show the experimental results for one parameter r, i.e., we

determine for which error checking probability r it is guaranteed that the probability

to reach the fail state (within the deadline) is low.

The first step of the symbolic approach is to establish the polynomial f — the

transient probability (cf. (6.6), page 100). Since the coefficients of the polynomial range

over a potentially very large domain, we applied the Java-supported data structure, the

BigDecimal class, which results in very accurate calculation. We report the results for

the following configurations:

system parameters program queue capacity

σ = 0.5 parameters
time

qc = 6 qc = 10

µ = 0.5 t = 100 X X

λ = 0.3
ε = 10−3

t = 150 X

γ = 5 × 10−5 ∆ = 0.5
t = 200 X X

Table 6.2: Experiment configurations

The coefficients and values of the resulting function f(x) are shown in Fig. 6.13 and

6.14 for different time t and queue capacity qc. Here, the variable x is the error checking

probability r. For the case (t = 150, qc = 10), Fig. 6.13(a) shows the relationship

between the degree of x and the coefficients. Note that the coefficients range from

−107 to 107, however, the abrupt change of coefficients only appears for degrees from

between 10 and 20. For the other degrees, the coefficients are very small, almost close

to 0. This polynomial in Fig. 6.13(a) has a high degree (up to 60, see the x-axis)

and presents a pathological shape, which might suffer from numerical errors. This

also explains why we apply the BigDecimal data structure — basically to avoid the

numerical errors that are introduced by the less accurate coefficients. The efficiency

of the algorithm, however, is relative low, also due to the BigDecimal data structure.

Having the function f(x) at our disposal, the values of f(x) can be easily computed,

given x ∈ [0, 1]. The results are shown in Fig. 6.13(b). Note that for x ∈ [0, 0.08], the

value of f(x) — the transient probability — is less than 0, which indicates that there

exist errors in the computation, as for every x ∈ [0, 1], the reachability probability to

the fail state should be positive. Note that x = 0 means that there is no error checking

at all. Although the Simple Newton’s Root Finder and the Lindsey-Fox Grid Search
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(a) coefficients of f(x) (t = 150, qc = 10)

(b) value of f(x) (t = 150, qc = 10)

Figure 6.13: Coefficients and values of f(x) for t = 150 and qc = 10
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(a) coefficients of f(x) (t = 100, qc = 6) (b) value of f(x) (t = 100, qc = 6)

(c) coefficients of f(x) (t = 100, qc = 10) (d) value of f(x) (t = 100, qc = 10)

(e) coefficients of f(x) (t = 200, qc = 6) (f) value of f(x) (t = 200, qc = 6)

(g) coefficients of f(x) (t = 200, qc = 10) (h) value of f(x) (t = 200, qc = 10)

Figure 6.14: Coefficients and values of f(x) for different t and qc

118

Chapter5/png/a2_1.eps
Chapter5/png/a2.eps
Chapter5/png/b1.eps
Chapter5/png/b2.eps
Chapter5/png/e2.eps
Chapter5/png/e1.eps
Chapter5/png/f1.eps
Chapter5/png/f2.eps


6.5 The Non-Symbolic Approach

algorithm described in [SBFT03] have also been implemented, the feasibility of the

polynomial itself is suspicious. Thus we don’t report the results for the solvers here.

For the other cases, as illustrated in Fig. 6.14, the curves share a similar pattern and

are subject to similar problems.

Due to the above experimental results and reasoning, given this specific kind of

polynomials, neither the correctness nor the performance of the proposed algorithm is

satisfactory. We will, therefore, propose an alternative approach in the next section.

Note that it is still worth investigating the current approach further. The idea of

looking into the intersection points is natural and straightforward. The algorithm for

labeling the grid and intersection points (and determining the “ownership” of a point)

is novel and can be adapted to similar problems. We believe that given other “normal”

polynomials, where the numerical instability is no longer a problem, this approach

could work.

6.5 The Non-Symbolic Approach

Due to the high numerical instability of the obtained polynomials, we propose this

non-symbolic approach which does not involve any polynomials. Instead, we collect

and explore more grid points (i.e., “samples”), for each of which the pCTMC is first

instantiated to be a CTMC, followed by a standard transient analysis (e.g., by uni-

formization) on this obtained non-parametric CTMC. Given the resulting transient

probability, it is easy to decide whether a grid point is inside the synthesis region (if

℘̃sg(t) lies in [pl, pu]) or not (otherwise). The main difficulty in this approach is how

to closely approximate the boundary curve by exploring as few grid points as possible.

This is done by choosing a good refinement strategy that only refines the grid cells

where boundary curves go through. This will become clear later.

6.5.1 Marking and Refinement

Marking. In the marking step, we first determine for all grid points whether they

are positive, neutral, or negative (Section 6.3.2, page 103). We then mark all grid cells

gc according to its four grid points as follows:

gc =





⊤ if gc’s grid points are 4⊤ or 3⊤1⊥⊤
⊥ if gc’s grid points are 4⊥ or 3⊥1⊥⊤
? otherwise

where e.g. 3⊤1⊥⊤ means 3 out of 4 four grid points are positive and 1 is neutral. A grid

cell gc is positive ⊤ (resp. negative ⊥) if it is assumed to be totally in (resp. outside)

the synthesis region. gc is unknown ? if the boundary curves might go through the grid

cell. Note that if two adjacent grid points have opposite values (i.e., one positive and
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one negative), then there must exist at least one intersection point on the line between

the two grid points. In other words, the boundary curve goes through this line (thus

also this grid).

The above grid-cell marking gives an approximate criterion to determine whether a

given grid cell is inside or outside the synthesis region. We illustrate the different cases

in the following example.

Example 6.17 Given the grid and accurate synthesis regions (big circles) in

Fig. 6.15(a), the positive (resp. neutral) grid points are marked with small circles

(resp. squares). All the unmarked grid points are negative. The positive grid cells A

(4⊤) and B (3⊤1⊥⊤) are marked with ⊤ (dark gray), while the negative C (4⊥) and D

(3⊥1⊥⊤) are marked with ⊥ (light gray). The neutral grid cells are marked with ?. �

Note that it is an approximate criterion since it is possible to have both “false

positive” and “false negative” grid cells, where the former falsely includes the invalid

region into the approximate synthesis region and the latter falsely excludes the valid

region from the approximate synthesis region.

Example 6.18 For grid cells E (4⊤) and F (3⊤1⊥⊤) in Fig. 6.15(b), they will be marked

with ⊤ according to the criterion. However, not the entire regions in E and F belong

to the accurate synthesis region. Likewise, G and H in Fig. 6.15(c) will be marked with

⊥ even though there exist positive regions in them. �

We remark that the false region problem can be alleviated when small grid steps

are applied. Since then the “false” regions are small and even if they are neglected,

it is still acceptable. So far we have marked all the grid cells; in the following we will

show how to refine the ?-marked grid cells.

A

B

C

D

?
?

?

??

?

??

???

?

?? ?

(a) Marking criterion

E

F

(b) False positive

G

H

(c) False negative

Figure 6.15: Grid cell marking
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Refinement. For a grid cell gc that needs a refinement, we half the grid step size

in each dimension and obtain four small grid cells out of gc. For each of the small grid

cells, the same marking-and-refinement procedure is applied until the pre-defined grid

step size ∆min is reached.

Example 6.19 Consider the accurate synthesis region and the initial grid as in

Fig. 6.16(a), we refine all the white grid cells (the ?-grid cells) and obtain the refined

grid as in Fig. 6.16(b). We can further mark and refine such that Fig. 6.16(c) will

be derived. The refinement will terminate once the minimal grid step ∆min has been

reached. �

∆

(a) Initial grid (b) 1st refinement

∆min

(c) 2nd refinement

Figure 6.16: Refinement iterations

6.5.2 Obtaining the Approximate Synthesis Region

Determine and Connecting the Points. When the marking-refinement process

terminates, we can determine the set ℑ of points that are needed to connect the ap-

proximated polygon(s). First of all, all the neutrally marked grid points are for sure

on the boundary and they are in ℑ. Secondly, for each unknown grid cell gc, if its

two adjacent grid points have opposite values, then there exists one intersection point

(i.e., a point on the boundary curve) on the side between the two grid points. We then

simply take the middle point of this side as the intersection point, i.e., being in ℑ.

This is an approximation and the error bound here, i.e., the maximal distance from the

accurate and approximate intersection points is 1
2∆min. The same maximal and min-

imal synthesis regions ζmax
syn , ζ

min
syn can be derived as in Section 6.4.5 (page 114), where

dmax =
√

2
4 ∆min. This is illustrated in Fig. 6.17, where the outermost and innermost

polygons are ζmax
syn and ζmin

syn , respectively. The middle polygon is the approximation

we choose. Note the distance dmax between the two adjacent polygons, they can be no

larger than
√

2
4 ∆min.

Given the set ℑ of points, we apply the same procedure as in Section 6.4.3 to connect

them. We omit the details here.
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half
points

dmax

dmax

∆min

Figure 6.17: Error bound analysis

Main Algorithm. We present the main algorithm in Alg. 7. In the algorithm, we

keep a list of unprocessed grid points and cells GPnew and GCnew, respectively. The

mark-refinement process is from step 1.2.3 to 1.2.16, where step 1.2.4 - 1.2.7 is the grid

points marking and step 1.2.8 - 1.2.10 is the grid cells marking. The refinement process

is from step 1.2.11 to 1.2.15, where the split of every grid cell yields four sub-grid cells

and five new grid points. We determine the set of points ℑ in step 1.2.17 - 1.2.19.

Time Complexity. Computing the transient probability (i.e., the reachability prob-

ability) takes O(n2qt) time. For the first round (i.e., the round without any refine-

ments, or to be more exact, the discretization step is the initial one: ∆), there are

(N1 +1)(N2 +1) CTMCs to instantiate (i.e., for each grid point), where each instanti-

ation takes O(m̂) time, where m̂ is the number of non-constant elements in R(X ). The

marking procedure for N1N2 grid cells takes O(N1N2) time. Thus, for the first round,

it takes O(m̂(N1 + 1)(N2 + 1) +N1N2) = O(m̂N1N2).

We continue to discuss the second round, i.e., after the first refinement. Let us

assume that c (0 < c 6 1) percent of the “fresh” grid cells is refined. “Fresh” grid

cells are the newly generated grid cells in the last refinement round. In the first round,

there are N1N2 grid cells and all of them are fresh. Recall that for each grid cell that is

refined, 4 new small grid cells as well as 5 new grid points will be generated. Therefore,

there are cN1N2 grid cells in the first round that have to be refined and in the second

round 4cN1N2 grid cells and 5cN1N2 grid points will be newly generated1. In the

second round, the time complexity is thus O(5cm̂N1N2 +4cN1N2) = O(cm̂N1N2). For

the (j + 1)-th round (after j-th refinement), the time complexity is O(cjm̂N1N2). Let

1Note that since some new grid points are shared by two neighboring grid cells, the actual number

of new grid points is less than 5cN1N2. However, for simplicity, we assume it is 5cN1N2.
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Algorithm 7 Obtaining approximate synthesis regions non-symbolically.

Require: pCTMC C(x1,x2), formula P[pl,pu](♦6t sg),

initial discretization step ∆, termination discretization step ∆⊥

Ensure: approximate synthesis region ζsyn (a set of polygons)

1: compute ζ∗syn := ζ6pu
∩ ζ>pl

∩ ζrange ;

1.1: discretize ζrange on x1x2-plane by grid step ∆;

1.2 /∗ compute the set of points ℑ that are needed to form polygon(s) ∗/
1.2.1: insert all grid cells to GCnew ;

1.2.2: insert all grid points to GPnew;

1.2.3: while ∆ > ∆min do /∗ successive refinement∗/
1.2.4: for each grid point gp ∈ GPnew do

1.2.5: GPnew := GPnew − {gp};
1.2.6: mark gp with ⊤, ⊥ or ⊥⊤;

1.2.7: if gp =⊥⊤ then ℑ := ℑ ∪ {gp}; /∗ gp on the boundary ∗/
1.2.8: for each grid cell gc ∈ GCnew do

1.2.9: GCnew := GCnew − {gc};
1.2.10: mark gc with ⊤, ⊥ or ? and put it in GC⊤, GC⊥ or GC?;

1.2.11: for each gc ∈ GC? do

1.2.12: GC? := GC? − {gc};
1.2.13: ∆ := ∆/2 and split gc into four sub-grid cells gc1, gc2, gc3, gc4;

1.2.14: GCnew := GCnew ∪ {gc1, gc2, gc3, gc4};
1.2.15: GPnew := GPnew ∪ ⋃16i65{gpi};
1.2.16: end while;

/∗ end of refinement, obtaining more approximate boundary points∗/
1.2.17: for each grid cell gc ∈ GC? do

1.2.18: if ∃ grid points gp1, gp2 of gc such that

(gp1 and gp2 are adjacent) and (gp1 = ⊤ ∧ gp2 = ⊥) then

1.2.19: ℑ := ℑ ∪ {the middle point of gp1 and gp2};

1.3: connect the obtained points in ℑ to form approximate polygons (i.e., ζ∗syn );

2: compute ζsyn := ζ∗syn ∩ ζrate ;
2.1: discretize ζrate on x1x2-plane with the same grid (possibly being refined);

2.2: intersect ζ∗syn and ζrate grid by grid;

j be the smallest integer satisfying ∆
2j 6 ∆min, i.e., j > log2

∆
∆min

. (Note that j is the

number of refinements.) The total time complexity is the sum of that of each round

and equals O(
c(1 − cj)

1 − c
m̂N1N2). Therefore we have the following:

Theorem 6.20 The worst case time complexity of the non-symbolic synthesis region

algorithm is:

O(
c(1 − c

∆
∆min )

1 − c
m̂N1N2).
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Figure 6.18: Example synthesis region

6.5.3 Case Study

In the following we will apply the non-symbolic approach to find synthesis regions in

our running example:

The Running Example. Consider the pCTMC in Fig. 6.1, and let the discretiza-

tion steps ∆1 = ∆2 = 0.01, uniformization error bound ε = 10−6 and property

P>0.5(♦60.5sg). Given the rate region ζrate as in Fig. 6.18(a), ζ∗syn and ζsyn are as

shown in Fig. 6.18(b) and Fig. 6.18(c), respectively. We omit the grid lines so as to

make the figure readable. Due to the fact that the refinement step is small and the

boundary curve is smooth and has no abrupt changes, we do not apply any refinement

in this case.

The Storage System. We consider the same storage system case study as in

Section 6.4.6 (page 115). The property of interest is P6p(♦6tsF ). Typically, the prob-

ability r can be logically adjusted to guarantee some given specification. On the other

hand, µ, σ, and γ can be physically adjusted by changing the hardware/software. In

the following, we show the experimental results for 1) one parameter r, i.e., for which

error checking probability r can we guarantee that the probability to reach the fail state

(within the deadline) is low, e.g., less than 0.0075? 2) two parameters µ and σ, i.e., how

fast should read/write requests be handled and errors be checked in order to obtain

a low failure probability? In all computations the error bound for uniformization is

ε = 10−6.

One Parameter: r. Let λ = 0.3 (0.3 access operation requests per second), µ = 0.5,

σ = 0.5 and γ = 5×10−5 (an average time of two consecutive errors is approximately 5

days). The parameter r has initial range [0, 1] and the discretization step ∆ = 0.01. For

the specification Φ1 = P60.0075(♦6tsF ), where t ∈ {100, . . . , 500}, the synthesis region

is an interval as shown in Fig. 6.19(a), where the probability threshold p = 0.0075 is

marked by a dashed line. For t = 100, the entire range r ∈ [0, 1] is safe; intuitively, it is
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(c) 2 parameters µ, σ (r = 0.5)
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(d) 2 parameters µ, σ (r = 0.7)

Figure 6.19: Synthesis regions for the storage system

less probable to fail given a small period of time. For t = 200, . . . , 500, r approximately

lies in the intervals [0.1, 1], [0.28, 1], [0.41, 1], [0.5, 1], respectively. This shows that the

larger the time bound is, the higher the error checking probability r should be in order

to satisfy Φ1.

Two Parameters: µ and σ. Let λ = 0.3 , γ = 5 × 10−5 and r = 0.3, 0.5 or 0.7.

The parameter ranges are µ ∈ [0.1, 1.1] and σ ∈ [0.1, 1.1], with ∆µ = ∆σ = 0.01.

The initial region ζ0 is the same rectangular area as ζrange . For the specification Φ2 =

P60.002(♦6200sF ), the synthesis regions are the black regions as shown in Fig. 6.19(b)

through 6.19(d) for different values of r. Notice that the shape of the boundary curves

is simple (i.e. without local protuberances), refinement is thus not performed. However,

the stairs-like shape is due to the grid discretization. A refinement will make the curve

smoother.

