Opening the Black Box: Deriving Rules from Data

Elena Baralis

Politecnico di Torino

BICOD 2017 – RuleML+RR 2017 London, July 12th 2017

Opening the black box

i.e., the long and winding road that takes to knowledge...

Mining large datasets

Continuously growing amounts of data are being collected and stored

User generated content

Sensor data

E-commerce data

Available for exploration and analysis

- Patterns and models are extracted from data to
 - describe their characteristics
 - predict variable values

The Quest for Interpretability

- Powerful analysis techniques are being designed
 - Among them, deep learning techniques
- Unfortunately, many high quality models are characterized by being hardly interpretable
 - Data interpretability is important for decision making
- Rules mined from data may provide easily interpretable knowledge
 - both for exploration and classification (or prediction) purposes

Extracting Meaning from Data

Introducing some types of rules inferred from data

- association rules
- (associative) classification rules
- with variations on the theme...
- Discussing their capability of
 - describing phenomena
 - giving meaning to the data under analysis

Rule patterns

High quality patterns derived bottom-up

- Not assuming any apriori knowledge on data
 - will relax somewhat this hypothesis
- Several kinds of pattern
 - descriptive patterns: association rules & itemsets
 - rule models for prediction
- Focus on association rules
- Many application domains
 - Data exploration and explanation
 - Constraint derivation

Descriptive patterns

- Many different types of association-based patterns
 - itemsets
 - association rules
 - weighted association rules
 - generalized association rules

Association rules

Objective

extraction of frequent correlations or patterns from a transactional database

Purchases at a supermarket counter

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Coke, Diapers, Milk

Association rule

diapers \Rightarrow beer

- 2% of transactions contain both items
- 30% of transactions containing diapers also contain beer

Transactional formats

A transaction can be any set of items

- Market basket data
- Textual data
 - A document is a transaction

- Words in a document are items in the transaction
- Structured data
 - A table row is a transaction
 - Pairs (attribute, value) are items in the transaction
 - Example

Refund=no, MaritalStatus=married, TaxableIncome<80K, Cheat=No

Refund	Marital Status		Cheat
No	Married	< 80K	No

Identification of hidden correlations among data

$\mathbf{X} \to \mathbf{Y}$

- X and Y are itemsets, sets of one or more items
- Quality indices
 - Support: percentage of transactions containing X and Y
 - Confidence: conditional probability of finding Y given X

Lift: ratio between rule confidence and support of Y
 BGift

Considering weight

- Items may be characterized by different importance within a transaction
 - Examples: product quantity, term frequency of occurrence, tf-idf
- Weighted dataset
 - Each item is assigned a weight measuring its relevance in the corresponding transaction
- Weighted itemsets represent correlations among multiple highly relevant terms

Several different definitions of weighted itemset support

Document summarization

- The summary of a collection of news documents ranging over the same topic
 - provides a synthetic overview of the most relevant news facets
 - does not require access to the entire document collection
- Itemset-based summarizers analyze the cooccurrences between multiple document terms
 - frequent weighted itemsets consider only the correlations between *highly relevant* terms
 - term weights measure term relevance in the analyzed collection

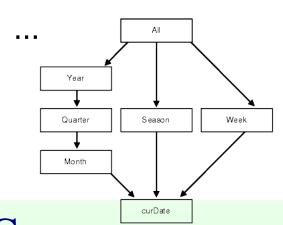
Document summarization

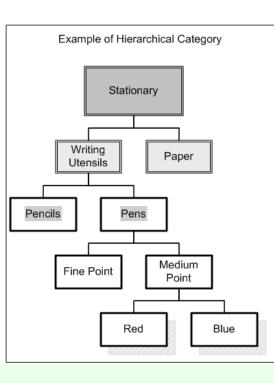
- Language-agnostic approach
 - makes minimal use of language-dependent analyses (stopwords, optionally stemming)
 - is easily applicable to document collections written in different languages (Arabic, Czech, English, French, Greek, Hindi)
- Item weights are particularly effective for summarizing documents written in languages other than English

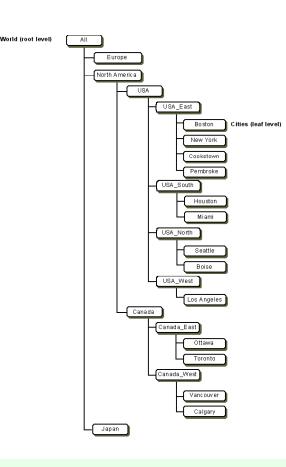
Considering hierarchies

Generalization hierarchies

- Aggregation over attributes in a dataset
- Typically user provided
- Examples
 - Time hierarchy
 - Product category
 - Location hierarchy

