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Wrapping Millions of 
Documents Per Day 

and How that’s Just the Beginning
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Background: About me

Co-founder and CTO

Lecturer in Databases and Co-investigator VADA
Fellow of Oxford Martin School & OMI

Senior Research Manager
Meltwater
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https://youtu.be/j_0IZdNJ-aw

http://www.youtube.com/watch?v=j_0IZdNJ-aw


World class crawling platform 

to largely automate 

outside content collection
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Crawling Space & Volume
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Crawling Coverage

Source: Nilesh Dalvi (Yahoo!) et al. – VLDB 2012

For many kinds of information 

one has to extract from 

thousands of sites 

in order to build a 

comprehensive database
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Vertical 1 & 2:

Real Estate & Used Cars, UK
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Vertical 3:

News Articles
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US/UK news sources from 
Meltwater media intelligence

~40,000 

Effective wrappers 
(where we get all the data)

85% 
Precision of extracted 
ADICT+ attributes

89% 

Days to adjust system to this 
vertical (why? 30min refresh)

90
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• OXPath: perfect for interactive, search engine style websites

• However: in media intelligence – freshness of data is critical

• 30min maximum between publishing and indexing time

• (almost) every article has an indexable, unique URL

• large variety of different article templates

• Decompose OXPath wrapper into single page segments

• memorise set of section pages encountered in a run

• recrawl stored section pages in next run

• to find new article (& section) pages

Why different wrapper format?
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Vertical 4:

Company Extractors
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• Given only a company website

• Extract as much relevant information from structured sources

• executive team, locations, subsidiaries, …

• Identify unstructured sources 

• press releases, financial reports, …

• Scale to millions of companies in multiple languages

Company Extraction: Goals
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Company Extraction: Results

% of companies
description

74%
CEO & execs

85%
location

82%
logo

89%
58%pr
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79% 69% 74%
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• Need: US restaurant locations (including chains) for check-ins

• Problem: existing location databases incomplete and full of errors

• Want: Get that data from the “authoritative” source, i.e., 

• the restaurant (chain) websites

• They evaluated state-of-the-art – most solutions to crude

• Settled on scrapy, but: 2 months for top 20 US chains

• Very worried about maintenance

Restaurant locations
Don’t believe us? You aren’t the first – major US technology company
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• After 1 month applying Wrapidity technology:

• over 300 US chains, over 100k websites

• more than 3M locations in total

• fully automated maintenance for those sources

• But: they still didn’t believe

• hired Accenture to assess quality of the data

• result: over 97% precision

Restaurant location: Results

85% 95%pr
ec
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on
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Restaurant location: Independent Evaluation
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Summary
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~50k sources, 30 min 

recrawl interval 87%

91%

90%
over 300 US chains, over 

100k websites; 
more than 3M locations

over 30 attributes, where 
present; 1M+ company’s site 

crawl ongoing
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• We need to scale to the web 

• minimize supervision per source

• But: we can afford prior knowledge 

• about entities and attributes

• mostly in form of known labels & instances and “appearance”
• expressed as Gazetteers or rules for local, textual information

• higher-level rules or classifiers for complex structures

Web-Scale Wrapper Induction
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• Problem: application of prior knowledge is costly & noisy

• wrapper induction to generalise to other pages of site

• “template” hypothesis

• Solution: Generate “wrapper” program from examples 

• then apply to all pages of a site

• when to apply which extractor

• Full site extraction needs to also deal with 

• Interactivity such as pagination & form filling (deep web)

• Detecting complex structures such as lists, tables, …

Web-Scale Wrapper Induction
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Exploration: Self-Adaptive
• Self-adaptive, dynamic exploration plans

• planers expressed as guarded FSTs

• with Datalog rules as guards

• 1000’s of unique exploration plans
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NER for DOMs: Labels, structure, …
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Form understanding