The higher the error checking probability r is, the larger the region for which Φ2

holds. If error checking takes longer (i.e., with a low error checking rate σ), then it is

less probable to fail. This is due to the assumption that during the error checking, no

error will occur. This assumption is true because the states from the middle layer in
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Fig.6.12 (page 115) do not have a direct transition to the failure state. On the other

hand, if a request is served faster (i.e., with high service rate µ), then it is less probable

to fail. This is because given a fixed failure rate γ, a larger service rate µ can make

the CTMC stay more in the middle layer, where it is less probable to fail. In practice,

an error checking is preferred to be carried out fast for the sake of efficiency. We,

therefore, can adjust the combination of µ and σ to meet the specification and enhance

the efficiency.

6.6 Summary

The central question that we considered is: for a CTMC with parametric random de-

lays, can we find sets of parameter values for which a given specification is satisfied? We

presented two algorithms that can yield an approximation of these values for CTMCs

and time-bounded reachability specifications. To the best of our knowledge, this is the

first result considering parameter synthesis approach in this setting. We make some

comparison on the two approaches as follows.

6.6.1 Comparison

As we have shown in the case study, the polynomials we obtain in the symbolic approach

are usually of very high degree and the coefficients in the polynomials range over a

very large domain. These facts explain that solving the polynomials would in most

cases suffer from numerical instability, and consequently derive inaccurate (or even

incorrect) transient probabilities (which fall outside [0, 1]). That is to say, although

getting intersection points seems to be the most direct way to derive the points needed

for the polygons, in practice it does not work well.

In contrast, the non-symbolic approach usually takes more rounds of refinement to

locate the points; however, the computation is much easier and with less numerical

instability. The reason is that it is not done by exploring any polynomials, but by

instantiating the CTMCs per point and applying the uniformization technique. It

is worth mentioning that the Runge-Kutta-like methods [RT88][RST89] can also be

applied to compute the transient probabilities, instead of using uniformization here.

The Runge-Kutta-like methods might perform better under some special conditions,

e.g., stiff Markov chains [RT88][MT91].

Both approaches might fail to detect some very small regions (e.g., within one grid)

or connect the points in a different way as they should be (cf. e.g., Fig. 6.10). However,

these can all be fixed if a smaller grid step is taken.

The symbolic approach might not be fully applicable in practice in our setting.

However, given a different objective function, i.e., a function that can be solved stably,
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it would then be possible to apply it. The non-symbolic approach is more practical in

this case. Our experiments are mainly based on it.

6.6.2 Related Work

Parameter synthesis has been studied for the following models:

Probabilistic Systems.

• Daws presented a language-theoretic approach to symbolic model checking of

PCTL over DTMCs [Daw04]. The probability with which a path formula is

satisfied is represented by a regular expression. A recursive evaluation of the

regular expression yields an exact rational value when transition probabilities are

rational, and rational functions when some probabilities are left unspecified as pa-

rameters of the system. This allows for parametric model checking by evaluating

the regular expression for different parameter values.

• Lanotte, Maggiolo-Schettini and Troina studied a model of parametric probabilis-

tic transition systems (PPTSs), where probabilities on transitions may be param-

eters [LMST07]. It was shown how instances of the parameters can be found to

satisfy a given property, or the instances that either maximize or minimize the

reachability probability.

• Hahn and Zhang considered the parametric probabilistic reachability prob-

lem [HHZ09]: Given a parametric Markov model with rewards and with non-

determinism, compute the closed form expression representing the probability of

reaching a given set of states. In the setting of reward models, the computation

of parametric expected rewards was considered, while for MDPs they establish

the maximal parametric reachability probability.

• Chamseddine et al. considered a variant of probabilistic timed automata called

parametric determinate probabilistic timed automata [CDF+08]. Such automata

are fully probabilistic and it is possible to stay at a node only for a given amount

of time. The residence time within a node may be given in terms of a parameter,

and hence its concrete value is assumed to be unknown. A method was given for

computing the expected time for a parametric determinate probabilistic timed

automaton to reach an absorbing node. The method consists in constructing a

variant of a Markov chain with costs (where the costs correspond to durations),

and is parametric in the sense that the expected absorption time is computed as

a function of the model’s parameters.
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Timed Automata.

• Alur, Henzinger and Vardi addressed the problem of deriving symbolic constraints

on the timing properties required of real-time systems (e.g., message delivery

within the time it takes to execute two assignment statements) by introducing

parametric timed automata — finite-state machines whose transitions are con-

strained with parametric timing requirements [AHV93]. They showed that the

emptiness question is in general undecidable. However, an algorithm was pro-

vided for checking the emptiness of the same restricted classes of parametric

timed automata.

• It is known that the reachability problem for timed automata is decidable when

the coefficients in the guards are rational numbers. Puri showed that the reach-

ability problem is undecidable when the coefficients are chosen from the set

{1,
√

2} [Pur99]. A consequence of this is that the parameter synthesis prob-

lem for timed automata with even a single parameter is undecidable.

• Hune et al. presented an extension of the model checker UPPAAL, capable of

synthesizing linear parameter constraints for the correctness of parametric timed

automata [HRSV02]. It also showed that the emptiness problem for a subclass

of parametric timed automata — L/U automata — is decidable.

• Bruyère, Dall’Olio and Raskin considered the problem of model-checking a para-

metric extension of the logic TCTL over timed automata and establish its decid-

ability [BDR03]. Given a timed automaton, it was shown that the set of durations

of runs starting from a region and ending in another region is definable in Pres-

burger arithmetic (when the time domain is discrete) or in the theory of the reals

(when the time domain is dense). With this logical definition, the parametric

model-checking problem for the logic TCTL can easily be solved. More generally,

it is possible to effectively characterize the values of the parameters that satisfy

the parametric TCTL formula.

• Zhang and Cleaveland presented a local algorithm for solving the universal para-

metric real-time model-checking problem: given a real-time system and a tem-

poral formula, both of which may contain parameters, and a constraint over the

parameters, does every allowed parameter assignment ensure that the real-time

system satisfies the formula [ZC05]? The approach relies on translating these

model-checking problems into predicate equation systems, and then using an ef-

ficient proof-search algorithm to solve these systems.

• Bruyère and Raskin studied the model-checking and parameter synthesis prob-

lems of the logic TCTL over discrete-timed automata where parameters are al-
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lowed both in the model (timed automaton) and in the property (temporal for-

mula) [BR07]. It was shown that the model-checking problem of TCTL extended

with parameters is undecidable over discrete-timed automata with only one para-

metric clock. The undecidability result needs equality in the logic. It would

become decidable if equality in the logic is not allowed.

Hybrid Systems.

• HyTech [AHH96][HHWT97] is an automatic tool for the analysis of hybrid au-

tomata. HyTech computes the condition under which a linear hybrid system

satisfies a temporal requirement. Hybrid systems are specified as collections of

automata with discrete and continuous components, and temporal requirements

are verified by symbolic model checking. If the verification fails, then HyTech

generates a diagnostic error trace.

• Frehse presented the tool PHAVer for the exact verification of safety properties

of hybrid systems with piecewise constant bounds on the derivatives, so-called

linear hybrid automata [Fre08]. Affine dynamics are handled by on-the-fly over-

approximation and partitioning of the state space based on user-provided con-

straints and the dynamics of the system. PHAVer features exact arithmetic in a

robust implementation that supports arbitrarily large numbers. To force termi-

nation and manage the complexity of the polyhedral computations, the methods

to conservatively limit the number of bits and constraints of polyhedra were also

proposed.
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Chapter 7

Model Checking CTMCs Against

Timed Automata Specifications

This chapter considers the problem of verifying CTMCs versus linear real-time spec-

ifications, which are given as timed automata. Concretely speaking, we explore the

following problem: given a CTMC C and a linear real-time property provided as a

deterministic timed automaton [AD94] (DTA) A, what is the probability of the set of

paths of C which are accepted by A (C |= A)? We consider two kinds of acceptance

conditions: the reachability condition (in DTA♦) and the Muller acceptance condition

(in DTAω). The former accepts (finite) paths which reach some final state and the

latter accepts (infinite) paths that infinitely often visit some set of final states.

We set off to show that this problem is well-defined in the sense that the path set

is measurable. For DTA♦, we have shown that computing this probability is reducible

to computing the reachability probability in a piecewise deterministic Markov process

(PDP) [Dav93], a model that is used in, e.g., stochastic control theory and financial

mathematics. This result relies on a product construction of CTMC C and DTA

A, denoted C ⊗ A, yielding deterministic Markov timed automata (DMTA), a variant

of DTA in which, besides the usual ingredients of timed automata, like guards and

clock resets, the location residence time is exponentially distributed. We show that

for DTA♦ A the probability of C |= A coincides with the reachability probability of

accepting paths in C ⊗ A. The underlying PDP of a DMTA is obtained by a slight

adaptation of the standard region construction. The desired reachability probability

is characterized as the least solution of a system of integral equations that is obtained

from the PDP. Finally, this probability is shown to be approximated by solving a

system of partial differential equations (PDEs). For single-clock DTA♦, we show that

the system of integral equations can be transformed into a system of linear equations,

where the coefficients are solutions of some ordinary differential equations (ODEs),

which can have either an analytical solution (for small state space) or an arbitrarily
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multi-clock DTA♦

∨
single-clock DTA♦ ∼ CSLTA >∗ asCSL

∨
CSLTA\n >∗ asCSL\n

∨

∧
asCSL6t >∗∗ CSL6t

∨
CSL

>∗

multi-clock DTAω

∨
single-clock DTAω >

>

linear time specification branching time specification

Figure 7.1: A comparison of the expressive power of different specifications

closely approximated solution that can be computed efficiently. For DTAω , by finding

the accepting BSCCs in the region graph, the ω-regular acceptance condition is proven

to be reducible to the finite paths case, i.e., the reachability problem.

All the proofs of the theorems, propositions and lemmata can be found in the

appendix.

Motivation of Using Timed Automata Specifications. To justify the use of

timed automata as specifications, we will now exemplify the possible properties that can

be specified by a timed automaton. Prior to that, we first make a comparison among the

expressive power of CSL [BHHK03], asCSL [BCH+07], CSLTA [DHS09], DTA♦ [AD94]

and DTAω [AD94] with arbitrary number of clocks.

Let A,B be logic specifications. We write A > B if A is at least as expressive as B;

A > B, if A is strictly more expressive than B and A = B if they are equally expressive

in the CTMC model. A > B if for any ΦB ∈ B, there exists ΦA ∈ A such that for any

CTMC C and state s, s |=C ΦA iff s |=C ΦB . A = B iff A > B and B > A. A > B if

A > B and there exists Φ′
A ∈ A such that there does not exist an equivalent formula

Φ′
B ∈ B. When A and B are automata, the relations are defined in a similar way.

We illustrate the comparison of the expressive power of these specifications in

Fig. 7.1, where CSLTA\n and asCSL\n represent the formulae without nesting of prob-

ability operators in respective logics; while asCSL6t and CSL6t represent the formulae

with time intervals starting from 0 in respective logics. ∼ means that the path formulae

of a CSLTA is represented by a single-clock DTA♦. Those marked with ∗ are proven in

[DHS09] and the one marked with ∗∗ is proven in [BCH+07]. The remaining relations

are straightforward to establish. Note that in the spectrum in Fig. 7.1, the one-clock

DTA♦ as well as the CSLTA build the link between the linear-time and branching-time

specifications.

In the remainder of this chapter, we will focus on verifying the properties specified

by the four variants of linear-time timed automata specifications in the left half in
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q0 q1 q2
B?msg , x < 5,∅ A?ack , x < 7,∅

(a) Single-clock DTA
♦

q0 q1
sent/timeout , y 6 10,∅

A!msg , x < 2, {x}

(b) Two-clock DTA
♦

q0 q1

B?msg, x < 5,∅

A?ack , x < 7, {x}

(c) Single-clock DTA
ω

q0 q1
A!req , x < 5, {x}

q2

B.op, x > 2,∅B!rep, y < 10, {x, y}

(d) Two-clock DTA
ω

Figure 7.2: Example properties specified by DTA♦ and DTAω

Fig. 7.1. Their usage as specifications is shown, each by an example, in Fig. 7.2.

• Single-clock DTA♦

It is pointed out in [DHS09] that “A typical example is the responsiveness property

‘with probability at least 0.75, a message sent at time 0 by a system A will be

received before time 5 by system B and the acknowledgment will be back at A

before time 7’, a property that cannot be expressed in either CSL or asCSL”.

The corresponding single-clock DTA♦ is as in Fig. 7.2(a), where the formal syntax

and semantics will become clear later in Section 7.1.1.

• Multi-clock DTA♦

In some situations, however, a single clock might not be sufficient, e.g., with which

probability that from time 0 system A will keep trying to send a message, where

the interval between every two successive trials is less than 2 time units, and

either the message has been successfully sent or the timeout is at time 10? This

is illustrated in Fig. 7.2(b). Actually, it is a time-bounded property, with a global

clock y that is never reset.

• Single-clock DTAω

On the other hand, if one is interested in the infinite behavior of a system, then

timed ω-automata can be used. In this chapter we focus on DTA with Muller

acceptance conditions (DTAω). For the single-clock case, an example property
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is: with which probability does it globally hold that “a message sent at time 0 by

system A will be received before time 5 by system B and the acknowledgment will

be received by A before time 7”? (cf. Fig. 7.2(c)) Note that the single-clock DTA♦

in Fig. 7.2(a) only requires the responsiveness to hold once, however, the single

clock DTAω requires that the responsiveness holds infinitely often.

• Multi-clock DTAω

The following property needs more than one clock for infinite behaviors: with

which probability does it globally hold that “starting from time 0, system A will

send out a request before time 5; it takes system B at least 2 time units to operate

on this request, and A will receive a reply from B before time 10”? (cf. Fig. 7.2(d))

The above properties are widely used in practice, therefore, verifying timed au-

tomata specifications becomes very crucial.

7.1 Problem Statement

In the remainder of this chapter, we will first focus on the specifications for finite

behaviors (Section 7.2 -7.3), and then we deal with the infinite behaviors (Section 7.4).

7.1.1 Deterministic Timed Automata

(Clock) Variables and Valuations. Let X = {x1, . . ., xn} be a set of variables in

R. An X -valuation is a function η : X → R assigning to each variable x a value η(x).

Let V(X ) denote the set of all valuations over X . A constraint over X , denoted by g,

is a subset of Rn. Let B(X ) denote the set of constraints over X . An X -valuation η

satisfies constraint g, denoted as η |= g if (η(x1), . . . , η(xn)) ∈ g.

Occasionally we use a special case of nonnegative variables, called clocks. We write
~0 for the valuation that assigns 0 to all clocks. For a subset X ⊆ X , the reset of X,

denoted η[X := 0], is the valuation η′ such that ∀x ∈ X. η′(x) := 0 and ∀x /∈ X. η′(x) :=
η(x). For δ ∈ R>0, η+ δ is the valuation η′′ such that ∀x ∈ X . η′′(x) := η(x)+ δ, which

implies that all clocks proceed at the same speed, or equivalently, ∀xi ∈ X . ẋi = 1. A

clock constraint on X is an expression of the form x ⊲⊳ c, or x−y ⊲⊳ c, or the conjunction

of any clock constraints, where x, y ∈ X , ⊲⊳ ∈ {<,6, >,>} and c ∈ N.

Definition 7.1 (DTA) A deterministic timed automaton is a tuple A =

(Σ,X , Q, q0, QF,→) where

• Σ is a finite alphabet;

• X is a finite set of clocks;

• Q is a nonempty finite set of locations;

• q0 ∈ Q is the initial location;
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q0 q2q1

a, x < 1,∅

b, {x}

a, 1 < x < 2, {x}

c, {x}

Figure 7.3: DTA with Muller acceptance conditions (DTAω)

• → ∈ Q × Σ × B(X ) × 2X × Q is an edge relation satisfying: q a,g,X−−−−→ q′ and

q a,g′,X′−−−−−→ q′′ with g 6= g′ implies g ∩ g′ = ∅; and

• QF is the Y acceptance condition, where

◮ if Y= reachability, then QF := QF ⊆ Q is a set of accepting locations;

◮ if Y= Muller, then QF := QF ⊆ 2Q is the acceptance family.

We refer to q a,g,X−−−−→ q′ as an edge, where a ∈ Σ is the input symbol, the guard g

is a clock constraint on the clocks of A, X ⊆ X is a set of clocks to be reset and q′ is

the successor location. The intuition is that the DTA A can move from location q to

location q′ when the input symbol is a and the guard g holds, while the clocks in X

should be reset when entering q′. Note that we don’t consider diagonal constraints like

x− y ⊲⊳ c in DTA. However, it is known that this does not harm the expressiveness of

a TA [BPDG98].

We will denote DTA♦ and DTAω for the DTA with reachability and Muller ac-

ceptance conditions, respectively; while with DTA we denote the general case covering

both DTA♦ and DTAω. As a convention, we assume each location q ∈ QF in DTA♦

is a sink.

