
Schema Evolution in Heterogeneous Database Architectures,

A Schema Transformation Approach

Paper P82

Peter Mc.Brien

Dept. of Computing, Imperial College,

180 Queen's Gate, London SW7 2BZ, pjm@doc.ic.ac.uk

Alexandra Poulovassilis

Dept. of Computer Science, Birkbeck College, University of London,

Malet Street, London WC1E 7HX, ap@dcs.bbk.ac.uk

Monday 27 th March 2000

Abstract

In previous work we have a developed general framework to support schema transforma-

tion and integration in heterogeneous database architectures. The framework consists of a

hypergraph-based common data model and a set of primitive schema transformations de�ned

for this model. Higher-level common data models and primitive schema transformations for

them can be de�ned in terms of this lower-level model. A key feature of the framework is

that both primitive and composite schema transformations are automatically reversible. We

have shown in earlier work how this allows automatic query translation from a global schema

to a set of source schemas. In this paper we show how our framework also readily supports

evolution of source schemas, allowing the global schema and the query translation pathways

to be easily repaired, as opposed to having to be regenerated, after changes to source schemas.

1 Introduction

Common to many methods for integrating heterogeneous data sources is the requirement for
logical integration [19, 9] of the data, due to variations in the design of data models for the
same universe of discourse. Logical integration requires that we are able to transform and integrate
a set of source schemas into a global schema, and to translate queries posed on the global schema
to queries posed on the source schemas. Our previous work [13, 14, 17, 15] has provided a general
formalism to underpin schema transformation and integration, and automatic translation of queries
posed on a global schema to queries posed on the source schemas. Our approach is applicable to
all three main database interoperation architectures [9]: federation, mediator and workow.
In this paper we consider the problem of evolving the global schema and repairing the query
translation pathways in the face of source schema evolution.

Current implementations of database interoperation, such as TSIMMIS [6], InterViso [20],
IM [12] and Garlic [18], are what may be termed query-oriented. They provide mechanisms
by which users de�ne global schema constructs as views over source schema constructs (or vice
versa in the case of IM) but do not focus on the semantics of the data sources. More recent
work on automatic wrapper generation [21, 7, 2, 8] and agent-based mediation [3] is also query-
oriented. In contrast, our approach is schema-oriented in that we provide mechanisms by which
the user speci�es transformations on schemas. These transformations are then used to automate
the translation of queries between global and source schemas.

Our approach has several advantages over the query-oriented one: (i) focusing the human
input to the integration process where it is most needed, namely on the semantics of the data

1

CoopIS00 Paper P82 2

sources, rather than on the more automatable query processing aspects; (ii) decomposing the
transformation/integration of schemas into a sequence of small steps by the provision of a set
of primitive transformations which can be incrementally composed into more complex ones; (iii)
using the transformation pathways between schemas to automatically translate queries posed on a
global schema to queries posed on a set of source schemas; and, as we will see below, (iv) enabling
the systematic repair of global schemas and global query translation in the face of evolving source
schemas.

Much of the work on schema evolution has presented approaches in terms of just one data
model e.g. ER [1], OO [4, 5] or workow [10]. In contrast, our approach of representing higher-
level data modelling languages in terms of an underlying hypergraph-based data model allows us
to propose in this paper a method which can be applied to any of the common data modelling
languages.

In [11] it was argued that a uniform approach to schema evolution and schema integration
is both desirable and possible. The higher-order logic SchemaLog was used to describe the re-
lationship between schemas, contrasting with our approach which uses a simple set of schema
transformation primitives augmented with `standard' �rst-order logic. A particular advantage of
our approach is that we clearly distinguish between equivalent and non-equivalent constructs in
di�erent schemas, and hence are able to distinguish between queries that can and cannot be trans-
lated between the two schemas. This ability to specify capacity-augmentations is also present in
the approach of [4], but this approach is speci�c to O2 and not readily transferable to other data
models.

The remainder of this paper is structured as follows. In Section 2 we review the hypergraph data
model (HDM) that underpins our approach and the primitive transformations on schemas de�ned
in this data model. We also present a concrete version of the framework that adopts a speci�c
query language (Datalog). In Section 3 we show how global schemas and global query translation
can be repaired in the face of source schema evolution, considering in particular the evolution of a
source schema into a semantically equivalent, semantically contracted or or semantically expanded
schema. In Section 4 we show how the same approach applies to the repair of global schemas de�ned
using higher-level modelling languages than the HDM. Section 5 gives our concluding remarks and
directions for further work.