• Sub-problems: form labeling, form segmentation, classification

• Combines structural, textual, visual, and semantic clues

• structural = structure of the DOM, e.g., distance

• visual = rendering of the form, e.g., for alignment

• textual = detectors for a vertical’s types (e.g., “LHR”)

• semantic = class, id, … with semantic labels (e.g. “finput_dest”)

• Polynomial time labeling, grouping, and classification algorithm
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Pick a Path: Wrapper induction
• Pick robust, “semantic” paths

• less affected by changes

• over time and within a template

• Suitable as “foundation” for 

• template discovery

• E.g.: Select the director

• Firebug (“canonical” XPath)

• Ours:
/html[1]/body[1]/ ... /div[4]/a[1]/span[1] 

//div[starts-with(.,”Director:")]//span[(@class="itemprop")

]
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Wrapper Repair ICDE’16
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Wrapper Repair
• Joint repair of wrapper and output data (relation)

• Problem related to table segmentation problem

• generally NP-complete

• but we show that it’s polynomial under atomic misplacement

• Atomic misplacement: attribute value is either

• entirely misplaced, or 

• its fragments are in adjacent fields

ICDE’16
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Meltwater: Who are we?
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Meltwater: Media Intelligence
Sources: Editorial, Social, Broadcasts

media
exposure trends influencers sentiment

analysis

More than 300k different types of user queries
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Meltwater: In Numbers ~200B indexed documents

• Crawlers fetch ~3.3M articles/day from 190k editorial sources

• re-crawled every 30 minutes

• With the social fire hoses we go up to 30M docs/ day.
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Meltwater: Existing Technology Stack
Ingestion:
⭕ Social media hoses (partnerships)
⭕ Editorial/News (partnerships + web crawling)
⭕ Broadcasts (views on the above)

Media Intelligence applications (Custom)
⭕ Boolean queries (keywords / entities) 
⭕ Counters
⭕ Aggregates
⭕ Drill downs / pivoting

Enrichments (15 languages):
⭕ Text categorization (topic, language)
⭕ NERD (person, location, organization, ...)
⭕ NED ( https://en.wikipedia.org/wiki/Tim_Cook )
⭕ Sentiment Analysis

Storage and search:
⭕ Elastic search
⭕ Rabbit MQ (distributed queues)
⭕ AWS

https://en.wikipedia.org/wiki/Tim_Cook
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Vision: Insight Building on Outside Data
Build a world class AI platform for a new software category

Outside Insight
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Fairhair: People & Community
5 Data Science Research offices 6 Data Science Hubs (co-working spaces)

ɾ London
ɾ San Francisco
ɾ Singapore
ɾ Sydney
ɾ Berlin
ɾ New York

University collaborations

Meltwater Entrepreneurial School of Technology
ɾ campuses in Ghana and Nigeria
ɾ it’s a school for African entrepreneurs
ɾ it’s an incubator (33 startups)
ɾ it’s a networking hub
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Fairhair’s AI First Approach
Step 1: Outside Data acquisition & making it available in a form that’s crunchable. 
Step 2: Make Data Science (data, algorithms, infrastructure, tools) power everything
Step 3: We can’t foresee all uses of data and insights → Developer APIs & integrations
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Fairhair’s AI Crawlers
Traditional scraping requires a huge human effort:
● Code wrappers for each source, e.g., in Scrapy or MW’s source configurations
● Visually testing and support tool (ala Connotate, Mozenda, …)
● Automatic scraping for small number of fixed data types (ala Diffbot), e.g., Microdata
● Meltwater (old): ~50 “source engineers” maintaining manual wrappers

○ sources failing at a rate of 100’s per week, 1-2h to fix each source effectively

80-90% lower
human effort

10-100x
more sources

without loss in quality 
compared with 
state-of-the-art

and domains than existing 
automated solutions and 
affordable supervised one

3-10x more
attributes

e.g., 100k+ restaurant websites, 
300k+ news sources, 1M+ of 

company websites
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Data and Content Lake

Credit 
Ratings

Editorial

Patents 
& 

Trademarks
Gov Data

Job PostingsSocial Media

Company 
Websites

SEO Filings

Factual information: wherefrom?