An (infinite) timed path in A is of the form θ = q0
a0,t0−−−−→ q1

a1,t1−−−−→ · · · , satisfying

that η0 = ~0, and for all j > 0, it holds that tj > 0, ηj+tj |= gj and ηj+1 = (ηj+tj)[Xj :=

0], where ηj is the clock evaluation on entering qj. Let inf(θ) denote the set of states

q ∈ Q such that q = qi for infinitely many i > 0. Furthermore, all the definitions on

paths in CTMCs can be adapted.

Definition 7.2 (DTA accepting paths) An infinite path θ is accepted by a DTA♦

if there exists some i > 0 such that θ[i] ∈ QF ; θ is accepted by a DTAω if inf(θ) ∈ QF .

Example 7.3 (DTA♦ and DTAω) An example DTA♦ is shown in Fig. 7.4(c)

(page 140) over the alphabet {a, b}. The reachability acceptance condition is charac-

terized by the accepting location set QF = {q1}. The unique initial location is q0 and

the guards x < 1 and 1 < x < 2 are disjoint on the edges labeled with a and emanating

from q0. This guarantees the determinism.
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We then consider the DTAω in Fig. 7.3 over Σ = {a, b, c}. The unique initial

location is q0 and the Muller acceptance family is QF =
{
{q0, q2}

}
. Since QF is a

singleton, we can indicate it in the figure by the double-lined states. Any accepting path

should cycle between the states q0 and q1 for finitely many times, and between states q0
and q2 for infinitely many times. The determinism is guaranteed of the similar reason.

�

Remark 7.4 (Muller not Büchi) According to [AD94], the expressive power of (de-

terministic) timed Muller automata (D)TMA1 and (deterministic) timed Büchi au-

tomata (D)TBA has the following relation:

TMA = TBA > DTMA > DTBA.

Also notice that DTMA are closed under all Boolean operators (union, intersection and

complement), while DTBA are not closed under complement. These two points justify

our choice of DTMA (or DTAω) instead of DTBA.

Remark 7.5 (Successor location) Due to the determinism, we can replace the tran-

sition relation → ∈ Q×Σ×B(X )×2X×Q by a function succ : Q×Σ×B(X ) 7→ 2X ×Q.

Namely, given a location q, an action a and a guard g, there is at most one succes-

sor location q′. Note that the set of reset clocks is irrelevant to the successor location.

Therefore, if only the successor location is of interest, then we can thus simplify the

function succ to s̃ucc : Q× Σ × B(X ) 7→ Q, i.e., q′ = s̃ucc(q, a, g).

7.1.2 The Model Checking Problem

To simplify the notations, we assume w.l.o.g., that a CTMC has only one initial state

s0, i.e., α(s0) = 1, and α(s) = 0 for s 6= s0.

Definition 7.6 (CTMC paths accepted by a DTA) Given a CTMC C =

(S,AP, L, s0,P, E) and a DTA A = (2AP,X , Q, q0, QF,→), a CTMC path σ =

s0
t0−−→ s1

t1−−→ s2 · · · is accepted by A if the DTA path

q0
L(s0),t0−−−−−−→ s̃ucc

(
q0, L(s0), g0

)
︸ ︷︷ ︸

q1

L(s1),t1−−−−−−→ s̃ucc
(
q1, L(s1), g1

)
︸ ︷︷ ︸

q2

· · ·

is accepted by A, where η0 = ~0, gi is the unique guard (if it exists) such that ηi + ti |= gi

and ηi+1 = (ηi + ti)[Xi := 0].

The model checking problem on CTMC C against DTA A is to compute the prob-

ability of the set of paths in C that can be accepted by A. Formally, let

PathsC(A) := { ρ ∈ PathsC | ρ is accepted by DTA A }.
1In this thesis, DTMA is referred to as DTA

ω.
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Prior to computing the probability of this set, we first prove its measurability:

Theorem 7.7 For any CTMC C and DTA A, PathsC(A) is measurable.

Proof: The proof can be found in Appendix A.1, page 163. �

The following sections deal with computing the probability of PathsC(A), denoted

ProbC(A) = Pr
(
PathsC(A)

)
, under both reachability and Muller acceptance conditions.

7.2 Product of CTMC and DTA

As the traditional way of verifying the automata specifications, a product between the

model and the automaton is built first and the (adapted) property can then be checked

on the product model. Our approach is carried out in the same fashion. In this section,

we focus on building the product (and some more transformations on the product) and

in Section 7.3 and 7.4, the probability measure ProbC(A) will be computed.

7.2.1 Deterministic Markovian Timed Automata

We will first exploit the product of a CTMC and a DTA, which is what we call a

deterministic Markovian timed automaton:

Definition 7.8 (DMTA) A deterministic Markovian timed automaton is a tuple

M = (Loc,X , ℓ0, LocF, E, ), where

• Loc is a finite set of locations;

• X is a finite set of clocks;

• ℓ0 ∈ Loc is the initial location;

• LocF is the acceptance condition with LocF := LocF ⊆ Loc the reachability

condition and LocF := LocF ⊆ 2Loc the Muller condition;

• E : Loc→ R>0 is the exit rate function; and

•  ⊆ Loc × B(X ) × 2X × Distr(Loc) is an edge relation satisfying (ℓ, g,X, ζ),

(ℓ, g′,X ′, ζ ′) ∈ with g 6= g′ implies g ∩ g′ = ∅.

The set of clocks X and the related concepts, e.g., clock valuation, clock constraints

are defined as for DTA. We refer to ℓ
g,X

///o/o/o ζ for distribution ζ ∈ Distr(Loc) as an edge

and refer to ℓ
�

g,X

ζ(ℓ′)
// ℓ′ as a transition of this edge. The intuition is that when entering

location ℓ, the DMTA chooses a residence time which is governed by the exponential

distribution, i.e., the probability to leave ℓ within t time units is 1 − e−E(ℓ)t. When it
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decides to jump, at most one edge, say ℓ
g,X

///o/o/o ζ , due to the determinism, is enabled

and the probability to jump to ℓ′ is given by ζ(ℓ′). The DMTA is deterministic as

it has a unique initial location and disjoint guards for all edges emanating from any

location. Similar as in DTAs, DMTA♦ and DMTAω are defined in an obvious way

and DMTA refers to both cases.

Definition 7.9 (Paths in DMTAs) Given a DMTA M, an (infinite) symbolic

path is of the form:

ℓ0
�

g0,X0

p0

// ℓ1
�

g1,X1

p1

// ℓ2 · · ·

where pi = ζi(ℓi+1) is the transition probability of ℓi
�

gi,Xi

ζi(ℓi+1)
// ℓi+1 .

An infinite path in M (induced from the symbolic path) is of the form τ =

ℓ0
t0−−→ ℓ1

t1−−→ ℓ2 · · · and has the property that η0 = ~0, (ηi + ti) |= gi, and ηi+1 =

(ηi + ti)[Xi := 0] where i > 0 and ηi is the clock valuation of X in M on entering

location ℓi.

The path τ is accepted by a DMTA♦ if there exists n > 0, such that τ [n] ∈ LocF .

It is accepted by DMTAω iff inf(τ) ∈ LocF , i.e., ∃LF ∈ LocF such that inf(τ) = LF .

All definitions on paths in CTMCs can be carried over to DMTA paths.

DMTA Semantics. First we characterize the one-jump probability ℓ
�

g,X

P(ℓ,ℓ′)
// ℓ′

within time interval I starting at clock valuation η, denoted pη(ℓ, ℓ
′, I), as follows:

pη(ℓ, ℓ
′, I) =

∫

I
E(ℓ) · e−E(ℓ)τ

︸ ︷︷ ︸
(i) density to leave ℓ at τ

· 1g(η + τ)︸ ︷︷ ︸
(ii) η+τ |=g?

· P(ℓ, ℓ′)︸ ︷︷ ︸
(iii) probabilistic jump

dτ (7.1)

Actually, (i) characterizes the delay τ at location ℓ which is exponentially distributed

with rate E(ℓ); (ii) is the characteristic function, where 1g(η + τ) = 1, if η + τ |= g;

0, otherwise. It compares the current valuation η + τ with g and rules out the paths

that cannot lead to ℓ′; and (iii) indicates the probabilistic jump. Note that (i) and

(iii) are features from CTMCs while (ii) is from DTA. The characteristic function is

Riemann integrable as it is bounded and its support is an interval, therefore pη(ℓ, ℓ
′, I)

is well-defined.

Based on the one-jump probability, we can now consider the probability of a

set of paths. Given DMTA M, C(ℓ0, I0, . . ., In−1, ℓn) is the cylinder set where

(ℓ0, . . ., ℓn) ∈ Locn+1 and Ii ⊆ R>0. It denotes a set of paths τ in M such that

τ [i] = ℓi and τ〈i〉 ∈ Ii. Let PrMη0
(C(ℓ0, I0, . . ., In−1, ℓn)) denote the probability of

C(ℓ0, I0, . . ., In−1, ℓn) such that the initial clock valuation in location ℓ0 is η0. We de-

fine PrMη0
(C(ℓ0, I0, . . ., In−1, ℓn)) := PM

0 (η0), where PM
i (η) for 0 6 i 6 n is defined as:
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PM
n (η) = 1 and for 0 6 i < n, we note that there exists a transition from ℓi to ℓi+1

with ℓi
�

gi,Xi

pi

// ℓi+1 (0 6 i < n) and thus we define

PM
i (η) =

∫

Ii

E(ℓi)·e−E(ℓi)τ ·1gi
(η + τ)·pi︸ ︷︷ ︸

(⋆)

· PM
i+1(η

′)︸ ︷︷ ︸
(⋆⋆)

dτ,

where η′ := (η+ τ)[Xi := 0]. Intuitively, PM
i (ηi) is the probability of the suffix cylinder

set starting from ℓi and ηi to ℓn. It is recursively computed by the product of the

probability of taking a transition from ℓi to ℓi+1 within time interval Ii (cf. (⋆) and

(7.1)) and the probability of the suffix cylinder set from ℓi+1 and ηi+1 on (cf. (⋆⋆)). For

the same reason as pη(ℓ, ℓ
′, I) was well-defined, PM

i (η) is well-defined.

Example 7.10 (DMTA♦ and DMTAω) The DMTA♦ in Fig. 7.4(a) has initial lo-

cation ℓ0 with two edges, with guards x < 1 and 1 < x < 2. We use the small black dots

to indicate distributions. Assume t time units elapsed. If t < 1, then the upper edge is

enabled and the probability to go to ℓ1 within time t is p~0(ℓ0, ℓ1, t) = (1−e−r0t)·1, where

E(ℓ0) = r0; no clock is reset. It is similar for 1 < t < 2, except that x will be reset.

LocF = {q3}. It is obvious to see the determinism in this automaton. The DMTAω in

Fig. 7.5(c) has Muller acceptance family LocF =
{
{ℓ1, ℓ2, ℓ3}, {ℓ4, ℓ5, ℓ6}

}
. �

7.2.2 Product DMTAs

Given a CTMC C and a DTA A, the product C ⊗ A is a DMTA defined by:

Definition 7.11 (Product of CTMC and DTA) Let C = (S,AP, L, s0,P, E)

be a CTMC and A = (2AP,X , Q, q0, QF,→) be a DTA. We define

C ⊗ A = (Loc,X , ℓ0, LocF, E, ) as the product DMTA, where

• Loc := S ×Q; ℓ0 := 〈s0, q0〉; E(〈s, q〉) := E(s);

• LocF = LocF := S ×QF , if QF = QF ; (reachability condition)

LocF = LocF :=
⋃

F∈QF
S × F , if QF = QF ; (Muller condition)

•  is defined as the smallest relation defined by the rule:

P(s, s′) > 0 ∧ q
L(s),g,X−−−−−−→ q′

〈s, q〉 g,X
///o/o/o ζ

, such that ζ(〈s′, q′〉) = P(s, s′).

Example 7.12 (Product DMTA♦) Let CTMC C and DTA♦ A be in Fig. 7.4(b)

and 7.4(c), the product DMTA♦ C⊗A is as in Fig. 7.4(a). Since QF = {q1} in A, the

set of accepting locations in DMTA♦ is LocF = {〈s2, q1〉} = {ℓ3}. �
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ℓ0=〈s0, q0〉 ℓ1=〈s1, q0〉
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0.2
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δ

1
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reset,0.20.2

δ
v6, r2

(d) Reachable region graph

Figure 7.4: Example product DMTA♦ of CTMC C and DTA♦ A

Example 7.13 (Product DMTAω) For the CTMC C in Fig. 7.5(a) and the DTAω

Aω in Fig. 7.5(b) with acceptance family QF =
{
{q1, q2}, {q3, q4}

}
, the product

DMTAω C⊗Aω is shown in Fig. 7.5(c). LocF =
{
{〈si, q1〉, 〈sj , q2〉}, {〈s′i, q3〉, 〈s′j , q4〉}

}
,

for any si, s
′
i, sj, s

′
j ∈ S, in particular, LocF =

{
{ℓ1, ℓ2, ℓ3}, {ℓ4, ℓ5, ℓ6}

}
. �

Remark 7.14 It is easy to see from the construction that C ⊗ A is indeed a DMTA.

The determinism of the DTA A guarantees that the induced product is also determin-

istic. In C ⊗ A, from each location there is at most one “action” possible, viz. L(s).

We can thus omit actions from the product DMTA.

For DTA♦ A with the set of accepting locations LocF , we denote

PathsC⊗A(♦LocF ) := { τ ∈ PathsC⊗A | τ is accepted by C⊗A } as the set of accepted

paths in C⊗A. Recall that PathsC(A) is the set of paths in CTMC C that are accepted
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Figure 7.5: Example product DMTAω of CTMC C and DTAω Aω

by DTA A. For any n-ary tuple J , let J⇂i denote the i-th entry in J , for 1 6 i 6 n.

For a (C⊗A)-path τ = 〈s0, q0〉 t0−−→〈s1, q1〉 t1−−→ · · · , let τ⇂1 := s0
t0−−→ s1

t1−−→ · · · , and

for any set Π of (C⊗A)-paths, let Π⇂1 =
⋃

τ∈Π τ⇂1.

Lemma 7.15 For any CTMC C and DTA♦ A, PathsC(A) = PathsC⊗A(♦LocF )⇂1.

Proof: The proof can be found in Appendix A.2, page 165. �

The following theorem establishes the link between CTMC C and DMTA♦ C ⊗A.

Theorem 7.16 For any CTMC C and DTA♦ A,

PrC
(
PathsC(A)

)
= PrC⊗A

~0

(
PathsC⊗A(♦LocF )

)
.

Proof: The proof can be found in Appendix A.3, page 165. �

7.2.3 Region Construction for DMTA

In the remainder of this section, we focus on how to compute the probability measure

PrC⊗A
~0

(
PathsC⊗A(♦LocF )

)
in an effective way. Since the state space

{
(ℓ, η) | ℓ ∈
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Loc, η ∈ V(X )
}

of C ⊗ A is uncountable, we start with adopting the standard region

construction [AD94] to DMTA♦ to discretize the state space into a finite one. As

we will see in Section 7.2.5, this allows us to obtain a piecewise-deterministic Markov

process from a DMTA♦ in a natural way.

As usual, a region is a constraint. For regions Θ,Θ′ ∈ B(X ), Θ′ is the successor

region of Θ if for all η |= Θ there exists δ ∈ R>0 such that η+ δ |= Θ′ and for all δ′ < δ,

η + δ′ |= Θ ∨ Θ′. A region Θ satisfies a guard g (denoted Θ |= g) iff ∀η |= Θ. η |= g. A

reset operation on region Θ is defined as Θ[X := 0] :=
{
η[X := 0] | η |= Θ

}
.

Definition 7.17 (Region graph of DMTA♦) Given DMTA♦ M =

(Loc,X , ℓ0, LocF , E, ), the region graph is G(M) = (V, v0, VF ,Λ, →֒), where

• V := Loc× B(X ) is a finite set of vertices, consisting of a location ℓ in M and

a region Θ;

• v0 ∈ V is the initial vertex if (ℓ0,~0) ∈ v0;

• VF :=
{
v | v⇂1 ∈ LocF

}
is the set of accepting vertices;

• →֒ ⊆ V ×
((

[0, 1] × 2X
)
∪ {δ}

)
× V is the transition (edge) relation, such that:

◮ v
δ→֒ v′ is a delay transition if v⇂1 = v′⇂1 and v′⇂2 is a successor region of v⇂2;

◮ v
p,X→֒ v′ is a Markovian transition if there exists some transition v⇂1

�

g,X

p
// v′⇂1

in M such that v⇂2 |= g and v⇂2[X := 0] |= v′⇂2; and

• Λ : V → R>0 is the exit rate function where Λ(v) := E(v⇂1) if there exists a

Markovian transition from v, Λ(v) := 0 otherwise.