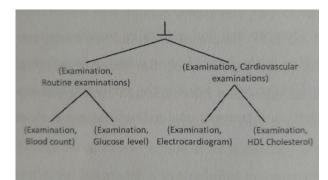






Taxonomy

- A taxonomy is a set of is-a hierarchies that aggregate data items into higher-level concepts
- Data item
 - Instance in the (transactional) dataset
 - Represents detailed concepts
- Generalized item
 - Aggregation in higher-level concepts
 - Represents abstractions on instances



Generalized itemsets

Sets of items at different generalization levels

- May contain data items together with generalized items defined in the taxonomy
- Summarize knowledge represented by a set of lower-level descendants
 - Both frequent and infrequent

A generalized itemset covers a transaction when all

- its generalized items are ancestors of items included in the transaction
- its data items are included in the transaction
- Generalized itemset support
 - ratio between number of covered transactions and

DBG dataset cardinality

Context-aware data analysis

- Context data provided by different, possibly heterogeneous, sources
 - Mobile devices provide information on
 - the user context (e.g., GPS coordinates)
 - the supplied services
 - temporal information
 - service description
 - duration
 - Additional information available
 - demographics of the user requesting the service

Generalized itemset example

user: John, time: 6.05 p.m., service: Weather (s = 0.005%)

- A very low support
 - The itemset may be discarded
- By generalizing
 - the time attribute on a time period
 - the user on a user category

user: employee, time: 6 p.m. to 7 p.m., service: Weather (s = 0.2%)

 May discover interesting properties generalizing infrequent items

Extension of "classical" association rules

$\mathbf{X} \to \mathbf{Y}$

- X and Y are either generalized or not generalized itemsets
 - Support, confidence and lift are defined accordingly

- Analysis of multiple level correlations on patient treatment historical data
 - Dataset collected by an Italian Local Health Center
 - Diabetes complications at various severity levels
 - 95K records, 3.5K patients
 - Features
 - Prescribed examinations (26 examinations, 7 categories)
 - Prescribed drugs (200 drugs, 14 categories)
 - Census patient data (gender, age discretized in age groups)
- Sparse dataset
 - Difficult setting of support threshold
 - Low: generates too many rules

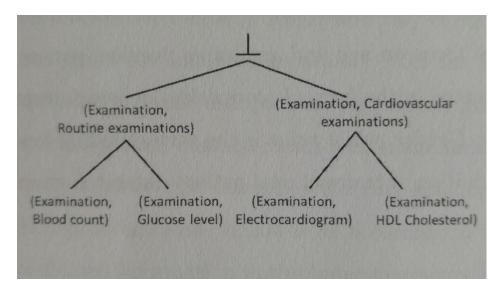
 High: interesting information at lower levels of abstraction may remain hidden

Rule exploration in top-down fashion

- From small subset of high-level rules drill down to more specific rules
 - Descending level of abstraction on the considered taxonomy
- Discovery of rule groups at different abstraction levels
 - Typically more manageable for manual exploration
- Consider only non redundant rules
 - Compact subset based on closed itemsets
 - Rule is redundant if it has same support and confidence of its specialized version
 - Reduces cardinality of rule set

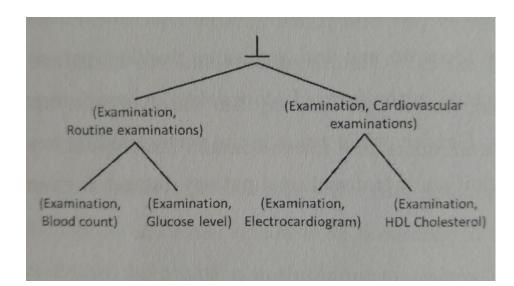
High-level rules

- Only generalized itemsets (examination and drug categories)
- Represent general knowledge
 - May be too high level to perform targeted analyses



Extracted high-level rule

- (Examination, Liver) -> (Examination, Kidney)
- Frequently prescribed together
- May be used for examination scheduling



- Cross-level rules
 - Different abstraction levels (generalized items and data items)
 - Combine detailed and general information
- Extracted cross-level rule

(Examination, Liver) -> (Examination, Uric acid)

- Insight into specific kidney examinations correlated with liver examinations
 - Confidence: 74.8%

Low-level rules

- Only not generalized itemsets (only data items)
- Very detailed knowledge
 - Covered by high and cross-level rules
- Large rule set
 - Challenging exploration task
- Drill down exploration based on formerly extracted high and cross-level rules

Outcomes

Allow experts to

- Identify medical treatments commonly followed by patients with a given disease
- Verify adherence of medical treatment to shared medical guidelines
- Improve the effectiveness of medical treatments
- Plan resource allocation and reduce costs incurred by organization