2 The Schema Transformation/Integration Framework

2.1 Review of our previous work

A schema in the hypergraph data model (HDM) is a triple hNodes; Edges; Constraintsi. A
query q over a schema S = hNodes; Edges; Constraintsi is an expression whose variables are
members of Nodes [Edges1. Nodes and Edges de�ne a labelled, directed, nested hypergraph.
It is \nested" in the sense that edges may link any number of both nodes and other edges (this
facility is needed in order to support higher-level constructs such as composite attributes and
attributes on relations [17]). It is a directed hypergraph because edges link sequences of nodes or
edges. Constraints is a set of boolean-valued queries over S. Nodes are uniquely identi�ed by
their names. Edges and constraints have an optional name associated with them.

An instance I of a schema S = hNodes; Edges; Constraintsi is a set of sets satisfying the
following:

(i) each construct c 2 Nodes[Edges has an extent, denoted by ExtS;I(c), that can be derived
from I ; 2

(ii) conversely, each set in I can be derived from the set of extents fExtS;I(c) j c 2 Nodes [
Edgesg;

1Since this is a framework, the query language is not a speci�c one.
2Again, the language in which this derivation is de�ned, and also that in point (ii), is not �xed by our framework.

CoopIS00 Paper P82 3

(iii) for each e 2 Edge, ExtS;I(e) contains only values that appear within the extents of the
constructs linked by e (domain integrity);

(iv) the value of every constraint c 2 Constraints is true, the value of a query q being given by
q[c1=ExtS;I(c1); : : : ; cn=ExtS;I(cn)] where c1; : : : ; cn are the constructs in Nodes [Edges.

A model is a triple hS; I; ExtS;Ii. Two schemas are equivalent if they have the same set of
instances. Given a condition f , a schema S conditionally subsumes a schema S0 w.r.t. f if
any instance of S0 satisfying f is also an instance of S. Two schemas S and S0 are conditionally
equivalent w.r.t f if they each conditionally subsume each other w.r.t. f .

We now list the primitive transformations of the HDM. Each transformation is a function that
when applied to a model returns a new model. Each transformation has a proviso associated with
it which states when the transformation is successful. Unsuccessful transformations return an
\unde�ned" model, denoted by �. Any transformation applied to � returns �:

1. renameNode hfromName; toNamei renames a node. Proviso: toName is not already the
name of some node.

2. renameEdge hhfromName; c1; : : : ; cmi; toNamei renames an edge. Proviso: toName is not
already the name of some edge.

3. addCons c adds a new constraint c. Proviso: c evaluates to true.

4. delCons c deletes a constraint. Proviso: c exists.

5. addNode hname; qi adds a node named name whose extent is given by the value of the query
q. Proviso: a node of that name does not already exist.

6. delNode hname; qi deletes a node. Here, q is a query that states how the extent of the
deleted node could be recovered from the extents of the remaining schema constructs (thus,
not violating property (ii) of an instance). Proviso: the node exists and participates in no
edges.

7. addEdge hhname; c1; : : : ; cmi; qi adds a new edge between a sequence of existing schema
constructs c1; : : : ; cm. The extent of the edge is given by the value of the query q. Proviso:
the edge does not already exist, c1; : : : ; cm exist, and q satis�es the appropriate domain
constraints.

8. delEdge hhname; c1; : : : ; cmi; qi deletes an edge. q states how the extent of the deleted edge
could be recovered from the extents of the remaining schema constructs. Proviso: the edge
exists and participates in no edges.

For each of these transformations, there is a also 3-ary version which takes as an extra argument
a condition which must be satis�ed in order for the transformation to be successful. A key point
to note is that the query q in transformations 5 and 7 ensures that the construct being added
is semantically redundant by stating how it can be derived from the other schema constructs.
Similarly, the query q in transformations 6 and 8 ensures that the construct being deleted is
semantically redundant.

A composite transformation is a sequence of n � 1 primitive transformations. A transfor-
mation t is schema-dependent (s-d) w.r.t. a schema S if t does not return � for any model of
S, otherwise t is instance-dependent (i-d) w.r.t. S. It is easy to see that if a schema S can be
transformed to a schema S0 by means of a s-d transformation, and vice versa, then S and S0 are
equivalent. If S can be transformed to S0 by means of an i-d transformation with proviso f , and
vice versa, then S and S0 are conditionally equivalent w.r.t f .

We �rst developed these de�nitions of schemas, instances, and schema equivalence in the
context of an ER common data model, in [13, 14]. A detailed comparison with other approaches
to schema equivalence and schema transformation can be found in [14]. The Hypergraph Data
Model and the primitive transformations for it were �rst introduced in [17] where we showed how

CoopIS00 Paper P82 4

higher-level modelling languages and schema transformations for them can be de�ned in terms of
this lower-level HDM.

In [16] we developed a generic method for de�ning the semantics of higher-level modelling
languages in terms of the HDM, showing how the set of primitive schema transformations for such
higher-level modelling languages can then be automatically derived. These transformations can
be used to map between schemas expressed in the same or di�erent modelling languages. The
unifying underlying HDM allows constructs from di�erent modelling languages to be mixed within
the same schema, and it is also possible to de�ne \inter-model" links between such constructs.
This is particularly useful in integration situations where there is not a single common data model
that can fully represent the constructs of all the data sources.