Note that in the obtained region graph, Markovian transitions emanating from any

boundary region do not contribute to the reachability probability as the time to hit the

boundary is always zero (i.e., ♭(v, η) = 0 in (7.5), page 147). Therefore, we can remove

all the Markovian transitions emanating from boundary regions and then collapse each

of them with its unique non-boundary (direct) successor. In the sequel, by slightly

abusing the notation we still denote this collapsed region graph as G(M).

Remark 7.18 (Exit rates) The exit rate Λ(v) is set to 0 if there is only delay tran-

sition from v. The probability to take the delay transition within time t is e−Λ(v)t = 1

and the probability to take Markovian transitions is 0.

Example 7.19 For the DMTA♦ C⊗A in Fig. 7.6(a), the reachable part (forward

reachable from the initial vertex and backward reachable from the accepting vertices)

of the collapsed region graph G(C⊗A) is shown in Fig. 7.6(b). The accepting vertices

are sinks. �
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Figure 7.6: Example of a region graph

Notice that DMTA♦ and DMTAω have the same locations and edge relations. The

only difference is their acceptance condition. This guarantees that their obtained region

graphs are the same except for the definition and interpretation of the final set VF . We

will present how VF is derived in the region graph for DMTAω in Section 7.4.

7.2.4 Piecewise-Deterministic Markov Processes

The model PDP was introduced by Davis in 1984 [Dav84]. We abbreviate it as PDP

instead of literally PDMP, following the convention by Davis [Dav93]. A PDP con-

stitutes a general framework that can model virtually any stochastic system with-

out diffusions [Dav93] and for which powerful analysis and control techniques ex-

ist [LL85][LY91][CD88]. A PDP is a stochastic process of hybrid type, i.e., the stochas-

tic process concerns both a discrete location and a continuous variable. The class of

PDPs was recognized as a very wide class holding many types of stochastic hybrid sys-

tem. This makes PDP a useful model for an enormous variety of applied problems in

engineering, operations research, management science and economics; examples include

queueing systems, stochastic scheduling, fault detection in systems engineering, etc.

Given a set H, let Pr : F(H) → [0, 1] be a probability measure on the measurable

space (H,F(H)), where F(H) is a σ-algebra over H. Let Distr(H) denote the set of

probability measures on this measurable space.
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z0
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ξ ξ ⊕ tdelay, φ

delay, determined by φ

forced boundary jump
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time

Markovian jump with prob. µ(ξ, {ξ′})

ξ′ ξ′ ⊕ ♭(ξ)

ξ′′

Figure 7.7: The behavior of a PDP

Definition 7.20 (PDP [Dav93]) A piecewise-deterministic (Markov) process is a

tuple Z = (Z,X , Inv , φ,Λ, µ) with:

• Z is a finite set of locations;

• X is a finite set of variables;

• Inv : Z → B(X ) is an invariant function;

• φ : Z × V(X ) × R → V(X ) is a flow function1;

• Λ : S → R>0 is an exit rate function;

• µ : S̊ ∪ ∂S → Distr(S) is the transition probability function, where:

S := {ξ := (z, η) | z ∈ Z, η |= Inv(z)} is the state space of the PDP Z, S̊ is the interior

of S and ∂S =
⋃

z∈Z{z} × ∂Inv(z) is the boundary of S with ∂Inv(z) = Inv(z) \ ˚Inv(z)

as the boundary of Inv(z), ˚Inv(z) the interior of Inv(z) and Inv(z) the closure of

Inv(z). Functions Λ and µ satisfy the following conditions:

• ∀ξ ∈ S. ∃ǫ(ξ) > 0. function t 7→ Λ(ξ ⊕ t) is integrable on [0, ǫ(ξ)[, where

ξ ⊕ t =
(
z, φ(z, η, t)

)
, for ξ = (z, η);

• Function ξ 7→ µ(ξ,A)2 is measurable for any A ∈ F(S), where F(S) is a σ-

algebra generated by the countable union
⋃

z∈Z{z}×Az with Az being a subset of

F(Inv (z)) and µ(ξ, {ξ}) = 0.

We will explain the behavior of a PDP by the aid of Fig. 7.7. A PDP consists of

a finite set of locations each with a location invariant over a set of variables. A state

consists of a location and a valuation of the variables. A PDP is only allowed to stay

1The flow function is the solution of a system of ODEs with a Lipschitz continuous vector field.
2µ(ξ, A) is a shorthand for (µ(ξ))(A).
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in location z when the constraint Inv(z) is satisfied. If e.g., Inv(z) is x2
1 − 2x2 6 1.5 ∧

x3 > 2, then its interior ˚Inv(z) is x2
1 − 2x2 < 1.5 ∧ x3 > 2 and its closure Inv(z) is

x2
1 − 2x2 6 1.5 ∧ x3 > 2, and the boundary ∂Inv(z) is x2

1 − 2x2 = 1.5 ∧ x3 = 2. In

Fig. 7.7, there are three locations z0, z1, z2 and the gray zones are the valid valuations

for respective locations. A state is a black dot. A boundary state is a white dot.

When a new state ξ = (z, η) is entered and Inv(z) is valid, i.e., ξ ∈ S, the PDP can

(i) either delay to state ξ′ = (z, η′) ∈ S ∪ ∂S according to both the flow function φ

and the time delay t (in this case ξ′ = ξ ⊕ t); (ii) or take a Markovian jump to state

ξ′′ = (z′′, η′′) ∈ S with probability µ(ξ, {ξ′′}). Note that the residence time of a location

is exponentially distributed. When the variable valuation satisfies the boundary (i.e.,

ξ ∈ ∂S), the PDP is forced to take a boundary jump and leave the current location z

with probability µ(ξ, {ξ′′}) to state ξ′′.
The flow function φ defines the time-dependent behavior in a single location, in

particular, how the variable valuations change when time elapses. State ξ ⊕ t is the

timed successor of state ξ (on the same location) given that t time units have passed.

The PDP is piecewise-deterministic because in each location (one piece) the behavior

is deterministically determined by φ. The process is Markovian as the current state

contains all the information to predict the future progress of the process.

The embedded discrete-time Markov process (DTMP) emb(Z) of the PDP Z has

the same state space S as Z. The (one-jump) transition probability from a state ξ to a

set A ⊆ S of states (on different locations as ξ), denoted µ̂(ξ,A), is given by [Dav93]:

µ̂(ξ,A) =

∫ ♭(ξ)

0
(Q1A)(ξ ⊕ t)·Λ (ξ ⊕ t) e−

R t
0

Λ(ξ⊕τ)dτ dt (7.2)

+ (Q1A)(ξ ⊕ ♭(ξ)) · e−
R ♭(ξ)
0 Λ(ξ⊕τ)dτ , (7.3)

where ♭(ξ) = inf{t > 0 | ξ ⊕ t ∈ ∂S} is the minimal time to hit the boundary if such

time exists; ♭(ξ) = ∞ otherwise. (Q1A)(ξ) =
∫

S
1A(ξ′)µ(ξ, dξ′) is the accumulative

(one-jump) transition probability from ξ to A and 1A(ξ) is the characteristic function

such that 1A(ξ) = 1 when ξ ∈ A and 1A(ξ) = 0 otherwise. Term (7.2) specifies the

probability to delay to state ξ ⊕ t (on the same location) and take a Markovian jump

from ξ ⊕ t to A. Note the delay t can take a value from [0, ♭(ξ)). Term (7.3) is the

probability to stay in the same location for ♭(ξ) time units and then it is forced to take

a boundary jump from ξ ⊕ ♭(ξ) to A since Inv(z) is invalid.

Example 7.21 Fig. 7.8 depicts a 3-location PDP Z with one variable x, where Inv(z0)

is x < 2 and Inv(z1), Inv(z2) are both x ∈ [0,∞). Solving ẋ = 1 gives the flow

function φ(zi, η(x), t) = η(x) + t for i = 0, 1, 2. The state space of Z is {(z0, η) |
0 < η(x) < 2} ∪ {(z1,R)} ∪ {(z2,R)}. Let exit rate Λ(ξ) = 5 for any ξ ∈ S. For

η |= Inv(z0), let µ
(
(z0, η), {(z1 , η)}

)
:= 1

3 , µ
(
(z0, η), {(z2, η)}

)
:= 2

3 and the boundary
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z0
x < 2
ẋ = 1

1
3

z1
x ∈ R
ẋ = 1

z2
x ∈ R
ẋ = 1

2
3

Figure 7.8: An example PDP Z

measure µ
(
(z0, 2), {(z1, 2)}

)
:= 1. Given state ξ0 = (z0, 0) and the set of states A =

(z1,R), the time for ξ0 to hit the boundary is ♭(ξ0) = 2. Then (Q1A)(ξ0 ⊕ t) = 1
3 if

t < 2, and (Q1A)(ξ0 ⊕ t) = 1 if t = 2. In emb(Z), the transition probability from state

ξ0 to A is:

µ̂(ξ0, A) =

∫ 2

0

1

3
·5·e−

R t
0 5 dτ dt+1·e−

R 2
0 5 dτ =

1

3
+

2

3
e−10. �

7.2.5 From Region Graph to PDP

We can now define the underlying PDP of a DMTA♦ by using the region graph G(M).

Actually, a region graph is a PDP.

Definition 7.22 (PDP for DMTA♦) For DMTA♦ M = (Loc,X , ℓ0, LocF , E, )

and region graph G(M) = (V, v0, VF ,Λ, →֒), let PDP Z(M) = (V,X , Inv , φ,Λ, µ)

where for any v ∈ V ,

• Inv(v) := v⇂2 and the state space S :=
{
(v, η) | v ∈ V, η ∈ Inv(v)

}
;

• φ(v, η, t) := η + t for η |= Inv(v);

• Λ(v, η) := Λ(v) is the exit rate of state (v, η);

• [boundary jump] for each delay transition v
δ→֒ v′ in G(M) we have

µ(ξ, {ξ′}) := 1, where ξ = (v, η), ξ′ = (v′, η) and η |= ∂Inv(v);

• [Markovian jump] for each Markovian transition v
p,X→֒ v′ in G(M) we have

µ(ξ, {ξ′}) := p, where ξ = (v, η), η |= Inv(v) and ξ′ = (v′, η[X := 0]).

From now on we write Λ(v) instead of Λ(v, η) as they coincide.

7.3 Model Checking DTA♦ Specifications

With the model and problem transformation presented in the last section, we are now

ready to model check CTMC against DTA♦ specifications. We first consider the

general case, i.e., DTA♦ with arbitrary number of clocks and then the special case of

single clock DTA♦ specifications is investigated.

146



7.3 Model Checking DTA♦ Specifications

7.3.1 General DTA♦ Specifications

Recall that the aim of model checking is to compute the probability of the set of

paths in CTMC C accepted by a DTA♦ A. For the general case, we have proven

that this is reducible to computing the reachability probability in the product C ⊗ A
(Theorem 7.16, page 141), which can be further reduced to computing the reachability

probability in a corresponding PDP (Theorem 7.23 below), which will be established

in Section 7.3.1.1. The characterization by a system of integral equations is usually

difficult to solve. Therefore we propose an approach to approximate the reachability

probabilities in Section 7.3.1.2.

7.3.1.1 Characterizing Reachability Probabilities

Computing PrC⊗A
~0

(
PathsC⊗A(♦LocF )

)
is now reduced to computing the (time-

unbounded) reachability probability in the PDP Z(C ⊗ A) — basically the re-

gion graph of C ⊗ A — given the initial state (v0,~0) and the set of goal states

{(v, η) | v ∈ VF , η ∈ Inv(v)}
(
(VF , ·) for short

)
. Reachability probabilities of untimed

events in a PDP Z can be computed in the embedded DTMP emb(Z). Note that the

set of locations of Z and emb(Z) are equal. In the sequel, let D denote emb(Z).

For each vertex v ∈ V , we define recursively ProbD
(
(v, η), (VF , ·)

) (
or shortly

ProbDv (η)
)

as the probability to reach the goal states (VF , ·) in D from state (v, η).

• for the delay transition v
δ→֒ v′,

ProbDv,δ(η) = e−Λ(v)♭(v,η) · ProbDv′
(
η + ♭(v, η)

)
. (7.4)

Recall that ♭(v, η) is the minimal time for (v, η) to hit the boundary ∂Inv(v).

• for the Markovian transition v
p,X→֒ v′,

ProbDv,v′(η) =

∫ ♭(v,η)

0
p·Λ(v)·e−Λ(v)τ ·ProbDv′

(
(η + τ)[X := 0]

)
dτ. (7.5)

Overall, for each vertex v ∈ V , we obtain:

ProbDv (η) =

{
ProbDv,δ(η) +

∑
v

p,X
→֒ v′

ProbDv,v′(η), if v /∈ VF

1, otherwise
. (7.6)

Note that here the notation η is slightly abused. It represents a vector of clock variables

(see Example 7.25). Eq. (7.4) and (7.5) are derived based on (7.3) and (7.2), respectively.

In particular, the multi-step reachability probability is computed using a sequence of

one-step transition probabilities.
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Hence we obtain a system of integral equations (7.6). One can read (7.6) either in the

form f(ξ) =
∫
Dom(ξ)K(ξ, ξ′)f(dξ′), where K is the kernel and Dom(ξ) is the domain of

integration depending on the continuous state space S; or in the operator form f(ξ) =

(Jf)(ξ), where J is the integration operator. Generally, (7.6) does not necessarily have

a unique solution. It turns out that the reachability probability ProbDv0
(~0) coincides with

the least fixpoint of the operator J (denoted by lfpJ ) i.e., ProbDv0
(~0) = (lfpJ )(v0,~0).

Formally, we have:

Theorem 7.23 For any CTMC C and DTA♦ A, PrC⊗A
~0

(
PathsC⊗A(♦LocF )

)
is the

least solution of ProbDv0
(·), where D is the embedded DTMP of C ⊗ A.

Proof: The proof can be found in Appendix A.4, page 167. �

Remark 7.24 Clock valuations η and η′ in region Θ may induce different reachability

probabilities. The reason is that η and η′ may have different periods of time to hit

the boundary, thus the probability for η and η′ to either delay or take a Markovian

transition may differ. This is in contrast with the traditional timed automata theory as

well as probabilistic timed automata [KNSS02], where η and η′ are not distinguished.

Example 7.25 For the region graph in Fig. 7.6(b), the system of integral equations for

v1 in location ℓ0 is as follows for 1 6 x1 = x2 < 2:

ProbDv1
(x1, x2) = ProbDv1,δ(x1, x2) + ProbDv1,v3

(x1, x2),

where

ProbDv1,δ(x1, x2) = e−(2−x1)r0 ·ProbDv2
(2, 2)

and

ProbDv1,v3
(x1, x2) =

∫ 2−x1

0
r0·e−r0τ ·ProbDv3

(0, x2 + τ) dτ

where ProbDv3
(0, x2 + τ) = 1. The integral equations for v2 can be derived similarly. �

7.3.1.2 Approximating Reachability Probabilities

Finally, we discuss how to obtain a solution of (7.6). The integral equations (7.6) are

Volterra equations of the second type [AW95]. For a general reference on solutions to

Volterra equations, cf., e.g. [Cor91]. As an alternative option to solve (7.6), we proceed

to give a general formulation of PrC
(
PathsC(A)

)
using a system of partial differential

equations (PDEs). Let the augmented DTA♦ A[tf ] be obtained from A by adding a

new clock variable y which is never reset and a clock constraint y < tf on all edges

entering the accepting locations in LocF , where tf is a finite (and usually very large)
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integer. The purpose of this augmentation is to ensure that the value of all clocks

reaching LocF is bounded. It is clear that PathsC(A[tf ]) ⊆ PathsC(A). More precisely,

PathsC(A[tf ]) coincides with those paths which can reach the accepting states of A
within the time bound tf . Note that limtf→∞ PrC(PathsC(A[tf ])) = PrC(PathsC(A)).

We can approximate PrC(PathsC(A)) by solving the PDEs with a large tf as follows:

Proposition 7.26 Given a CTMC C, an augmented DTA♦ A[tf ] and the underlying

PDP Z(C ⊗ A[tf ]) = (V,X , Inv , φ,Λ, µ), PrC
(
PathsC(A[tf ])

)
= ~v0(0,~0)

(
which is the

probability to reach the final states in Z starting from initial state (v0,~0X∪{y}
1)
)

is the

unique solution of the following system of PDEs:

∂~v(y, η)

∂y
+

|X |∑

i=1

∂~v(y, η)

∂η(i)
+ Λ(v)·

∑

v
p,X
→֒ v′

p·(~v′(y, η[X := 0]) − ~v(y, η)) = 0,

where v ∈ V \ VF , η |= Inv(v), η(i) is the i’th clock variable and y ∈ [0, tf ). For

every η |= ∂Inv(v) and transition v
δ→֒ v′, the boundary conditions take the form:

~v(y, η) = ~v′(y, η). For every vertex v ∈ VF , η |= Inv(v) and y ∈ [0, tf ), we have the

following PDE:

∂~v(y, η)

∂y
+

|X |∑

i=1

∂~v(y, η)

∂η(i)
+ 1 = 0.