Need to restrict the domain: focus on the corporate domain, i.e., companies, people, products, ...

EC2 cluster with 2.8k vCPU, 21TB RAM, 630TB SSD 
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Linguistic enrichments to support semantic retrieval and fact extraction

Summary:
● Scalable and distributed dynamic enrichment workflows 
● CRFs for NER, PageRank (variant) for NED, CNNs and LSTMs for 

Relation/Event extraction, sentiment analysis
● TensorFlow and GPUs for training infrastructure

Content 
Lake

NED Relation 
ExtractionNER

Coreference

DOM / TABLE / ANNO
(Wrapidity)

Facts

Enriched
Docs

Sentiment
Analysis

Event
Extraction

Data and Content Lake
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Enrichments
We can’t foresee all uses of our data: Developer APIs to Integrate and orchestrate third party tools.

Personalization is key in Data Science: A flexible data wrangling infrastructure is required.

ɾ Interoperate with 
state-of-the-art external 
enrichments

ɾ Chain multiple external 
enrichments

ɾ Train your own models!



Fa
ir

ha
ir

Connectors to Internal Systems
Goal is to join Outside Insights with Internal Data and workflows

Data Ingestion & Insights Delivery by setting up simple schema mappers
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Knowledge Graph
Wait… did you say PageRank, triples? So do you have a (Knowledge) Graph?

Challenges:
⭕ Data Cleaning
⭕ Data deduplication / integration
⭕ Truth Finding

Goals:
⭕ Relate facts
⭕ Data mining
⭕ Cognitive applications (higher-order reasoning) 

Content:
⭕ Companies
⭕ Brands
⭕ Products
⭕ Key people
⭕ Influencers
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Cognitive Applications
Infer high-level insights from a set of extracted events/facts.
⭕ Competitor
⭕ Customer
⭕ Investment
⭕ Lawsuit/Litigation
⭕ Partnership

Insight discovery:
⭕ Rule/Graph mining (data cleaning)

○ GPAR (VLDB ‘15)
○ RUDIK (internal, paper submitted)

⭕ Link prediction (data enrichment, fact checking)

○ Path Ranking Algorithms (PRA)
○ Probabilistic Soft Logic (PSL)
○ Snorkel (Stanford Collaboration)

⭕ Supplier
⭕ Acquisition
⭕ Out/under performance
⭕ Expanding Operations
⭕ Compliance

⭕ Funding Developments
⭕ Leadership Changes
⭕ New Offerings
⭕ Bankruptcy 
⭕ Restructuring, Cost Cutting
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Company Crawler

Wrapidity Pipelines & Router

Seed 
URL

Ontology: 
About, Team, Contact, 

…

Browser

Named Entity & 
Label Recognition

About

Name
Description

Social Handles

URLs (alt, RSS, …)

Image

Logo

Contact* (many)

Address
Phone, Fax, …
Social Handles

Type

Country

Attribute Finders

Person* (many)

Name
Description

Role

Link

Social Handles

Image

Validator

URL filter

with classifications 
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Company Crawler

Wrapidity Pipelines & Router

Seed 
URL

Ontology: 
About, Team, Contact, 

…

Browser

Named Entity & 
Label Recognition

About

Name
Description

Social Handles

URLs (alt, RSS, 
…)

Image
Logo

Contact* (many)

Address
Phone, Fax, …
Social Handles

Type
Country

Attribute Finders

Person* (many)

Name
Description

Role

Link

Social Handles
Image

Validator

S3 Storage

URL filter

with classifications from Rules, 
ML, & Ensemble

ADICT

Author
Date

Ingress
Content

Title

Entities 
(with NER/NED)

Social Handles

Organisations
People
Product

Press Release Induction

for 1M+ companies in the knowledge graph

Relations 
(with RE)

Acquisitions
Appointments

Product launches