In [15] we developed a second distinguishing feature of our framework, namely that schema
transformations de�ned on the HDM, or on higher-level constructs de�ned in terms of it, are auto-
matically reversible. In particular, for every primitive transformation t such that t(hS; I; ExtS;Ii) 6=
� there exists a transformation t such that t(t(hS; I; ExtS;Ii)) = hS; I; ExtS;Ii, as shown below.
Notice that if t depends on a condition c, since t is successful c must necessarily hold and so need
not be veri�ed within t:

Transformation (t) Reverse Transformation (t)
renameNode hfrom; toi c renameNode hto; fromi
renameEdge hhfrom; schemesi; toi c renameEdge hhto; schemesi; fromi
addCons q c delCons q
delCons q c addCons q
addNode hn; qi c delNode hn; qi
delNode hn; qi c addNode hn; qi
addEdge he; qi c delEdge he; qi
delEdge he; qi c addEdge he; qi

In [15] we de�ned four more low-level transformations in order to also allow transformations
between overlapping schemas rather than just between equivalent schemas e.g. between a source
schema and a global schema. These new transformations are de�ned in terms of the existing
transformations as follows, where for extend transformations a VOID query indicates that the new
construct cannot be derived from the existing schema constructs while for contract transformations
a VOID query similarly indicates that the removed construct cannot be derived from the remaining
schema constructs:

extendNode n = addNode hn;VOIDi extendEdge e = addEdge he;VOIDi
contractNode n = delNode hn;VOIDi contractEdge e = delEdge he;VOIDi

The reversibility of primitive transformations generalises to any successful composite transfor-
mation: for any such composite transformation T = t1; : : : ; tn its reverse composite transformation
is T = tn; : : : ; t1. Thus, our schema transformations set up a two-way transformation pathway be-
tween pairs of schemas. In [15] we show how these pathways can be used to automatically translate
queries in either direction between a pair of semantically equivalent or overlapping schemas. In
particular, if S1 is transformed to S2 by a single primitive transformation, the only cases we need
to consider in order to translate a query q1 posed on S1 to an equivalent query q2 posed on S2
are to apply renamings and to substitute occurrences of a deleted node or edge by their restoring
query:

renameNode hfrom; toi : q2 = [from=to]q1
renameEdge hhfrom; schemesi; toi : q2 = [hfrom; schemsi=hto; schemesi]q1
delNode hn; qi : q2 = [n=q]q1
delEdge he; qi : q2 = [e=q]q1

For composite transformations, these substitutions are successively applied in order to obtain the
�nal translated query q2.

CoopIS00 Paper P82 5

man?

works in

has part of

sta�

skill

mval

dept

division

(a) S1: sta� skills

within

part of

located
at

manager(X)
!

sta�(X)

sta�

site

manager

dept

division

(b) S2: sta� locations

has

works in

part of

located
at

manager(X)
!

sta�(X)

sta�

site

skill manager

dept

division

(c) S: global schema, in-
tegration of S1 and S2

Figure 1: Two HDM source schemas, and a global schema

2.2 A Concrete Schema Transformation/Integration Language

In order to illustrate the schema transformation/integration framework reviewed above, and to
more easily illustrate our approach to handing schema evolution later in the paper, henceforth we
will use a concrete version of the framework which assumes that all schemas are expressed at the
low level of the HDM and that all queries and constraints are expressed in Datalog. We illustrate
this concrete schema transformation/integration language by means of two examples below which
show how it can be used to transform and integrate source schemas into a global schema, and how
query translation between the global schema and the source schemas is automatically supported.

Our examples use the source schemas S1 and S2 and the global schema S illustrated in Fig-
ure 1. S1 contains information about sta� and whether or not they are of manager grade, skills,
departments and divisions. (The node mval has a two-valued extent ftrue,falseg. Instances of sta�
who are managers are linked to true by an instance of man? while other sta� are linked to false.)
S2 contains information about sta�, managers (who are constrained to be a sub-class of people by
the Datalog rule manager(X) ! sta�(X)), departments, divisions, and sites. S is an integration of
this information, with within of S2 having been renamed to works in, and the class manager of S2
being used rather than the attribute mval of S1.

Example 2.1 Building the global schema

S1 and S2 are transformed into S by the two composite transformations listed below. We
have labelled the primitive transformation steps of these transformations as we will be referring
to them later in the paper. In step 1, the statement manager(X) ` man?(X,true) states how to
populate the extent of the new node manager from the extents of the existing schema constructs
(indicating that manager adds no new information to the schema). In particular, the extent of
manager is populated by those instances of sta� which are linked to the value true of mval by an
instance of man?. In step 3, the statement sta�#man?#mval identi�es the edge being deleted
and the statement man?(X,Y) ` manager(X),Y=true; sta�(X),not manager(X),Y=false states how
the extent of the deleted edge man? can be recovered from the remaining schema constructs
(indicating that man? is a redundant construct). In particular, an instance (m,true) is created for
each manager m and an instance (s,false) is created for each sta� member s who is not a manager.

