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We have finally managed to show that strings of actions in learning systems and strings of genes in
evolving systems change their probabilities according to the same simple formula, at least for a large class
of learning adaptive plans. This is of course what John Holland implied when he maintained that learning
and evolution are similar adaptive processes [1], but it is only now that we have been able to show that the
equations of probability change are indeed similar for learning and evolution. Learning and evolution have
much in common

Strings of actions are strings in time, whereas strings of genes are strings in space. The probabilities of
action strings change as the system learns, just as the probabilities of gene strings change as a population
evolves. The action strings can be thought of as constituting a virtual population in much the same way that
gene strings constitute a real evolving population. A string’s probability is its prevalence in the population,
a virtual population in the case of learning, a real population in the case of evolution.

In both learning and evolution, adaptation tries to increase the probabilities of the more valuable strings.
A string’s value is a measure of the payoff we get if we use that string.1 But there seemed to be a differ-
ence between evolution and learning. Gene string probabilities were unconditional probabilities, but action
probabilities were conditional given the current state or given the previous actions. This difference is easiest
to see when the learning system is a simple Markov chain in which each state has a payoff number. That
number is the payoff you get every time you enter that state. An action is simply a state transition. The
probability Pij of transition i → j is the conditional probability that the next state is j given that the
current state is i .

Learning causes a change in the conditional transition probabilities Pij . But evolution causes changes
in the unconditional gene probabilities. The learning analogue is the unconditional probability Fij of
transition i → j . To compare learning with evolution we need to know how learning changes the
unconditional probabilities Fij , which I call the transition frequencies.

The transition probabilities do determine the frequencies, but in a complicated way. We have
Fij = p̃iPij , where p̃i is the unconditional probability of being in state i . But the state
probabilities p̃i are complicated functions of the transition probabilities Pij . The learning plan specifies
the rate of change P ′

ij of the conditional probabilities, but to compare with evolution we need the rate of
change F ′

ij of the frequencies. How can we get a usable formula for F ′
ij ? There is a trick, which we

finally discovered, and it is the purpose of this note to explain the trick.

In learning, adaptive plans are typically based on state values, either explicitly or implicitly. The trick
involves looking carefully at what we mean by value. Let mi be the payoff attached to state i . Let
m̄ be the average payoff we get per time step. Learning tries to change the probabilities in a way that
increases m̄ . I use the phrase excess payoff to mean payoff minus m̄ . We define
ai = mi − m̄ ,
so ai is the excess payoff of state i . It might very well be negative.

The post-value ci of state i is the expectation of the sum of all the excess payoffs you would get on
and after a visit to that state.2 Usually post-value is simply called value. I define the choice value hij of
transition i → j as follows.
hij = cj − ci + ai .
It tells you how much better transition i → j is than the average transition from i .

There is a large class of learning plans in which the rate of change P ′
ij is given by

P ′
ij = KPijhij .

The number K is the learning rate constant. I call these plans natural plans.3

1In the literature, the word “fitness” sometimes means value, but it sometimes means reproductive rate.
2It’s an infinite sum whose n’th term is the expectation of the excess payoff you would get n time steps after the visit.

Provided the Markov chain is strongly connected, the sum converges in the Cesaro sense.
3In a natural plan we have m̄′ = K

∑
ij Fijh

2
ij , and so m̄ tends to increase.
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You might think it would be simpler to simply specifiy P ′
ij = KPijcj , but that would send the

Pij numbers off to where the probabilities no longer add up to one. You would have to keep normalizing
the probabilities, and that would result in a natural plan P ′

ij = KPijhij . So there are lots of different
scenarios that give you a natural plan. I won’t talk about them here because I want to ask the crucial
question. We know that P ′

ij = KPijhij , but what is F ′
ij ?

Of course the frequency derivatives F ′
ij are always a function of the transition probability derivatives

P ′
ij , so we can use that function to obtain a formula for F ′

ij in a natural plan, but that’s a terribly
complicated formula. How do we obtain a useful formula for F ′

ij in a natural plan?