The final boundary conditions are that for every vertex v ∈ V and η |= Inv(v)∪∂Inv (v),

~v(tf , η) = 0.

Proof: The proof can be found in Appendix A.5, page 169. �

7.3.2 Single-Clock DTA♦ Specifications

For single-clock DTA♦ specifications, we can simplify the system of integral equations

obtained in the previous section to a system of linear equations where the coefficients

are a solution of a system of ODEs that can be calculated efficiently.

Given a DMTA♦ M, we denote the set of constants appearing in the clock

constraints of M as {c0, . . . , cm} with c0 = 0. We assume the following order:

0 = c0 < c1 < · · · < cm. Let ∆ci = ci+1 − ci for 0 6 i < m. Note that for one clock

DMTA♦, the regions in the region graph G(M) can be represented by the following in-

tervals: [c0, c1), . . . , [cm,∞). We partition the region graph G(M) = (V, v0, VF ,Λ, →֒),

or G for short, into a set of subgraphs Gi = (Vi, VFi,Λi, {Mi, Fi, Bi}), where 0 6 i 6 m

and Λi(v) = Λ(v), if v ∈ Vi, 0 otherwise. These subgraphs are obtained by partitioning

V , VF and →֒ as follows:
1denoting the valuation η with η(x) = 0 for x ∈ X ∪ {y}.
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• V =
⋃

06i6m{Vi}, where Vi = {(ℓ,Θ) ∈ V | Θ ⊆ [ci, ci+1)};
• VF =

⋃
06i6m{VFi}, where v ∈ VFi iff v ∈ Vi ∩ VF ;

• →֒=
⋃

06i6m{Mi ∪ Fi ∪Bi}, where

- Mi is the set of Markovian transitions (without reset) between vertices inside Gi;

- Fi is the set of delay transitions from the vertices in Gi to that in Gi+1 (Forward);

- Bi is the set of Markovian transitions (with reset) from Gi to G0 (Backward).

It is easy to see that Mi, Fi, and Bi are pairwise disjoint.

Since the initial vertex of G0 is v0 and the initial vertices of Gi for 0 < i 6 m are

implicitly given by Fi−1, we omit them in the definition.

Example 7.27 Given the region graph in Fig. 7.9, the vertices are partitioned as in-

dicated by the ovals. The Mi edges are unlabeled while the Fi and Bi edges are labeled

with δ and “reset”, respectively. The VF vertices (double circles) may appear in any Gi.

Actually, if v = (ℓ, [ci, ci+1)) ∈ VF , then v′ = (ℓ, [cj , cj+1)) ∈ VF for i < j 6 m. This

is true because VF = {(ℓ, true) | ℓ ∈ LocF }. It implies that for each final vertex not in

the last region, there is a delay transition from it to the next region, see e.g. the final

vertex in Gi+1 in Fig. 7.9. The exit rate functions and the probabilities on Markovian

edges are omitted in the graph. �

Given a subgraph Gi (06i6m) of G with ki states, let the probability vector ~Ui(x) =

[u1
i (x), . . . , u

ki
i (x)]

⊤ ∈ Rki×1 where uj
i (x) is the probability to go from vertex vj

i ∈ Vi

to some vertex in VF (in G) at time x. Starting from (7.4)-(7.6), we provide a set of

integral equations for ~Ui(x) which we later on reduce to a system of linear equations.

Distinguish two cases:

Case 0 6 i < m: ~Ui(x) is given by:

~Ui(x) =

∫ ∆ci−x

0
Mi(τ)~Ui(x+ τ)dτ +

∫ ∆ci−x

0
Bi(τ)dτ · ~U0(0)+Di(∆ci −x) ·Fi

~Ui+1(0),

(7.7)

where x ∈ [0,∆ci] and

• Di(x) ∈ Rki×ki is the delay probability matrix, where for any 0 6 j 6 ki,

Di(x)[j, j] = e−E(vj
i )x (the off-diagonal elements are zero);

• Mi(x) = Di(x)·Ei·Pi ∈ Rki×ki is the probability density matrix for the Marko-

vian transitions inside Gi, where Pi and Ei are the transition probability matrix

and exit rate matrix for vertices inside Gi, respectively;

• Bi(x) ∈ Rki×k0 is the probability density matrix for the reset edges Bi, where

Bi(x)[j, j
′] indicates the probability density function to take the Markovian jump

with reset from the j-th vertex in Gi to the j′-th vertex in G0; and
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Figure 7.9: Partitioning the region graph

• Fi ∈ Rki×ki+1 is the incidence matrix for delay edges Fi. More specifically,

Fi[j, j
′] = 1 indicates that there is a delay transition from the j-th vertex in

Gi to the j′-th vertex in Gi+1; 0 otherwise.

Let us explain these equations. The third summand of (7.7) is obtained from (7.4)

where Di(∆ci − x) indicates the probability to delay until the “end” of region i, and

Fi
~Ui+1(0) denotes the probability to continue in Gi+1 (at relative time 0). Similarly,

the first and second summands are obtained from (7.5); the former reflects the case

where clock x is not reset, while the latter considers the reset of x (thus, implying a

return to G0).

Case i = m: ~Um(x) is simplified as follows:

~Um(x) =

∫ ∞

0
M̂m(τ)~Um(x+ τ)dτ +~1F +

∫ ∞

0
Bm(τ)dτ · ~U0(0) (7.8)

where M̂m(τ)[v, ·] = Mm(τ)[v, ·] for v /∈ VF , 0 otherwise. ~1F is a vector such that
~1F [v] = 1 if v ∈ VF , 0 otherwise. We note that ~1F stems from the second clause of

(7.6), and M̂m is obtained by setting the corresponding elements of Mm to 0. Also

note that as the last subgraph Gm involves infinite regions, it has no delay transitions.

Before solving the system of integral equations (7.7)-(7.8), we first make the follow-

ing observations:

(i) Due to the fact that inside Gi there are only Markovian jumps with neither resets

nor delay transitions, Gi with (Vi,Λi,Mi) forms a CTMC Ci, say. For each Gi we define

an augmented CTMC Ca
i with state space Vi ∪ V0, such that all V0-vertices are made

absorbing in Ca
i . The edges connecting Vi to V0 are kept and all the edges inside C0 are

removed. The augmented CTMC is used to calculate the probability to start from a

vertex in Gi and take a reset edge within a certain period of time.
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(ii) Given any CTMC C with k states and rate matrix P · E, the matrix Π(x) is

given by:

Π(x) =

∫ x

0
M(τ)Π(x− τ)dτ + D(x). (7.9)

Intuitively, Π(t)[j, j′] indicates the probability to start from vertex j and reach j′ at

time t.

The following proposition states the close relationship between Π(x) and the tran-

sient probability vector:

Proposition 7.28 Given a CTMC C with initial distribution α, rate matrix P·E and

Π(t), ~℘(t) satisfies the following two equations:

~℘(t) = α · Π(t), (7.10)

d~℘(t)

dt
= ~℘(t) · Q, (7.11)

where Q = P·E − E is the infinitesimal generator.

Proof: The proof can be found in Appendix A.6, page 171. �

~℘(t) is the transient probability vector with ℘s(t) indicating the probability to be in

state s at time t given the initial probability distribution α. Eq. (7.11) is the celebrated

forward Chapman-Kolmogorov equations. According to this proposition, solving the

integral equation Π(t) boils down to selecting the appropriate initial distribution vector

α and solving the system of ODEs (7.11), which can be done very efficiently using

uniformization.

Prior to exposing how to solve the system of integral equations by solving a system

of linear equations, we define Π̄a
i ∈ Rki×k0 for an augmented CTMC Ca

i to be part of

Πa
i , where Π̄a

i only keeps the probabilities starting from Vi and ending in V0. Actually,

Πa
i (x) =

(
Πi(x) Π̄a

i (x)

0 I

)
,

where 0 ∈ Rk0×ki is the zero matrix and I ∈ Rk0×k0 is the identity matrix.

Theorem 7.29 For subgraph Gi of G with ki states, it holds for 0 6 i < m that:

~Ui(0) = Πi(∆ci) · Fi
~Ui+1(0) + Π̄a

i (∆ci) · ~U0(0), (7.12)

where Πi(∆ci) and Π̄a
i (∆ci) are for CTMC Ci and the augmented CTMC Ca

i , respec-

tively. For case i = m,

~Um(0) = P̂i · ~Um(0) +~1F + B̂m · ~U0(0), (7.13)

where P̂i(v, v
′) = Pi(v, v

′) if v /∈ VF ; 0 otherwise and B̂m =
∫∞
0 Bm(τ)dτ .
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Figure 7.10: Partition the region graph in Fig. 7.4(d)

Proof: The proof can be found in Appendix A.7, page 173. �

Since the coefficients of the linear equations are all known, solving the system of

linear equations yields ~U0(0), which contains the probability Probv0(0) of reaching VF

from initial vertex v0.

Now we explain how (7.12) is derived from (7.7). The term Πi(∆ci) · Fi
~Ui+1(0)

is for the delay transitions, where Fi specifies how the delay transitions are connected

between Gi and Gi+1. The term Π̄a
i (∆ci) · ~U0(0) is for Markovian transitions with reset.

Π̄a
i (∆ci) in the augmented CTMC Ca

i specifies the probabilities to take first transitions

inside Gi and then a one-step Markovian transition back to G0. Eq. (7.13) is derived

from (7.8). Since it is the last region and time goes to infinity, the time to enter the

region is irrelevant (thus set to 0). Thus
∫∞
0 M̂i(τ)dτ boils down to P̂i. In fact, the

Markovian jump probability inside Gm can be taken from the embedded DTMC of Cm,

which is P̂i.

Example 7.30 For the single-clock DMTA♦ in Fig. 7.4(a) (page 140), we show how

to compute the reachability probability Prob((v0, 0), (v5, ·)) on the region graph G
(cf. Fig. 7.4(d)), which has been partitioned into subgraphs G0, G1 and G2 as in Fig. 7.10.

The matrices for G0 are given as

M0(x) =




0 1·r0·e−r0x 0

0.5·r1·e−r1x 0 0

0 0 0


 F0 =




1 0 0 0

0 0 0 0

0 0 1 0




The matrices for G1 are given as
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M1(x) =




0 r0·e−r0x 0 0

0 0 0 0

0 0 0 r2·e−r2x

0 0 0 0


 F1 =




0 0

0 0

1 0

0 1


 B1 =




0 0 0

1 0 1

0 0 0

0 0 0




Ma
1(x) =




0 r0·e−r0x 0 0 0 0 0

0 0 0 0 0.5·r1·e−r1x 0 0.2·r1·e−r1x

0 0 0 r2·e−r2x 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




The matrices for G2 are given as

M̂2(x) =

(
0 r2·e−r2x

0 0

)
P̂2 =

(
0 1

0 0

)

To obtain the system of linear equations, we need:

Π0(1) =




p00 p02 p04

p20 p22 p24

p40 p42 p44


 Π1(1) =




p11 p13 p15 p17

p31 p33 p35 p37

p51 p53 p55 p57

p71 p73 p75 p77


 Π̄a

1(1) =




p̄10 p̄12 p̄14

p̄30 p̄32 p̄32

p̄50 p̄52 p̄54

p̄70 p̄72 p̄74




All elements in these Π-matrices can be computed by the transient probability in the

corresponding CTMCs C0, C1 and Ca
1 (cf. Fig. 7.11).

The obtained system of linear equations by applying Theorem 7.29 is:




u0

u2

u4


 =




p00 p02 p04

p20 p22 p24

p40 p42 p44


 ·




1 0 0 0

0 0 0 0

0 0 1 0


 ·




u1

u3

u5

u7







u1

u3

u5

u7


 =




p11 p13 p15 p17

p31 p33 p35 p37

p51 p53 p55 p57

p71 p73 p75 p77


 ·




0 0

0 0

1 0

0 1


 ·

(
u6

u8

)
+




p̄10 p̄12 p̄14

p̄30 p̄32 p̄32

p̄50 p̄52 p̄54

p̄70 p̄72 p̄74


 ·




u0

u1

u3




(
u6

u8

)
=

(
0 1

0 0

)
·
(
u6

u8

)
+

(
0

1

)

This can be solved easily. �
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Figure 7.11: Derived CTMCs

Remark 7.31 We note that for two-clock DTA♦ which yield two-clock DMTA♦, the

approach given in this section fails in general. In the single-clock case, the reset guar-

antees to jump to G0(0) and delay to Gi+1(0) when it is in Gi. However, in the two-clock

case, after a delay or reset generally only one clock has a fixed value while the value of

the other one is not determined.

The time-complexity of computing the reachability probability in the single-clock

DTA♦ case is O(m · |S|2 · |Loc|2 · λ · ∆c + m3 · |S|3 · |Loc|3), where m is the number

of constants appearing in the DTA♦, |S| is the number of states in the CTMC, |Loc|
is the number of locations in the DTA♦, λ is the maximal exit rate in the CTMC

and ∆c = max0≤i<m{ci+1 − ci}. The first term m · |S|2 · |Loc|2 · λ · ∆c is due to the

uniformization technique for computing transient distribution; and the second term

m3 · |S|3 · |Loc|3 is the time complexity for solving a system of linear equations with

O(m · |S| · |Loc|) variables.

7.4 Model Checking DTAω Specifications

We now deal with DTAω specifications. Given the product Mω =

(Loc,X , ℓ0, LocF , E, ), we first define the region graph Gω(Mω) (or simply Gω) as

(V, v0, V
ω
F ,Λ, →֒) without specifying how the accepting set V ω

F is defined. This will

become clear later. The elements V , v0, Λ and →֒ are defined in the same way as in

Def. 7.17 (page 142).

The Muller acceptance conditions QF in the DTAω consider the infinite paths that

visit the locations in F ∈ QF infinitely often. For this sake, BSCCs in the region graph

Gω that consist of set of vertices corresponding to LF ∈ LocF are of most importance.

Note that it is not sufficient to consider the BSCCs in the DMTAω. The reason will
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Figure 7.12: Region graph of the product DMTAω in Fig. 7.5(c)

become clear in Remark 7.36. Let v ∈ B denote that vertex v is in the BSCC B. We

define accepting BSCCs as follows:

Definition 7.32 (aBSCC) Given a product C ⊗ Aω = (Loc,X , ℓ0, LocF , E, ) and

its region graph Gω, a BSCC B in Gω is accepting if there exists LF ∈ LocF such that

for any v ∈ B, v⇂1 ∈ LF . Let aB denote the set of accepting BSCCs in Gω.

Based on aB, we can now define the set of accepting vertices of Gω as V ω
F = {v ∈

B | B ∈ aB}. Note that it is not an acceptance family but a set of accepting vertices.

Example 7.33 For the DMTAω in Fig. 7.5(c) with LocF =
{
{ℓ1, ℓ2, ℓ3}, {ℓ4, ℓ5, ℓ6}

}
,

the region graph is as in Fig. 7.12. There is one accepting BSCC, which has been labeled

with gray. This BSCC corresponds to the set {ℓ4, ℓ5, ℓ6} ∈ LocF in the DMTAω. There

is no BSCC corresponding to the set {ℓ1, ℓ2, ℓ3} because in the region graph v12 and

v14 are sink vertices connecting to the SCC. In other words, the probabilities will leak

when x > 2 on either ℓ1 or ℓ2. This is determined by the guards on the DTAω. �

We remark on two points: 1) the probability of staying in an aBSCC is 1, consid-

ering both the delay and Markovian transitions. That is to say, there are no outgoing

transitions from which probabilities can “leak”; 2) any two aBSCCs are disjoint, such

that the probabilities to reach two BSCCs can be added. These two points are later

important for the computation of the reachability probability.

Let ProbC(Aω) be the probability of the set of infinite paths in C that can be

accepted by Aω. The following theorem computes ProbC(Aω) on the region graph:
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ℓ0, 06x<1

ℓ4, 06x<1

v0, r0

v1, r1 v2, r3

ℓ5, 06x<1

ℓ0, 16x<2

0.60.4

δ

v9, r0

1 1

1

Figure 7.13: The transformed region graph Gω
abs

Theorem 7.34 For any CTMC C, DTAω Aω, and the region graph Gω =

(V, v0, V
ω
F ,Λ, →֒) of the product, it holds that:

ProbC(Aω) = ProbG
ω

(v0,♦V ω
F ).

Proof: The proof can be found in Appendix A.8, page 175. �

Actually, the region graph Gω can be simplified to Gω
abs to compute ProbC(Aω). Gω

abs

is obtained by making (i) all vertices in V ω
F and (ii) all vertices that cannot reach V ω

F

absorbing. (i) is justified by the fact that for these v ∈ V ω
F , ProbG(v,♦ V ω

F ) = 1; while

(ii) is because ProbG(v′,♦V ω
F ) = 0, for v′ cannot reach V ω

F . It is obvious to see that

ProbG
ω

(v0,♦V ω
F ) = ProbG

ω
abs(v0,♦V ω

F ).