CoopIS00 Paper P82 6

In step 4, the statement mval(X) ` X=true;X=false states how the extent of the deleted node mval
can be recovered, in this case by a simple enumeration of its two values. The rest of the syntax is
straight-forward.

transformation S1!S
begin

1 addNode manager(X) ` man?(X,true)
2 addCons (manager(X) ! sta�(X))
3 delEdge sta�#man?#mval man?(X,Y) ` manager(X),Y=true; sta�(X),not manager(X),Y=false
4 delNode mval(X) ` X=true;X=false
5 extendNode site
6 extendEdge division#located at#site
end

transformation S2!S
begin

7 renameEdge within works in
8 extendNode skill
9 extendEdge sta�#has#skill
end

The reverse transformations from S to S1 and from S to S2 are automatically derivable from
the above two transformations, as discussed in Section 2.1, and are as follows:

transformation S!S1
begin

6 contractEdge division#located at#site

5 contractNode site

4 addNode mval(X) ` X=true;X=false

3 addEdge sta�#man?#mval man?(X,Y) ` manager(X),Y=true; sta�(X),not manager(X),Y=false

2 delCons (manager(X) ! sta�(X))

1 delNode manager(X) ` man?(X,true)
end

transformation S!S2
begin

9 contractEdge sta�#has#skill

8 contractNode skill

7 renameEdge works in within
end

2

Example 2.2 Query translation

The transformations S ! S1 and S ! S2 can be used to automatically translate queries posed
on S to queries over S1 and S2. For example, the following query on S asks for the sta�, skills,
departments and divisions of all sta� based in London:

has(X,Y), works in(X,V), part of(V,W), located at(W,'London')

The translation of each conjunct of this query onto S1 and S2 is shown below, together with the
transformation step, if any, which is signi�cant. Notice that the �rst conjunct can be answered
from S1 only, the fourth conjunct from S2 only, and the other two conjuncts from both source
schemas.

CoopIS00 Paper P82 7

S1 S0

i Si Sn

S

T1
3
T 0

i

�
Ti
K

Tn
k

t�

Figure 2: Evolution of a source schema Si

Translation has(X,Y) , works in(X,V) , part of(V,W) , VOID

to S1 " " " " " " " 6

Global query has(X,Y) , works in(X,V) , part of(V,W) , located at(W,'London')

Translation # 9 # # 7 # # # #

to S2 VOID , within(X,V) , part of(V,W) , located at(W,'London')

We may use this translation to build the global query plan listed below, where the construct
ask(SchemaList,Q) means that query Q can be executed on any of the schemas in SchemaList:

ask([S1],has(X,Y)),
(ask([S1],works in(X,V));ask([S2],within(X,V))),
ask([S1,S2],part of(V,W)),
ask([S2],located at(W,'London'))

2

3 Handling Evolution of Source Schemas

We now consider how global schemas can be repaired (as opposed to regenerated) in order to reect
changes in source schemas, and how query translation operates over the repaired global schema.
Although our examples assume HDM schemas and Datalog queries/constraints, our treatment is
fully general and applies to higher-level schema constructs and other query formalisms. We will
see this in Section 4 where this is discussed further.

Let us suppose then that there are n source schemas S1, ..., Sn which have been transformed
and integrated into a global schema S. There are thus available n transformations T1 : S1 ! S,
..., Tn : Sn ! S. From these, the reverse transformations T1 : S ! S1, ..., Tn : S ! Sn are
automatically derivable and can be used to translate queries posed on S to queries on S1; :::; Sn.

The source schema evolution problem that we consider is illustrated in Figure 2 and is as
follows: if some source schema Si evolves, to S0

i say, how should S be repaired to reect this
change and how should queries on the repaired S now be translated in order to operate on S0

i

rather than on Si ?
Without loss of generality, we need to consider only changes on Si that consist of a single

primitive transformation step, since changes that are composite transformations can be handled
as a sequence of primitive transformations. There are three classes of primitive transformations
to consider:

� those that result in a new schema S0

i which is equivalent Si,

� those where S0

i is a contraction of Si, and

� those where S0

i is an extension of Si.

CoopIS00 Paper P82 8

In each of these cases, suppose that Si is transformed to S0

i by the application of a primitive
transformation t. Then we can automatically derive a new transformation pathway T 0

i from S0

i to
S to be

T 0

i = t;Ti

and a new transformation pathway T 0

i from S to S0

i to be

T 0

i = Ti; t

As we will see in the rest of this section, if t is an equivalence-preserving transformation, we are
done, apart from perhaps some simpli�cation of the resulting T 0

i and T 0

i . However, in the case of
contractions and extensions some more work needs to be done.