Flipping correlations

- Discovery of contrasting situations between ancestor and descendant itemsets
 - Identify exceptional or unexpected situations
- Itemsets characterized by a correlation type
 - Positive, negative, or null
 - Correlation strength measured by correlation indices
 Kulczynsky, lift, ...
- Itemsets whose *correlation type flips* (changes) when its items are generalized to a higher level of abstraction

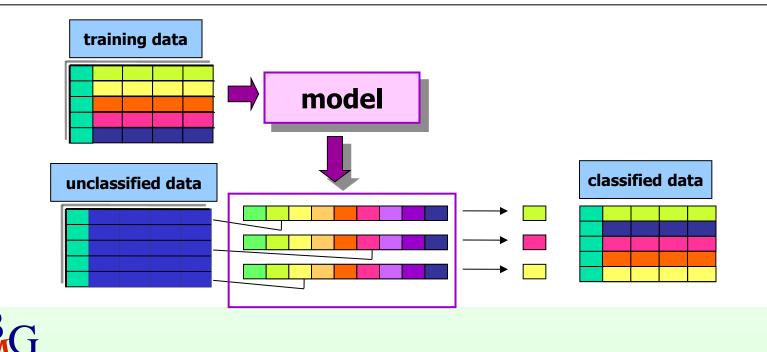
Flipping correlations

- Twitter dataset on Music topic
- Flipping correlation
 - Generalized itemset, *negative* correlation (Date: Working day), (Location: Twickenham Rugby Stadium)
 - Exception, *positive* correlation
 - (Date: 2012-09-08), (Location: 51.45542-0.34165)
 - Lady Gaga sold-out concert in the stadium on 2012-09-08

Classification

Objectives

- prediction of a (discrete) class label
- definition of a model of a given phenomenon
 - interpretable?



Rule patterns for classification

Targets

- Defining an *interpretable* rule *model* capable of
 - assigning class label to unclassified object
 - describing main class characteristics
- Providing reasons for a classification outcome
 - why a class label is assigned to a given instance?
- Several types of rules
 - Class association rules (CARs)
 - Good quality classification models
 - Many different approaches

Structure of "classical" association rules

$\mathbf{X} \to \mathbf{Y}$

where Y is a class label

- CARs selection
 - Rule selection & sorting
 - based on support, confidence and lift thresholds
 - Rule pruning
 - Database coverage: the training set is covered by selecting topmost rules according to previous sort

Lazy pruning

- L³: Live and Let Live
 - Low support threshold for rule extraction
 - Rule selection based on confidence
 - Multiple support thresholds for different classes
 - Level-based approach in selecting rules
 - Good rules, small subset of high quality rules
 - *Spare rules,* larger set of rules not used during database coverage
 - Harmful rules, discarded because only wrongly classifying training data
- High quality model
 - Larger rule set, considering spare rules

Instance-centric approaches

DeEPs

- Emerging Pattern are patterns that sharply differentiate one (training) class from the others
 - Interesting patterns occur frequently in one class and less frequently in the others
- Lazy classification
 - EP extraction takes place for the given test instance
 - Aggregate supports of extracted EPs assign class label
- Harmony
 - Selects a subset of best possible rules for each training instance
 - highest confidence frequent covering rules

The challenge of big data

Huge data collections exacerbate the problem

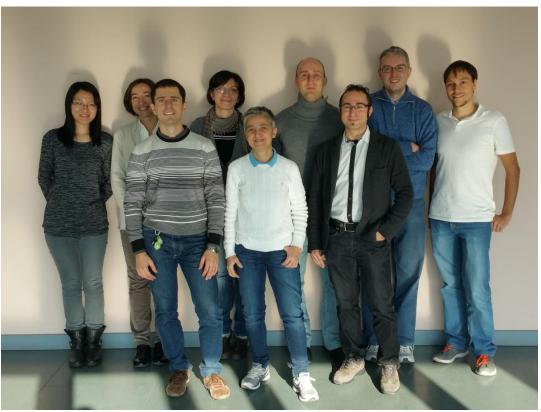
- Very sparse datasets
 - Support threshold setting
- Computational challenge
 - Scalability in item cardinality is a challenge
 - Hadoop/Spark framework not straightforwardly usable
- Local exploration of datasets
 - Several criteria to select area to explore
 - Rule constraints
 - Schema constraints, item constraints
 - Predicates on attributes
 - Instance constraints

Rules as building blocks

Rules may support black box learning paradigms

- Learn rule patterns from data
 - learn some abstractions by experience
 - e.g., a positioning rule for objects
- Use learned patterns (abstractions) to support deep learning techniques
 - drive learning also by abstractions
 - e.g., use rule to improve object detection
- It is the way our brain works!

- everybody in my research group, PhD students and researchers, but especially...
 - Giulia Bruno
 - Luca Cagliero
 - Tania Cerquitelli
 - Silvia Chiusano
 - Paolo Garza
 - Luigi Grimaudo



Thank you!

Questions?