Example 7.35 The transformed region graph Gω
abs of that in Fig. 7.12 is shown in

Fig. 7.13. We omit all the vertices that cannot be reached from v0 in Gω
abs. In this

new model, V ω
F = {v1, v2}. We now can perform the approach for computing timed-

unbounded reachability probabilities in Section 7.3 such that Eq. (7.4)-(7.6) can be ap-

plied. We have: ProbG
ω
abs(v0,♦V ω

F ) = ProbG
ω
abs(v0,♦ atv1) + ProbG

ω
abs(v0,♦ atv2). Note

that ProbG
ω
abs(vi,♦V ω

F ) = 1 for i = 1, 2 and 0 for i = 9. For the delay transition

v0
δ→֒ v9,

Probv0,δ(0) = e−r0·1·Probv9(1) = e−r0·1·0 = 0.

For the Markovian transition v0
0.4,{x}
→֒ v1,

Probv0,v1(0) =

∫ 1

0
0.4·r0·e−r0·τ ·Probv1(τ)dτ =

∫ 1

0
0.4·r0·e−r0·τdτ.

A similar reasoning applies to v0
0.6,{x}→֒ v2. In the end, we have

ProbC(Aω) =

∫ 1

0
(0.4 + 0.6)·r0·e−r0·τdτ =

∫ 1

0
r0·e−r0·τdτ = 1 − e−r0 .

�
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Remark 7.36 (Why not BSCCs in the product?) There are two BSCCs in the

product DMTAω: one formed by {ℓ1, ℓ2, ℓ3} and the other by {ℓ4, ℓ5, ℓ6}. As turned out

in the example that only the latter forms a BSCC in the region graph while the former

does not. This is because the guards on the transitions also play a role on whether a

path can be accepted. The impact of guards, however, is not immediately clear in the

product DMTAω, but is implicitly consumed in the region graph. This justifies finding

BSCCs in the region graph instead of in the product.

Theorem 7.34 implies that computing the probability of a set of infinite paths (LHS)

can be reduced to computing the probability of a set of finite paths (RHS). The latter

has been solved in Section 7.3 with the characterization of a system of integral equations

and also the approximation by a system of PDEs. The case of a single clock DTAω,

due to this reduction, can also be solved as a system of ODEs (as in Section 7.3.2).

7.5 Summary

We addressed the quantitative verification of a CTMC C against a DTA♦ A (DTAω

Aω). As a key result, we showed that the set of the accepting paths in C by DTA is

measurable and the probability of C |= A can be reduced to computing reachability

probabilities in the embedded DTMP of a PDP. The probabilities can be characterized

by a system of Volterra integral equations of the second type and can be approximated

by a system of PDEs. For single-clock DTA♦, this reduces to solving a system of linear

equations whose coefficients are a system of ODEs. The probability of C |= Aω is

reducible to computing the reachability probabilities to the accepting BSCCs in the

region graph and the thus obtained PDP.

Our results partially complete Table 1.1 in the Introduction as in Table 7.1. For

the detailed explanation of the table, please refer to page 1.1. Note that the time

complexity of solving the system of integral equation is open.

7.5.1 Related Work

We summarize some of the most relevant work here:

Checking Markov Chains with Actions and State Labels. Baier et al. in-

troduced the logic asCSL [BCH+07] which provides a powerful means to characterize

execution paths of Markov chains with both actions and state labels. asCSL can be

regarded as an extension of the purely state-based logic CSL. In asCSL, path proper-

ties are characterized by regular expressions over actions and state formulae. Thus, the

truth value of a path formula depends not only on the available actions in a given time

interval, but also on the validity of certain state formulae in intermediate states. Using
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branching time linear time

PCTL LTL

discrete- linear equations automata-based tableau-based

time [HJ94] (⋆) [Var85][CSS03] (⋆⋆) [CY95b]

(DTMC D) PTIME PSPACE-C

untimed real-time untimed real-time

continuous- PCTL CSL LTL DTA♦/DTAω

time emb(C) integral equations emb(C) integral equations

(CTMC C) cf. (⋆) [ASSB00][BHHK03] cf. (⋆⋆) [CHKM09a]/this thesis

PTIME PTIME PSPACE-C ?

Table 7.1: An overview of verifying Markov chains

an automaton-based technique, an asCSL formula and a Markov chain with actions

and state labels are combined into a product Markov chain. For time intervals starting

at zero (asCSL6t), a reduction of the model checking problem for asCSL to CSL model

checking on this product Markov chain is established.

To compare the expressiveness of the specifications, DTA as a linear-time specifi-

cation is incomparable with branching-time specifications like asCSL, or CSLTA (see

below). The following comparison is based on a CSL-like logic where the path formulae

are characterized by DTAs. It is shown in [DHS09] how a nondeterministic program

automaton (NPA) for a regular expression path formula can be systematically encoded

into an equivalent DTA. Actually, the timing feature in the DTA is not relevant here.

This implies that DTA is strictly more expressive than a regular expression as a path

formula in asCSL.

Model Checking Timed and Stochastic Properties with CSLTA. Donatelli,

Haddad and Sproston presented the stochastic logic CSLTA [DHS09], which is more

expressive than CSL and at least as expressive as asCSL, and in which path formulae

are specified using automata (more precisely, single-clock DTA♦). A model-checking

algorithm for CSLTA is provided. In [DHS09], C⊗A is interpreted as a Markov renewal

processes and model checking CSLTA is reduced to computing reachability probabilities

in a DTMC whose transition probabilities are given by subordinate CTMCs. This

technique cannot be generalized to multiple clocks.

As before, we make the comparison of DTA and CSLTA when considering DTA

as a path formula in a CSL-like logic. Our approach does not restrict the number

of clocks and supports more specifications than CSLTA. For the single-clock DTA♦,
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7. MODEL CHECKING CTMCS AGAINST DTA

our approach produces the same result as [DHS09], but yields a conceptually simpler

formulation whose correctness can be derived from the simplification of the system of

integral equations obtained in the general case. Our work essentially provides a proof

of the procedure proposed in [DHS09]. Moreover, measurability and the specification

of properties referring to the probability of an infinite sequence of timed events has not

been addressed in [DHS09].

Probabilistic Semantics of Timed Automata. Bertrand et al. provided a quan-

titative interpretation to timed automata where delays and discrete choices are in-

terpreted probabilistically [BBB+07][BBB+08][BBBM08]. In this approach, delays of

unbounded clocks are governed by exponential distributions like in CTMCs. Decidabil-

ity results have been obtained for almost-sure properties [BBB+08] and quantitative

verification [BBBM08] for (a subclass of) single-clock timed automata.
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Chapter 8

Conclusion

In this dissertation, we have addressed three aspects concerning probabilistic model

checking: diagnosis — generating counterexamples, synthesis — providing valid pa-

rameter values and analysis — verifying linear real-time properties. The three aspects

are relatively independent while all contribute to developing new theory and algorithms

in the research field of probabilistic model checking. We summarize our contributions

briefly as follows:

• We gave a formal definition as well as an algorithmic framework of generating

counterexamples in the probabilistic setting;

• We made first important steps to the problem of synthesizing values for para-

metric probabilistic models;

• We provided approximate algorithms for checking linear real-time properties on

CTMCs.

All three problems ave received scant attention in the literature so far. Below we

provide our specific contributions together with some future research directions in each

aspect.

Diagnosis. We introduce a formal definition of counterexamples in the setting of

probabilistic model checking. The counterexample is represented either by enumerating

paths or by regular expressions; for the former, finding (informative) counterexamples

is cast as shortest paths problems, while for the latter, it is reducible to finding short

regular expressions. An algorithmic framework is proposed that can be adapted to

various combinations of models and logics in the probabilistic setting, such as PCTL

and LTL model checking on DTMCs.

In the future, we expect to apply our definition of counterexamples in the CEGAR-

framework for other abstraction techniques such as [KKLW07][KNP06]. Some more
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8. CONCLUSION

work can be done concerning the regular expression counterexamples, e.g., generat-

ing more “traceable” counterexamples or the efficient computation of the value of a

constrained regular expression.

Synthesis. We drew the attention to the problem of synthesizing values for para-

metric CTMCs wrt. time-bounded reachability specifications. We presented two al-

gorithms that yield an approximation of the region of values that can guarantee the

satisfaction of the specification. We specified the algorithm, error bound and time com-

plexity for both the symbolic approach (by polynomial solving) and the non-symbolic

approach (by pCTMC instantiation), accompanied by a case study.

In the future, we foresee the extension of the current work on time-bounded reach-

ability properties to full CSL formulae. We also expect that synthesizing parameters

in the probabilistic models with rewards, nondeterminism or hybrid features may also

profit from the results in this dissertation.

Analysis. We focus on verifying CTMCs against linear real-time properties spec-

ified by deterministic timed automata (DTAs). The model checking problem aims at

computing the probability of the set of paths in CTMC C that can be accepted by

DTA A, denoted PathsC(A). We consider DTAs with reachability (finite, DTA♦) and

Muller (infinite, DTAω) acceptance conditions, respectively. It is shown that PathsC(A)

is measurable and computing its probability for DTA♦ can be reduced to computing

the reachability probability in a PDP. The reachability probability is characterized as

the least solution of a system of integral equations and is shown to be approximated by

solving a system of PDEs. Furthermore, we show that the special case of single-clock

DTA♦ can be simplified to solving a system of linear equations. We also deal with

DTAω specifications, where the problem is proven to be reducible to the reachability

problem as in the DTA♦ case.

In the future, several other forms of the linear real-time properties can be considered:

those specified by a logic, e.g., M(I)TL, or dropping the constraint of the determinism in

the timed automaton. Other more advanced models, e.g. CTMDPs or continuous-time

MRMs are also of great interest.
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Appendix A

Proofs in Chapter 7

A.1 Proof of Theorem 7.7

Theorem 7.7 For a CTMC C and DTA A, PathsC(A) is measurable.
Proof: We first deal with the case that A only contains strict inequality.
Since PathsC(A) is a set of finite paths, PathsC(A) =

⋃
n∈N

PathsCn(A), where

PathsCn(A) is the set of accepting paths by A of length n. For any path

ρ := s0
t0−−→ s1 · · · sn−1

tn−1−−−→ sn ∈ PathsCn(A), we can associate ρ with a path θ :=

q0
L(s0),t0−−−−−−→ q1 · · ·qn−1

L(sn−1),tn−1−−−−−−−−−→ qn of A induced by the location sequence:

q0
L(s0),g0,X0−−−−−−−−→ q1 · · · qn−1

L(sn−1),gn−1,Xn−1−−−−−−−−−−−−−→ qn,

such that qn ∈ QF and there exist {ηi}16i<n with 1) η0 = ~0; 2) (ηi + ti) |= gi; and 3)
ηi+1 = (ηi + ti)[Xi := 0], where ηi is the clock valuation on entering qi.

To prove the measurability of PathsCn(A), it suffices to show that for each path

ρ := s0
t0−−→ · · · tn−1−−−→ sn ∈ PathsCn(A), there exists a cylinder set C(s0, I0, . . ., In−1, sn)

(Cρ for short) that contains ρ and that each path in Cρ is accepted by A. The interval
Ii is constructed according to ti as Ii = [t−i , t

+
i ] such that

• If ti ∈ Q, then t−i = t+i := ti;

• else if ti ∈ R \ Q, then let t−i , t
+
i ∈ Q such that

t−i 6 ti 6 t
+
i and ⌊t−i ⌋ = ⌊ti⌋ and ⌈t+i ⌉ = ⌈ti⌉;

t+i − t−i <
∆

2 · n , where (with {·} denoting the fractional part) ∆ =

min06j<n, x∈X
{
{ηj(x) + tj}, 1 − {ηj(x) + tj}

∣∣ {ηj(x) + tj} 6= 0
}

1.

1Note that we are considering open timed automata. Hence for any i with ηi + ti |= gi, it must be
the case that {ηi(x) + ti} 6= 0.
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To show that ρ′ := s0
t′0−−→ · · · t′n−1−−−→ sn ∈ Cρ is accepted by A, let η′0 := ~0 and

η′i+1 := (η′i + t′i)[Xi := 0]. We will show that η′i + t′i |= gi. To this end, it suffices to
observe that η′0 = η0, and for any i > 0 and any clock variable x,

∣∣η′i(x) − ηi(x)
∣∣ 6

i−1∑

j=0

∣∣t′j − tj
∣∣ 6

i−1∑

j=0

t+j − t−j 6 n · (t+j − t−j ) 6
∆

2
.

We claim that since DTA A is open, it must be the case that η′i + t′i |= gi. To see this,
suppose gi is of the form x > K for some integer K. We have that |η′i(x) − ηi(x)| 6 ∆

2

and |t′i − ti| < ∆
2 , therefore |(η′i(x) + t′i) − (ηi(x) + ti)| < ∆. Note that ηi(x) + ti > K,

and thus ηi(x) + ti − {ηi(x) + ti} = ⌈ηi(x) + ti⌉ ≥ K. Hence ηi(x) + ti − ∆ ≥ K since
∆ 6 {ηi(x) + ti}. It follows that η′i(x) + t′i > K. A similar argument applies to the
case x < K and can be extended to any constraint gi. Thus, η′i + t′i |= gi.

It follows that Cρ is a cylinder set of C and each path in this cylinder set is accepted
by A, namely, ρ ∈ Cρ and Cρ ⊆ PathsCn(A) with |ρ| = n. Together with the fact that
PathsCn(A) ⊆ ⋃ρ∈PathsC

n(A) Cρ, we have:

PathsCn(A) =
⋃

ρ∈PathsC

n(A)

Cρ and PathsC(A) =
⋃

n∈N

⋃

ρ∈PathsC

n(A)

Cρ.

We note that each interval in the cylinder set Cρ has rational bounds, thus Cρ is
measurable. It follows that PathsC(A) is a union of countably many cylinder sets, and
hence is measurable.

We then deal with A with equalities of the form x = n for n ∈ N. We show the
measurability by induction on the number of equalities appearing in A. We have shown
the base case (DTA with only strict inequalities). Now suppose there exists a transition

ι = q
a,g,X−→ q′ where g contains x = n. We first consider a DTA Aι obtained from A by

deleting the transitions from q other than ι. We then consider three DTA Āι, A>
ι and

A<
ι where Āι is obtained from Aι by replacing x = n by true; A>

ι is obtained from Aι

by replacing x = n by x > n and A<
ι is obtained from Aι by replacing x = n by x < n.

It is not difficult to see that

PathsC(Aι) = PathsC(Āι) \ (PathsC(A>
ι ) ∪ PathsC(A<

ι )).

Note that this holds since A is deterministic. By induction hypothesis, PathsC(Āι),
PathsC(A>

ι ) and PathsC(A<
ι ) are measurable. Hence PathsC(Aι) is measurable. Fur-

thermore, we note that

PathsC(A) =
⋃

ι=q
a,g,X−→ q′

PathsC(Aι),

therefore PathsC(A) is measurable as well.
For arbitrary A with time constraints of the form x ⊲⊳ n where ⊲⊳∈ {≥,≤}, we

consider two DTA A= and A⊲⊳. Clearly PathsC(A) = PathsC(A=) ∪ PathsC(A⊲̄⊳),
where ⊲̄⊳ => if ⊲⊳=≥; < otherwise. Clearly PathsC(A) is measurable. �
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A.2 Proof of Lemma 7.15

Lemma 7.15 For any CTMC C and DTA♦ A,

PathsC(A) = PathsC⊗A(♦LocF )⇂1.

Proof: (=⇒) It is to prove that for any path ρ ∈ PathsC(A), there exists a path
τ ∈ PathsC⊗A(♦LocF ) such that τ⇂1 = ρ.

We assume w.l.o.g. that ρ = s0
t0−−→ s1 · · · sn−1

tn−1−−−→ sn ∈ PathsC is accepted by A,
i.e., sn ∈ QF and for 0 6 i < n, η0 |= ~0 and ηi + ti |= gi and ηi+1 = (ηi + ti)[Xi := 0],
where ηi is the time valuation on entering state si. We can then construct a path

θ ∈ PathsA from ρ such that θ = q0
L(s0),t0−−−−−−→ q1 · · · qn−1

L(sn−1),tn−1−−−−−−−−−→ qn, where si and
qi have the same entering clock valuation. From ρ and θ, we can construct the path

τ = 〈s0, q0〉 t0−−→〈s1, q1〉 · · · 〈sn−1, qn−1〉 tn−1−−−→〈sn, qn〉,

where 〈sn, qn〉 ∈ LocF . It follows from the definition of an accepting path in a DTAω

that τ ∈ PathsC⊗A(♦LocF ) and τ⇂1 = ρ.