3.1 Equivalence-preserving transformations

Suppose that t is an equivalence-preserving transformation, so that S0

i is equivalent to Si. Then
T 0

i and T 0

i as de�ned above provide a new automatic translation pathway between S and the new
source schema S0

i.

Example 3.1

Suppose that it has been decided to evolve schema S1 in Figure 1 to a new equivalent schema
Sa1 which models the notion of a manager in the same way as S2 (see Figure 3(a)). This can be
achieved by the following composite transformation:

transformation S1!Sa
1

begin

10 addNode manager(X) ` man?(X,true)
11 addCons (manager(X) ! sta�(X))
12 delEdge sta�#man?#mval man?(X,Y) ` manager(X),Y=true; sta�(X),not manager(X),Y=false
13 delNode mval(X) ` X=true;X=false
end

The reverse transformation from Sa
1
to S1 can be derived to be:

transformation Sa
1
!S1

begin

13 addNode mval(X) ` X=true;X=false

12 addEdge sta�#man?#mval man?(X,Y) ` manager(X),Y=true; sta�(X),not manager(X),Y=false

11 delCons (manager(X) ! sta�(X))

10 delNode manager(X) ` man?(X,true)
end

The new transformation from Sa
1
to S is obtained by pre�xing the transformation steps 13-10

to the transformation S1 ! S of Example 2.1:

transformation Sa
1
!S

begin

13 addNode mval(X) ` X=true;X=false

12 addEdge sta�#man?#mval man?(X,Y) ` manager(X),Y=true; sta�(X),not manager(X),Y=false

11 delCons (manager(X) ! sta�(X))

10 delNode manager(X) ` man?(X,true)
1 addNode manager(X) ` man?(X,true)
2 addCons (manager(X) ! sta�(X))
3 delEdge sta�#man?#mval man?(X,Y) ` manager(X),Y=true; sta�(X),not manager(X),Y=false

CoopIS00 Paper P82 9

works in

has part of

manager(X)
!

sta�(X)

sta�

skill

manager

dept

division

(a) Sa
1

has

manager(X)
!

sta�(X)

sta�

skill

manager

division

(b) Sb
1

located
at

manager(X)
!

sta�(X)

sta�

site

manager

division

(c) Sa
2

Figure 3: Evolution of source schemas

4 delNode mval(X) ` X=true;X=false
5 extendNode site
6 extendEdge division#located at#site
end

Conversely, the new transformation from S to Sa
1
is obtained by appending the transformation

steps 10-13 to the transformation S ! S1 of Example 2.1:

transformation S!Sa1
begin

6 contractEdge division#located at#site

5 contractNode site

4 addNode mval(X) ` X=true;X=false

3 addEdge sta�#man?#mval man?(X,Y) ` manager(X),Y=true; sta�(X),not manager(X),Y=false

2 delCons (manager(X) ! sta�(X))

1 delNode manager(X) ` man?(X,true)
10 addNode manager(X) ` man?(X,true)
11 addCons (manager(X) ! sta�(X))
12 delEdge sta�#man?#mval man?(X,Y) ` manager(X),Y=true; sta�(X),not manager(X),Y=false
13 delNode mval(X) ` X=true;X=false
end

This new transformation can now be used to automatically translate queries posed on S to
queries on Sa

1
rather than on S1.

2

3.2 Removing redundant transformation steps

In composite transformations such as those above there may be pairs of primitive transformation
steps which are inverses of each other and which can be removed without altering the overall e�ect

CoopIS00 Paper P82 10

of the transformation. In particular, a composite transformation

T ; t;T 0; t;T 00

where T; T 0; T 00 are arbitrary sequences of primitive transformations, t is primitive transformation
and t is its inverse, can be simpli�ed to

T ;T 0;T 00

provided that there are no references within T 0 to the construct being renamed, added or deleted
by t.

For example, in the transformation Sa
1
! S, steps 10 and 1 can be removed, followed by 11

and 2, followed by 12 and 3, followed by 13 and 4, obtaining the following expected simpli�ed
transformation:

transformation Sa
1
!S

begin

5 extendNode site
6 extendEdge division#located at#site
end

Similarly, in the transformation S ! Sa
1
, steps 1 and 10 can be removed, followed by 2

and 11, followed by 3 and 12, followed by 4 and 13, obtaining the following expected simpli�ed
transformation:

transformation S!Sa
1

begin

6 contractEdge division#located at#site

5 contractNode site
end

3.3 Contraction transformations

Suppose Si is transformed to S0

i by a primitive transformation t of the form contract c. The new
transformation pathway from S to S0

i is Ti; contract c. Any sub-queries over S that translate to
sub-queries involving construct c of Si will now correctly be replaced by the value VOID over S0

i.
However, after a series of contractions on source schemas, the global schema S may eventually

contain constructs that are no longer supported by any source schema. How can S be repaired so
that it no longer contains such unsupported constructs ? One way is by dynamic repair during
query processing: if a sub-query posed on a construct of S returns VOID for all possible local
sub-queries, then that construct can be removed from S. Note that if this construct is a node,
removal of the node from S must be preceded by removal from S of any edges that it participates
in.