Now here is the trick. We ask the question, “What if time ran the other way?” A visit to a state is
correlated with payoff received both before and after the visit. But the post-value looks only at the payoff
after. We are missing half of the payoff.

Let Bij be the conditional probability that the previous state was j given that the current state is i .
The probabilities Bij are the transition probabilities in a different Markov chain, a chain in which time
runs in the other direction. I call it the backward chain, and it’s often called the time reversed chain in the
literature.

We look at the backward chain and ask what the post-value bi of state i is in the backward chain.
That’s the pre-value of i in the original forward chain. The definition of bi is just like ci except that it
uses the probabilities Bij instead of Pij . The pre-value bi is the payoff on and before the visit to state
i . It’s the missing half of the payoff.

We can now define the total value vij of transition i → j .
vij = bi + cj .
And now we can give our formula for F ′

ij in a natural plan.
F ′
ij = KFijvij .

It’s that simple. We have the following theorem.

Theorem 1
P ′
ij = KPijhij for all ij

if and only if
F ′
ij = KFijvij for all ij .

In retrospect it looks obvious, but the proof is a bit tricky. The backward implication is easy, but turning
the backward implication around to obtain the forward implication involves establishing a relation between
the P ′ matrices and the F ′ matrices and then showing the relation is one to one. For all the details see
[2].

If σ is the transition string i → j → k → ℓ , then its frequency is Fσ = p̃iPijPjkPkℓ , and its
total value is υσ = bi + aj + ak + cℓ . We can similarly define the total value υσ of any transition
string σ , and in a natural plan we have
F ′
σ = KFσυσ for all strings σ ,

just as in an evolving population of gene strings. The equation holds for all strings σ of any length and for
all their substrings. The virtual population of transition strings has the same hierarchical structure as an
evolving population of organisms. All the details and proofs are given in [2].

That’s fine for a Markov chain, but what if the Markov property doesn’t hold? I’ll now briefly mention
how we have extended theorem 1 to familiar rule based systems and to a simple actor-critic system. In these
systems an action stands for a whole amalgamation of transitions. We look at systems that use a temporal
difference method to estimate the values of the various actions, of the various amalgamations. The system
adapts as if the post-value of each transition were the estimated value of the amalgamation it is in, so the
transition post-values it uses are wrong. They are not even approximations of the true post-values in any
normal sense of the word. I call them false post-values.

Let me outline a trick we use to analyse this situation. We look at the false post-values. Now it turns out
that the true post-values are a simple invertible linear function of the excess payoffs, so the excess payoffs are
a simple linear function of the true post-values. We apply that function to the false post-values to obtain what
I call the false payoffs. Using these, we define the false pre-values and false total values. Then theorem 1
holds with all the true values replaced by the false values. The system is adapting and evolving like a
population of strings just as in the Markov chain, except that it is evolving as if the payoffs were the false
ones.

What makes this non-trivial is that there is a relationship between the true and false payoffs. If we
change the excess payoff ai on every state from true excess payoff to false excess payoff, it’s as if payoff is
transferred from state to state within each amalgamation. The average payoff within each amalgamation is
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unchanged. In that sense, payoff is conserved. Freeloading strings are stealing payoff that rightly belongs
to other strings, much as in evolutionary biology and evolutionary computation. The details of all these
matters are given and proved in [3].

All this was outlined by John Holland in his 1975 book, Adaptation in Natural and Artificial Systems.
[1] The problem back then was that crucial steps in the formalization were missing. To obtain the basic
equivalence in theorem 1, we have to think of action values as including pre-values as well as post-values.
Without that time-symmetric insight, the equations of learning and evolution remained stubbornly different.
The fields of reinforcement learning and evolutionary computation separated and drifted apart, each field
quite properly ignoring the other, because each had little to contribute to the other. Until now. Now it is
possible to re-establish contact.

In establishing the equivalences that Holland foresaw, it is the temporal difference methods that have
been the most recalcitrant. But in paper [3] we have shown that even they yield to the time symmetric
approach.

Holland was right.
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