(⇐=) It is to prove that for any path τ ∈ PathsC⊗A(♦LocF ), τ⇂1 ∈ PathsC(A).
We assume w.l.o.g. that path

τ = 〈s0, q0〉 t0−−→ · · · tn−1−−−→〈sn, qn〉 ∈ PathsC⊗A(♦LocF ),

it holds that 〈sn, qn〉 ∈ LocF and for 0 6 i < n, η0 |= ~0 and ηi + ti |= gi and
ηi+1 = (ηi + ti)[Xi := 0], where ηi is the time valuation on entering state 〈si, qi〉. It
then directly follows that qn ∈ QF and τ⇂1 ∈ PathsC(A), given ηi the entering clock
valuation of state si. �

A.3 Proof of Theorem 7.16

Theorem 7.16 For any CTMC C and DTA♦ A:

PrC
(
PathsC(A)

)
= PrC⊗A (PathsC⊗A(♦LocF )

)
.

Proof: According to Theorem 7.7, PathsC(A) can be rewritten as the combination of
cylinder sets of the form C(s0, I0, . . . , In−1, sn) which are all accepted by DTA A1. By
Lemma 7.15, namely by path lifting, we can establish exactly the same combination
of cylinder sets C(ℓ0, I0, . . . , In−1, ℓ0) for PathsC⊗A(♦LocF ), where si = ℓi⇂1. It then
suffices to show that for each cylinder set C(s0, I0, . . . , In−1, sn) which is accepted by
A, PrC and PrC⊗A yield the same probabilities. Note that a cylinder set C is accepted
by a DTA A, if each path that C generates can be accepted by A.

1Note that this means each path in the cylinder set is accepted by A.
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For the measure PrC , according to Eq. (2.1) (page 12),

PrC
(
C(s0, I0, . . . , In−1, sn)

)
=

∏

06i<n

∫

Ii

P(si, si+1) ·E(si) · e−E(si)τdτ.

For the measure PrC⊗A
~0

, according to Section 7.2.1, it is given by PC⊗A
0 (~0) where

PC⊗A
n (η) = 1 for any clock valuation η and

PC⊗A
i (ηi) =

∫

Ii

1gi
(ηi + τi)·pi·E(ℓi)·e−E(ℓi)τi · PC⊗A

i+1 (ηi+1) dτi,

where ηi+1 = (ηi + τi)[Xi := 0] and 1gi
(ηi + τi) = 1, if ηi + τi |= gi; 0, otherwise.

We will show, by induction, that PC⊗A
i (ηi) is a constant, i.e., is independent of ηi,

if the cylinder set C(ℓ0, I0, . . . , In−1, ℓn) is accepted by C ⊗ A. Firstly let us note that
for C(ℓ0, I0, . . . , In−1, ℓn), there must exist some sequence of transitions

ℓ0
�

g0,X0

p0

// ℓ1 · · · ℓn−1
�

gn−1,Xn−1

pn−1

// ℓn

with η0 = ~0 and ∀ti ∈ Ii with 0 6 i < n, ηi + ti |= gi and ηi+1 := (ηi + ti)[Xi := 0].
Moreover, according to Def. 7.11, we have:

pi = P(si, si+1) and E(ℓi) = E(si). (A.1)

We apply a backward induction on n down to 0. The base case is trivial since PC⊗A
n (η) =

1. By I.H., PC⊗A
i+1 (η) is a constant. For the induction step, consider i < n. For any

τi ∈ Ii, since ηi + τi |= gi, 1gi
(ηi + τi) = 1, it follows that

PC⊗A
i (ηi) =

∫

Ii

1gi
(ηi + τi)·pi·E(ℓi)·e−E(ℓi)τi · PC⊗A

i+1 (ηi+1) dτi

I.H.
=

∫

Ii

pi·E(ℓi)·e−E(ℓi)τidτi · PC⊗A
i+1 (ηi+1)

Eq.(A.1)
=

∫

Ii

P(si, si+1)·E(si)·e−E(si)τidτi · PC⊗A
i+1 (ηi+1).

Clearly, this is a constant. It is thus easy to see that

PrC⊗A
~0

(
C(ℓ0, I0, . . . , In−1, ℓn)

)
:= PC⊗A

0 (~0) =
∏

06i<n

∫

Ii

P(si, si+1)·E(si)·e−E(si)τdτ,

which completes the proof. �
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A.4 Proof of Theorem 7.23

Theorem 7.23 For any CTMC C and DTA♦ A, PrC⊗A
~0

(
PathsC⊗A(♦LocF )

)
is the

least solution of ProbDv0
(·), where D is the embedded DTMP of C ⊗ A.

Proof: We can express the set of all finite paths in C ⊗ A ending in some accepting
location ℓn ∈ LocF for n ∈ N as the union over all location sequences i.e.,

ΠC⊗A =
⋃

n∈N

⋃

(ℓ0,...,ℓn)∈Locn+1

C(ℓ0, I0, . . . , In−1, ℓn)

= PathsC⊗A(♦LocF ) ∪ PathsC⊗A(♦LocF ).

where C(ℓ0, I0, . . . , In−1, ℓn) is a cylinder set, Ii = [0,∞[ and PathsC⊗A(♦LocF )⇂1 are
the set of paths which are not accepted by the DTA A. Notice that we can easily
extend the measure PrC⊗A

~0
to ΠC⊗A such that

PrC⊗A
~0

(
ΠC⊗A) = PrC⊗A

~0

(
PathsC⊗A(♦LocF )

)
.

This means that in order to prove the theorem we need to show that

PrC⊗A
~0

(
ΠC⊗A) = ProbDv0

(~̂0), (A.2)

where ProbDv0
(~̂0) is the short form of ProbD

(
(v0, ~̂0), (VF , ·)

)
, i.e., the reachability prob-

ability from state (v0, ~̂0) to (VF , ·). Note that for better readability, we indicate clock
valuations in D by adding a “̂ ”.

Eq. (A.2) is to be shown on cylinder sets. Note that each cylinder set C(ℓ0, I0, . . . ,
In−1, ℓn) ⊆ ΠC⊗A (Cn for short) induces a region graph G(Cn) = (V, v0, VF ,Λ, →֒),
where its underlying PDP and embedded DTMP is Z(Cn) and D(Cn), respectively.
To prove Eq. (A.2), it suffices to show that for each Cn,

PrC⊗A
~0

(Cn) = ProbD(Cn)
v0

(~̂0),

since ΠC⊗A =
⋃

n∈N

⋃
(ℓ0,...,ℓn)∈Locn+1 Cn and D =

⋃
n∈N

⋃
(ℓ0,...,ℓn)∈Locn+1 D(Cn).

We will prove it by induction on the length n of the cylinder set Cn ⊆ ΠC⊗A.

• By B.C. of n = 0, i.e. C0 = C(ℓi) and ℓi ∈ LocF , it holds that PrC⊗A
ηi

(C0) = 1;
while in the embedded DTMP D(C0), since the initial vertex of G(C0) is v0 =
(ℓi,Θ0), where ηi ∈ Θ0 and v0 is consequently the initial location of Z(C0) as well

as D(C0) which is accepting, Prob
D(C0)
v0 (η̂i) = 1. Note ℓi ∈ Loc is not necessarily

the initial location ℓ0.

• By I.H., we have that for n = k − 1, PrC⊗A
ηi+1

(Ck−1) = Prob
D(Ck−1)
vi+1 (η̂i+1), where

Ck−1 = C(ℓi+1, Ii+1, . . . , Ii+k−1, ℓi+k) and ℓi+k ∈ LocF . Note ℓi+1 ∈ Loc is not
necessarily the initial location ℓ0.
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• For n = k, let Ck = C(ℓi, Ii, ℓi+1, Ii+1, . . . , Ii+k−1, ℓi+k). As a result, there exists a

transition ℓi
�

gi,Xi

pi

// ℓi+1 where ηi+τi |= gi for every τi ∈ ]t1, t2[. t1, t2 ∈ Q>0∪{∞}
can be obtained from gi, such that τj ∈ ]t1, t2[ iff ηi + τj |= gi. According to the
semantics of MTA we have

PrC⊗A
ηi

(Ck) =

∫ t2

t1

pi·E(ℓi)·e−E(ℓi)τi · PrC⊗A
ηi+1

(Ck−1) dτi, (A.3)

where ηi+1 = (ηi + τi)[Xi := 0].

· · · · · ·vi
0=(ℓi,Θ0)
♭(vi

0,η̂
i
0)61

vi
m−1=(ℓi,Θm−1)
♭(vi

m−1,η̂
i
m−1)=1

δ δ vi
m=(ℓi,Θm)
♭(vi

m,η̂
i
m)=1

vi
m′=(ℓi,Θm′)
♭(vi

m′ ,η̂i
m′)=1

δ δδ

vi+1
m =(ℓi+1,Θm)
♭(vi+1

m ,η̂i+1
m )61

pi

vi+1
m′ =(ℓi+1,Θm′)
♭(vi+1

m′ ,η̂
i+1
m′ )61

pi

Now we deal with the inductive step for D(Ck). Let us assume that Ck

induces the region graph G(Ck) whose subgraph corresponding to transition

ℓi
�

gi,Xi

pi

// ℓi+1 is depicted in the figure above. For simplicity we consider that

location ℓi induces the vertices {vi
j = (ℓi,Θj) | 0 6 j 6 m′} and location ℓi+1

induces the vertices {vi+1
j = (ℓi+1,Θj) | m 6 j 6 m′}, respectively. Note that

for Markovian transitions, the regions stay the same. We denote η̂i
j (resp. η̂i+1

j )

as the entering clock valuation on vertex vi
j (resp. η̂i+1

j ), for j the indices of the

regions. For any η̂ ∈ ⋃m−1
j=0 Θj ∪

⋃
j>m′ Θj, η̂ 6|= gi; or more specifically,

t1 =
m−1∑

j=0

♭(vi
j , η̂

i
j) and t2 =

m′∑

j=0

♭(vi
j , η̂

i
j).

Recall that η̂i (in the I.H.) is the clock valuation to first hit a region with ℓi
and η̂i. Given the fact that from vi

0 the process can only execute a delay transition
before time t1, it holds that

Prob
D(Ck)
vi
0

(η̂i) = e−t1Λ(vi) · Prob
D(Ck)
vi

m
(η̂i

m)

Prob
D(Ck)
vi

m
(η̂i

m) = Prob
D(Ck)
vi

m,δ (η̂i
m) + Prob

D(Ck)

vi
m,vi+1

m

(η̂i+1).

Therefore, we get by substitution of variables:

ProbDvi
0
(η̂i) = e−t1Λ(vi)·Prob

D(Ck)
vi

m,δ (η̂i
m) + e−t1Λ(vi)·Prob

D(Ck)

vi
m,vi+1

m

(η̂i+1)

= e−t1Λ(vi)·Prob
D(Ck)
vi

m,δ (η̂i
m)

+ e−t1Λ(vi)·
∫ ♭(vi

m,η̂i
m)

0
piΛ(vi)e

−Λ(vi)τ ·Prob
D(Ck−1)

vi+1
m

(
(η̂i

m + τ)[Xi := 0]
)
dτ

= e−t1Λ(vi)·Prob
D(Ck)
vi

m,δ (η̂i
m)

+

∫ t1+♭(vi
m ,η̂i

m)

t1

piΛ(vi)e
−Λ(vi)τ ·Prob

D(Ck−1)

vi+1
m

(
(η̂i

m + τ − t1)[Xi := 0]
)
dτ.
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Evaluating each term Prob
D(Ck)
vi

m,δ (η̂i
m) we get the following sum of integrals:

Prob
D(Ck)
vi
0

(η̂i) =
m′−m∑

j=0

∫ t1+
Pj

h=0 ♭(vi
m+h,η̂i

m+h)

t1+
Pj−1

h=0 ♭(vi
m+h,η̂i

m+h)
piΛ(vi)e

−Λ(vi)τ

· Prob
D(Ck−1)

vi+1
m+j

(
(η̂i

m+j+τ−t1−
j−1∑

h=0

♭(vi
m+h, η̂

i
m+h))[Xi:=0]

)
dτ.

Now we define the function FD(Ck−1)(t) : [t1, t2] → [0, 1], such that when t ∈ [t1 +∑j−1
h=0 ♭(v

i
m+h, η̂

i
m+h), t1+

∑j
h=0 ♭(v

i
m+h, η̂

i
m+h)] for j 6 m′−m then FD(Ck−1)(t) =

Prob
D(Ck−1)

vi+1
m+j

(
(η̂i

m+j + t− t1 −
∑j−1

h=0 ♭(v
i
m+h, η̂

i
m+h))[Xi := 0]

)
. Using FD(Ck−1)(t)

we can rewrite Prob
D(Ck)
vi
0

(η̂i) to an equivalent form as:

Prob
D(Ck)
vi
0

(η̂i) =

m′−m∑

j=0

∫ t1+
Pj

h=0 ♭(vi
m+h,η̂i

m+h)

t1+
Pj−1

h=0 ♭(vi
m+h,η̂i

m+h)
piΛ(vi)e

−Λ(vi)τFD(Ck−1)(τ)dτ

=

∫ t2

t1

piΛ(vi)e
−Λ(vi)τFD(Ck−1)(τ)dτ.

By the I.H. we now have that for every t ∈ [t1 +
∑j−1

h=0 ♭(v
i
m+h, η̂

i
m+h), t1 +∑j

h=0 ♭(v
i
m+h, η̂

i
m+h)] for j 6 m′ −m we have that:

PrC⊗A
ηi+1

(Ck−1) = Prob
D(Ck−1)

vi+1
m+j

(
(η̂i

m+j+t−t1−
j−1∑

h=0

♭(vi
m+h, η̂

i
m+h))[Xi:=0]

)
= FD(Ck−1)(t),

where ηi+1 = (ηi + t)[Xi := 0] and η̂i
m+j = η̂i + t1 +

∑j−1
h=0 ♭(v

i
m+h, η̂

i
m+h). This

shows that PrC⊗A
ηi

(Ck) = Prob
D(Ck)
vi

(η̂i) which proves the theorem. �

A.5 Proof of Proposition 7.26

Proposition 7.26 Given a CTMC C, an augmented DTA♦ A[tf ] and the underlying

PDP Z(C ⊗ A[tf ]) = (V,X , Inv , φ,Λ, µ), PrC
(
PathsC(A[tf ])

)
= ~v0

(0,~0) (which is the

probability to reach the final states in Z starting from initial state (v0,~0X∪{y}
1)) is the

unique solution of the following system of PDEs:

∂~v(y, η)

∂y
+
∑

i

∂~v(y, η)

∂η(i)
+ Λ(v)·

∑

v
p,X→֒ v′

p · (~v′(y, η[X := 0]) − ~v(y, η)) = 0,

1denoting the valuation η with η(x) = 0 for x ∈ X ∪ {y}
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where v ∈ V \ VF , η ∈ Inv(v), η(i) is the i’th clock variable and y ∈ [0, tf [. For

every η ∈ ∂Inv (v) and transition v
δ→֒ v′, the boundary conditions take the form:

~v(y, η) = ~v′(y, η). For every vertex v ∈ VF , η ∈ Inv(v) and y ∈ [0, tf [, we have the
following PDE:

∂~v(y, η)

∂y
+
∑

i

∂~v(y, η)

∂η(i)
+ 1 = 0.

The final boundary conditions are that for every vertex v ∈ V and η ∈ Inv(v)∪∂Inv(v),
~v(tf , η) = 0.

Proof: For any set of clocks X (n clocks) of the PDP Z = (Z,X , Inv , φ,Λ, µ) we define
a system of ODEs:

dη(y)

dy
= ~1, η(y0) = η0 ∈ Rn

>0, (A.4)

which describe the evolution of clock values η(y) at time y given the initial value η0 of
all clocks at time y0. Notice that contrary to our DTA notation, Eq. (A.4) describes

a system of ODEs where η(y) is a vector of clock valuations at time y and dη(i)(y)
dy

gives the timed evolution of clock η(i). Given a continuous differentiable functional
f : Z × Rn

>0 → R>0, for every z ∈ Z let:

df(z, η(y))

dy
=

n∑

i=1

∂f(z, η(y))

∂η(i)
· dη

(i)(y)

dy

Eq.(A.4)
=

n∑

i=1

∂f(z, η(y))

∂η(i)
.

For notation simplicity we define the vector field from Eq. (A.5) as the operator Ξ

which acts on functional f(z, η(y)) i.e., Ξf(z, η(y)) =
∑n

i=1
∂f(z,η(y))

∂η(i) . We also define

the equivalent notation Ξf(ξ) for the state ξ = (z, η(y)) and any y ∈ R>0.
We define the value of PrC

(
PathsC(A)

)
as the expectation ~(0, ξ0) on PDP Z as

follows:

~(0, ξ0) = E

[∫ tf

0
1Z(Xτ )dτ | X0 = ξ0

]
= E(0,ξ0)

[∫ tf

0
1Z(Xτ )dτ

]
,

where the initial starting time is 0 the starting state is ξ0 = (z0,~0), Xτ is the underlying
stochastic process of Z defined on the state space S and 1Z(Xτ ) = 1 when Xτ ∈
{(z, η(τ)) | z ∈ VF , η(τ) ∈ Inv(z)}, 1Z(Xτ ) = 0, otherwise. Notice that we can
also define the expectation in Eq. (A.5) for any starting time y < tf and state ξ as

E(y,ξ)

[∫ tf
y 1Z(Xτ )dτ

]
.