Another way to repair S if it contains constructs that are no longer supported by any source
schema is by static repair. With this approach, we can �rst use Ti to trace how the removed
construct c of Si is represented in S | call this global representation global(c). We can then use
the transformations Tj j 6= i to trace how global(c) is represented in all the other source schemas
Sj , j 6= i. If all of these source constructs have VOID extents, then we can remove global(c) from
S (again taking care to precede the removal of a node by removal of any edges that it participates
in).

Example 3.2 illustrates how the removal of a construct from one source schema may still
allow the construct to be derived from another source schema, or may require the removal of the
construct from the global schema.

Example 3.2 Contractions of source schemas

CoopIS00 Paper P82 11

Suppose the owner of schema Sa
1
has decided not to export information about departments.

We can derive the schema Sb1 illustrated in Figure 3(b) from Sa1 as follows:

transformation Sa
1
!Sb

1

begin

14 contractEdge sta�#works in#dept
15 contractEdge dept#part of#division
16 contractNode dept
end

Adopting a static repair approach to repairing S, if necessary, we would check the transforma-
tion paths of the contracted constructs dept, works in and part of from S to Sb1 and S2, and would
discover that all of them still map to a non-VOID extent in S2. Thus, S would not be changed.

Adopting a dynamic repair approach, attempting to pose on Sb
1
queries over the dept, works in

or part of constructs gives a VOID result. However, such query fragments can still be posed on S2
(see for example the query in Example 2.2) and so S is not changed.

Suppose now that S2 is also transformed in a similar manner, resulting in Sa
2
illustrated in

Figure 3(c):

transformation S2!Sa
2

begin

17 contractEdge sta�#within#dept
18 contractEdge dept#part of#division
19 contractNode dept
end

At this stage the transformations from S to Sb
1
and Sa

2
are as follows (the reverse transforma-

tions are straight-forward so we don't list them):

transformation S!Sb
1

begin

6 contractEdge division#located at#site

5 contractNode site
14 contractEdge sta�#works in#dept
15 contractEdge dept#part of#division
16 contractNode dept
end

transformation S!Sa
2

begin

9 contractEdge sta�#has#skill

8 contractNode skill

7 renameEdge works in within
17 contractEdge sta�#within#dept
18 contractEdge dept#part of#division
19 contractNode dept
end

Adopting a static repair approach we would again check the transformation paths of the con-
tracted constructs dept, works in and part of from S to Sb1 and Sa2 . In this case we see that all three
of them map to a VOID extent in both source schemas. We can thus remove these constructs from
S, obtaining the schema Sa illustrated in Figure 4. We also need to remove the corresponding
contract steps, and any prior renamings of these constructs, from the transformations from Sa

to the source schemas Sb
1
and Sa

2
(we similarly remove the corresponding extend steps from the

CoopIS00 Paper P82 12

has

employed by

located
at

manager(X)
!

sta�(X)

sta�

site

skill manager

division

(a) Sa

has

employed by

located
at

gender

manager(X)
!

sta�(X)

sta�

site

skill manager

division

sex

(b) Sb

Figure 4: Evolution of global schemas

reverse transformations).
With a dynamic repair approach we would instead wait until a query such as that of Exam-

ple 2.2 is asked, �nd that some fragments of it translate to VOID on all source schemas, and remove
those corresponding constructs from S and from the transformation pathways between it and the
source schemas.

With both approaches, the resulting transformations from Sa to Sb
1
and Sa

2
are:

transformation Sa!Sb1
begin

6 contractEdge division#located at#site

5 contractNode site
end

transformation Sa!Sa2
begin

9 contractEdge sta�#has#skill

8 contractNode skill
end

2

Notice that it is not actually wrong in our framework for a construct from a global schema
to map to a VOID extent in all source schemas (for example, a new source schema may later be
added that does support an extent for this construct, and this is likely to be a common situation
in mediator architectures). Sub-queries over such constructs merely translate to VOID. So the
repair steps we have described above are simply a matter of \tidying up" the global schema and
are optional.