We can obtain the expectation ~(0, ξ0) by following the construction in [Dav93].
For this we form the new state space Ŝ = ([0, tf ] × S) ∪ {∆} where ∆ is the sink state

and the boundary is ∂Ŝ := ([0, tf ] × ∂S)∪ ({tf} × S). We define the following functions:

Λ̂(y, ξ) = Λ(ξ), µ̂((y, ξ), {y}×A) = µ(ξ,A) and µ̂((tf , ξ), {∆}) = 1 for y ∈ [0, tf [, A ⊆ S

and ξ ∈ S.
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Given the construction we obtain an equivalent form for the expectation (A.5) i.e.,:

~(0, ξ0) = E(0,ξ0)

[∫ ∞

0

~̂1Z(τ,Xτ )dτ

]
, (A.5)

where ~̂1Z : Ŝ → {0, 1}, ~̂1Z(τ,Xτ ) = 1 when Xτ ∈ {(z, η(τ)) | z ∈ VF , η(τ) ∈ Inv(z)}
and τ ∈ [0, tf [, ~̂1Z(τ,Xτ ) = 0, otherwise. We also define ~̂1Z(∆) to be zero. Notice that
we introduce the sink state ∆ in order to ensure that limy→∞ E(0,ξ)~(y,Xy) = 0, which
is a crucial condition in order to obtain a unique value for the expectation ~(0, ξ0).

For the expectation (A.5) [Dav93] defines the following integro-differential equations
(for any y ∈ [0, tf [):

U~(y, ξ) = Ξ~(y, ξ) + Λ̂(y, ξ) ·
∫

S

(
~(y, ξ′) − ~(y, ξ)

)
µ̂((y, ξ), (y, dξ′)), ξ ∈ S (A.6)

~(y, ξ) =

∫

S

~(y, ξ′)µ̂((y, ξ), (y, dξ′)), ξ ∈ ∂S (A.7)

U~(y, ξ) + ~̂1Z(y, ξ) = 0, ξ ∈ S (A.8)

Equation (A.6) denotes the generator of the stochastic process Xy and Eq. (A.7) states
the boundary conditions for Eq. (A.8). We can rewrite the integro-differential equations
(A.6),(A.7) and (A.8) into a system of PDEs with boundary conditions given the fact
that the measure µ̂ is not uniform. For each vertex v /∈ VF , η ∈ Inv(v) and y ∈ [0, tf [
of the region graph G we write the PDE as follows (here we define ~v(y, η) := ~(y, ξ)
for ξ = (v, η)):

∂~v(y, η)

∂y
+
∑

i

∂~v(y, η)

∂η(i)
+ Λ(v)

∑

v
p,X→֒ v′

p · (~v′(y, η[X := 0]) − ~v(y, η)) = 0,

Notice that for any edge v
p,X→֒ v′ in the region graph G, µ̂((y, (v, η)), (y, (v′ , η′))) = p.

For every η ∈ ∂Inv(v) and transition v
δ→֒ v′ the boundary conditions take the form:

~v(y, η) = ~v′(y, η). For every vertex v ∈ VF , η ∈ Inv(v) and y ∈ [0, tf [ we get:

∂~v(y, η)

∂y
+
∑

i

∂~v(y, η)

∂η(i)
+ 1 = 0

Notice that all final states are made absorbing. The final boundary conditions are that
for every vertex v ∈ Z and η ∈ Inv(v) ∪ ∂Inv(v), ~v(tf , η)=0. �

A.6 Proof of Proposition 7.28

Proposition 7.28 Given a CTMC C with initial distribution α, rate matrix P·E and
Π(t), ~℘(t) satisfies the following two equations:

~℘(t) = α ·Π(t), (A.9)

d~℘(t)

dt
= ~℘(t) ·Q, (A.10)
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where Q = P·E− E is the infinitesimal generator.
Proof: The transition probability matrix Π(t) for a CTMC C with state space S is
denoted by the following system of integral equations:

Π(t) =

∫ t

0
M(τ)Π(t− τ)dτ + D(t), (A.11)

where M(τ) = P·E·D(τ). Now we define for the CTMC C a stochastic process X(t).
The probability Pr(X(t+ ∆t) = sj) to be in state sj at time t+ ∆t can be defined as:

Pr(X(t+ ∆t) = sj) =
∑

si∈S

Pr(X(t) = si) · Pr(X(t+ ∆t) = sj|X(t) = si)

We can define Pr(X(t+ ∆t) = sj) in the vector form as follows:

~℘(t+ ∆t) = ~℘(t)Φ(t, t+ ∆t),

where ~℘(t) = [Pr(X(t) = s1), . . . ,Pr(X(t) = sn)] and Φ(t, t+∆t)[i, j] = Pr(X(t+∆t) =
sj|X(t) = si).

As the stochastic process X(t) is time-homogeneous we have that

Pr(X(t+ ∆t) = sj|X(t) = si) = Pr(X(∆t) = sj|X(0) = si),

which means that Φ(t, t + ∆t) = Φ(0,∆t). As Pr(X(∆t) = sj|X(0) = si) denotes
the transition probability to go from state si to state sj at time ∆t we have that
Φ(0,∆t) = Π(∆t), which results in the equation:

~℘(t+ ∆t) = ~℘(t)Π(∆t). (A.12)

Now we transform Eq. (A.12) as follows:

~℘(t+ ∆t) = ~℘(t)Π(∆t)

=⇒ ~℘(t+ ∆t) − ~℘(t) = ~℘(t)Π(∆t) − ~℘(t)

=⇒ ~℘(t+ ∆t) − ~℘(t) = ~℘(t)(Π(∆t) − I)

=⇒ d~℘(t)

dt
= lim

∆t→0

~℘(t+ ∆t) − ~℘(t)

∆t
= ~℘(t) lim

∆t→0

Π(∆t) − I

∆t
.

Now it is to compute lim∆t→0
Π(∆t)−I

∆t . For this we rewrite the right hand limit as:

lim
∆t→0

1

∆t

∫ ∆t

0
M(τ)Π(∆t− τ)dτ + lim

∆t→0

1

∆t
(D(∆t) − I) .

The lim∆t→0
1

∆t

∫∆t
0 M(τ)Π(∆t − τ)dτ is of the type 0

0 , which means we have to use
l’Hospital rule:

d(∆t)

d∆t
= 1,

d

d∆t

(∫ ∆t

0
M(τ)Π(∆t− τ)dτ

)
= M(∆t)Π(0) +

∫ ∆t

0
M(τ)

∂

∂∆t
Π(∆t− τ)dτ.
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Notice that Π(0) = I and we obtain:

lim
∆t→0

1

∆t

∫ ∆t

0
M(τ)Π(∆t− τ)dτ

= lim
∆t→0

(
M(∆t)Π(0) +

∫ ∆t

0
M(τ)

∂

∂∆t
Π(∆t− τ)dτ

)
= M(0)Π(0) = P·E.

The lim∆t→0
1

∆t (D(∆t) − I) is of the type 0
0 , which means the use of l’Hospital rule:

d(∆t)

d∆t
= 1

d

d∆t
(D(∆t) − I) = −ED(∆t)

Therefore, we obtain lim∆t→0
1

∆t (D(∆t) − I) = −E and

lim
∆t→0

Π(∆t) − I

∆t
= P·E − E = Q,

where Q is the infinitesimal generator of the CTMC C. As a result we obtain:

d~℘(t)

dt
= ~℘(t) lim

∆t→0

Π(∆t) − I

∆t
= ~℘(t)Q.

Combining with Eq. (A.12) we get:

~℘(t) =α ·Π(t),

d~℘(t)

dt
=~℘(t) ·Q. �

A.7 Proof of Theorem 7.29

Theorem 7.29 For subgraph Gi of G with ki states, it holds for 0 6 i < m that:

~Ui(0) = Πi(∆ci) ·Fi
~Ui+1(0) + Π̄a

i (∆ci) · ~U0(0), (A.13)

where Πi(∆ci) and Π̄a
i (∆ci) are for CTMC Ci and the augmented CTMC Ca

i , respec-
tively. For case i = m, it holds that:

~Um(0) = P̂i · ~Um(0) +~1F + B̂m · ~U0(0), (A.14)

where P̂i(v, v
′) = P(v, v′) if v /∈ VF ; 0 otherwise and B̂m =

∫∞
0 Bm(τ)dτ .

Proof: We first deal with the case i < m. If in Gi, there exists some backward edge,
namely, for some j, j′, Bi(x)[j, j

′] 6= 0, then we shall consider the augmented CTMC
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Ca
i with ka

i = ki + k0 states. In view of this, the augmented integral equation ~Ua
i (x) is

defined as:

~Ua
i (x) =

∫ ∆ci−x

0
Ma

i (τ)
~Ua

i (x+ τ)dτ + Da
i (∆ci − x) · Fa

i
~̂
Ui(0)

where ~Ua
i (x) =

(
~Ui(x)
~U ′

i(x)

)
∈ Rka

i ×1, ~U ′
i(x) ∈ Rk0×1 is the vector representing reach-

ability probability for the augmented states in Gi, Fa
i =

(
F′

i B′
i

)
∈ Rka

i ×(ki+1+k0)

such that F′
i =

(
Fi

0

)
∈ Rka

i ×ki+1 is the incidence matrix for delay edges and

B′
i =

(
0

I

)
∈ Rka

i ×k0 ,
~̂
Ui(0) =

(
~Ui+1(0)
~U0(0)

)
∈ R(ki+1+k0)×1.

First, we prove the following equation:

~Ua
i (x) = Πa

i (∆ci − x) ·Fa
i
~̂
Ui(0),

where

Πa
i (x) =

∫ x

0
Ma

i (τ)Π
a
i (x− τ)dτ + Da

i (x). (A.15)

We consider the iterations of the solution of the following system of integral equations:
set ci,x = ∆ci − x.

~U
a,(0)
i (x) = ~0

~U
a,(j+1)
i (x) =

∫ ci,x

0
Ma

i (τ)~U
a,(j)
i (x+τ)dτ + Da

i (ci,x) ·Fa
i
~̂
Ui(0).

and

Π
a,(0)
i (ci,x) = 0

Π
a,(j+1)
i (ci,x) =

∫ ci,x

0
Ma

i (τ)Π
a,(j)
i (ci,x−τ)dτ + Da

i (ci,x).

By induction on j, we prove the following relation:

~U
a,(j)
i (x) = Π

a,(j)
i (ci,x) ·Fa

i
~̂
Ui(0).

• Base case: ~U
a,(0)
i (x) = ~0 and Π

a,(0)
i (ci,x) = 0.

• Induction hypothesis: ~U
a,(j)
i (x) = Π

a,(j)
i (ci,x) ·Fa

i
~̂
Ui(0).

• Induction step j → j + 1:

~U
a,(j+1)
i (x) =

∫ ci,x

0
Ma

i (τ)
~U

a,(j)
i (x+ τ)dτ + Da

i (ci,x) ·Fa
i
~̂
Ui(0).
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By induction hypothesis we have

~U
a,(j+1)
i (x) =

∫ ci,x

0
Ma

i (τ)~U
a,(j)
i (x+ τ)dτ + Da

i (ci,x) ·Fa
i
~̂
Ui(0)

=

∫ ci,x

0
Ma

i (τ)Π
a,(j)
i (ci,x−τ) · Fa

i
~̂
Ui(0)dτ + Da

i (ci,x) ·Fa
i
~̂
Ui(0)

=

(∫ ci,x

0
Ma

i (τ)Π
a,(j)
i (ci,x − τ)dτ + Da

i (ci,x)

)
·Fa

i
~̂
Ui(0)

= Π
a,(j+1)
i (ci,x) · Fi

~̂
Ui(0).

Clearly, Πa
i (ci,x) = limj→∞ Π

a,(j+1)
i (ci,x) and ~Ua

i (x) = limj→∞ ~U
a,(j+1)
i (x).

Let x = 0 and we obtain

~Ua
i (0) = Πa

i (ci,0) ·Fa
i
~̂
Ui(0).

We can also write the above relation for x = 0 as:(
~Ui(0)
~U ′

i(0)

)
= Πa

i (∆ci)
(

F′
i B′

i

)
(

~Ui+1(0)
~U0(0)

)

=

(
Πi(∆ci) Π̄a

i (∆ci)
0 I

)(
Fi 0
0 I

)(
~Ui+1(0)
~U0(0)

)

=

(
Πi(∆ci)Fi Π̄a

i (∆ci)
0 I

)(
~Ui+1(0)
~U0(0)

)

=

(
Πi(∆ci)Fi

~Ui+1(0) + Π̄a
i (∆ci)~U0(0)

~U0(0)

)
.

As a result we can represent ~Ui(0) in the following matrix form

~Ui(0) = Πi(∆ci)Fi
~Ui+1(0) + Π̄a

i (∆ci)~U0(0)

by noting that Πi is formed by the first ki rows and columns of matrix Πa
i and Π̄a

i is
formed by the first ki rows and the last ka

i − ki columns of Πa
i .

For i = m, i.e., the last graph Gm, the region size is infinite, therefore delay transi-
tions do not exist. The vector ~Um(x+ τ) in

∫∞
0 M̂m(τ)~Um(x + τ)dτ does not depend

on entering time x, therefore we can take it out of the integral. As a result we obtain∫∞
0 M̂m(τ)dτ ·~Um(0). More than that

∫∞
0 M̂m(τ)dτ boils down to P̂m and

∫∞
0 Bm(τ)dτ

to B̂m. Also we add the vector ~1F to ensure that the probability to start from a state
in VF is one (see (7.6)). �

A.8 Proof of Theorem 7.34

Theorem 7.34 For any CTMC C, DTAω Aω, and their region graph Gω =
(V, v0, V

ω
F ,Λ, →֒) of the product, it holds that:

ProbC(Aω) = ProbG
ω

(v0,♦V ω
F ).
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A. PROOFS IN CHAPTER 7

Proof: We show the theorem by the following three steps:
1. ProbC(Aω) = ProbC⊗A(LocF ), where ProbC⊗A(LocF ) denotes the probability of

accepting paths of DMTA C ⊗ A w.r.t. Muller accepting conditions;

2. ProbC⊗A(LocF ) = ProbG
ω

(v0, LocF );

3. ProbG
ω

(v0, LocF ) = ProbG
ω

(v0,♦V ω
F ).

For the first step, we note that PathsC(Aω) =
⋂

16i6k Paths i where

Paths i =
⋂

n>0

⋃

m>n

⋃

s0,...,sn,sn+1...,sm

C(s0, I0, . . . , In−1, sn, . . . , Im−1, sm), where

• {sn+1, . . . , sm} = LFi
;

• C(s0, I0, . . . , In−1, sn, . . . , Im−1, sm) is the cylinder set such that each timed path

of the cylinder set of the form s0
t0−−→ · · · tn−1−−−→ sn · · · tm−1−−−−→ sm is a prefix of an

accepting path of A.

Similar to Lemma 7.15, one can easily see that each path of CTMC C can be lifted to a
unique path of DMTAω C⊗Aω. Following the same argument as in Theorem 7.16, one
can obtain that for each cylinder set of the form C(s0, I0, . . . , In−1, sn, . . . , Im−1, sm),
C and C ⊗Aω give rise to the same probability. Hence ProbC(Aω) = ProbC⊗Aω

(LocF ).

For the second step, we need to define a timed path of Gω, which is of the form
v0

t0−−→ v1
t2−−→ · · · such that given the initial valuation η0, one can construct a sequence

{ηi} such that
• ηi+1 = (ηi + ti)[Xi := 0] if ηi + ti |= Inv(vi) (namely, the transition from vi to
vi+1 is via a Markovian transition); and

• ηi+1 = ηi + ti if ηi + ti ∈ ∂Inv(vi) (namely, the transition from vi to vi+1 is via a
forced boundary jump).

A path of Gω is accepted if the discrete part of the path, namely v0v1 · · · meets the
Muller condition.

Following the standard region construction, one can lift a timed path of DMTAω

C ⊗ Aω to a unique timed path of the corresponding region graph Gω. Moreover,
following the same argument of Theorem 7.23, one can show that C ⊗ Aω and Gω give
rise to the same probability to the accepted paths.

For the third step, we note that according to the ergodicity of PDP (region graph),
for each path of Gω, with probability 1 the states visited infinitely often constitute a
BSCC. It follows that

ProbG
ω

(v0, LocF ) =
∑

B∈aB
Prob{ρ | inf(ρ) = B}.

We note that for each note v in an accepting BSCC, Prob{PathsG
ω

(v)} = 1. Hence

ProbG
ω

(v0, LocF ) = ProbG
ω

(v0,♦V ω
F ).

�
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