3.4 Extension transformations

Suppose Si is transformed to S0

i by a primitive transformation t of the form extend c, meaning
that a new construct c is now supported by S0

i that is not derivable from Si. Naively, the new

CoopIS00 Paper P82 13

transformation pathway from S to S0

i is Ti; extend c. However, this may be incorrect and there
are generally four cases that we need to be consider:

1. The construct c does not appear in S but can be derived from existing constructs of S by
some transformation T .

In this case, S is transformed to a new global schema S0 that contains c by appending T to
the transformation from each local schema to the original S. The transformation pathway
from S0 to S0

i then simpli�es to just Ti i.e. T and extend c are inverses of each other and
can be removed.

2. c does not appear in S and cannot be derived from the existing constructs of S.

In this case, S is transformed to a new global schema S0 that contains c by appending the
step extend c to the transformation from each local schema to the original S. The reverse
transformation from S0 to S0

i thus consists of an initial contract c step. This matches up
with the newly appended extend c step. This pair of steps should be removed in order for
the new extent of c in S0

i to be usable by queries posed on S0.

3. c already appears in S and has the same semantics as the newly added c in S0

i.

In this case there must be a transformation step contract c in the original transformation
from S to Si. This matches up with the newly appended extend c in the transformation
from S to S0

i. This pair of steps should be removed in order for the new extent of c in S0

i to
be usable by queries posed on S.

4. c already appears in S but has di�erent semantics to the newly added c in S0

i.

In this case there must again be a transformation step contract c in the original trans-
formation from S to Si. Now, the new construct c in S0

i needs to be renamed to some
name that does not appear in S, c0, say. The resulting transformation from S to S0

i is
Ti; extend c0; rename c0c, and the situation reverts to case 2 above.

Notice that, by analogy to our remark at the end of Section 3.3 that it is not compulsory
to repair the global schema after a series of contractions have left a global schema construct
unsupported by any source schema, it is similarly not compulsory to extend the global schema
after a new construct is added to a source schema in cases 2 and 4 above. If this is the choice,
then the extend c step is not appended to the transformations from the source schemas to the
global schema, and the �nal extend c step remains in the transformation from S to S0

i.

Example 3.3 Extensions of source schemas

Suppose that the owner of Sa
2
has decided to extend it with information about sta� members'

skills and their sex. This can be achieved by the following transformation:

transformation Sa
2
!Sb

2

begin

20 extendNode skill
21 extendEdge sta�#has#skill
22 extendNode sex
23 extendEdge sta�#gender#sex
end

Comparing Sb
2
with Sa, we see that the constructs introduced by 20 and 21 already appear in

Sa. Thus for these two constructs we need to choose between cases 3 and 4 above. Let us suppose
that both constructs have the same semantics in Sa and Sb

2
, so that case 3 holds. Examining the

transformations Sa ! Sa
2
and Sa

2
! Sb

2
, we eliminate the redundant pair 8 and 20 , and the

redundant pair 9 and 21 . This results in the following transformation from Sa to Sb2:

CoopIS00 Paper P82 14

transformation Sa!Sb
2

begin

22 extendNode sex
23 extendEdge sta�#gender#sex
end

Suppose now that the constructs introduced by 22 and 23 are entirely new ones, so that case
2 above applies. We can extend Sa to Sb using these same two extend steps. We then remove the
two redundant contract/extend pairs from the transformation from Sb to Sb2, giving the expected
identity transformation from Sb2 and Sb.

2

3.5 Handling derived source schema constructs

So far we have considered only extensional schema constructs in the source schemas. However,
source schemas may also contain intentional constructs. For example, let us return to the orig-
inal schemas of Figure 1 and suppose S1 evolves to include a derived edge employed by which is
populated by the join of works in and dept:

addEdge sta�#employed by#division employed by(X,Z) ` works in(X,Y),part of(Y,Z)
If we now attempted to apply the contractions of steps 14 - 16 in Example 3.2, this would

leave us with no way of populating the extent of the derived edge. Thus, generally contracting a
source schema construct that some other intensional construct depends on is not permitted.

If we want to make the above change to S1 then the add step should be expressed as an extend
step, indicating that employed by is a new extensional construct. The overall transformation is as
follows (its reverse S0

1
! S1 is straightforwardly derived):

transformation S1!S0

1

begin

24 extendEdge sta�#employed by#division
25 contractEdge sta�#works in#dept
26 contractEdge dept#part of#division
27 contractNode dept
end

The overall transformation from the global schema S to the new source schema S0

1
is as follows

(its reverse S0

1 ! S is again straightforwardly derived):

transformation S!S0

1

begin

6 contractEdge division#located at#site

5 contractNode site

4 addNode mval(X) ` X=true;X=false

3 addEdge sta�#man?#mval man?(X,Y) ` manager(X),Y=true; sta�(X),not manager(X),Y=false

2 delCons (manager(X) ! sta�(X))

1 delNode manager(X) ` man?(X,true)
24 extendEdge sta�#employed by#division
25 contractEdge sta�#works in#dept
26 contractEdge dept#part of#division
27 contractNode dept
end

We can now apply the treatment of Sections 3.3 and 3.4 to repair the global schema S. Firstly
comparing S0

1
with S we determine that although employed by does not appear in S it can be

CoopIS00 Paper P82 15

SHDM

A

E

B

Srel

E(A,B)

E.A ! E.B

Suml

E

A
B

Ser

E
A
B

Figure 5: Multiple models based on the HDM

derived from the works in and part of constructs of S i.e. case 1 of Section 3.4 pertains. We thus
convert S to a new global schema S0 by appending the step

addEdge sta�#employed by#division employed by(X,Z) ` works in(X,Y),part of(Y,Z)
to the transformations S0

1
! S and S2 ! S, and pre�xing the reverse step

delEdge sta�#employed by#division employed by(X,Z) ` works in(X,Y),part of(Y,Z)
to the transformations S0 ! S0

1
and S0 ! S2. This results in an inverse pair of delete/extend

steps in the transformation S0 ! S0

1
(and similarly of add/contract steps in S0

1
! S) which can

be removed, giving:

transformation S0!S0

1

begin

6 contractEdge division#located at#site

5 contractNode site

4 addNode mval(X) ` X=true;X=false

3 addEdge sta�#man?#mval man?(X,Y) ` manager(X),Y=true; sta�(X),not manager(X),Y=false

2 delCons (manager(X) ! sta�(X))

1 delNode manager(X) ` man?(X,true)
25 contractEdge sta�#works in#dept
26 contractEdge dept#part of#division
27 contractNode dept
end

We can now handle the last three contraction steps 25 -27 as in Section 3.3.

4 Schemas using Higher Level Modelling Constructs

In [16] we showed how higher-level modelling languages can be expressed using the low-level
constructs of the HDM. This is illustrated in Figure 5 which shows three higher-level schemas
and an HDM schema. The constructs of the three higher-level modelling languages (ER, UML
and relational) are represented by nodes and edges in the underlying HDM. All three higher-level
schemas illustrated have a common HDM representation as the graph with three nodes and two
edges shown in SHDM . There is also an (unillustrated) constraint in Suml and in SHDM which
captures the fact that each instance of A is associated with at most one instance of E.

In [16] we showed how that once a construct c in a higher level modelling language L has
been de�ned as a set of constructs c1; : : : ; cn in the HDM, then add, del and rename primitive
transformations on c can be automatically derived as sequences of primitive HDM transforma-
tions on c1; : : : ; cn. In particular, we show how primitive transformations for UML schemas such

CoopIS00 Paper P82 16

skill
mval

sta� dept

division

works in

part of

(a) U1: UML version of S1

skill

sta�

manager

dept

division

works in

part of

(b) Ua
1
: UML version of Sa

1

skill
sta�

manager division

(c) Ub
1
: UML version of Sb

1

skill
sta�

manager

dept

site
division

works in

part of

(d) U : UML version of S

Figure 6: Transformations on UML class diagrams

as addClass, delClass, addAttribute, delAttribute, addAssociation, delAssociation, addGeneralisa-
tion, delGeneralisation, are de�ned in terms of the lower-level primitive transformations on HDM
schemas presented in Section 2.1. We now illustrate how this technique can be applied to the
schema evolution methodology described in this paper.

Figure 6(a) illustrates a UML class diagram U1 which is semantically equivalent to the HDM
schema S1 of Figure 1(a). We have represented sta�, dept and division as UML classes, and mval
and skill as attributes of sta�. The works in and part of are relationships are represented as UML
associations.

Figure 6(d) illustrates a UML class diagram U which is semantically equivalent to the HDM
schema S of Figure 1(c). manager is represented as a UML class and the generalisation hierarchy
between sta� and manager is the counterpart of the constraint manager(X) ! sta�(X) in S.

Transforming U1 to U may be achieved by the following steps:

transformation U1!U
begin

CoopIS00 Paper P82 17

U1 addClass manager(X) ` sta�#mval(X,true)
U2 addGeneralisation sta�#manager
U3 delAttribute sta�#mval(X,Y) ` manager(X),Y=true; sta�(X),not manager(X),Y=false
U4 extendAttribute division#site
end

Note that each of the steps in U1 ! U may be equated with one or more of the steps in
S1 ! S. In particular, U1 adding UML class manager is equivalent to 1 (adding the manager
node), U2 adding the UML generalisation is equivalent to 2 (adding a constraint), U3 deleting
a UML attribute is equivalent to 3 and 4 (deleting an edge and node), and U4 extending the
UML schema with an attribute is equivalent to 5 and 6 (extending the HDM schema with a
node and an edge).

Figure 6(b) illustrates a schema Ua
1
which is semantically equivalent to Sa

1
. The following is an

equivalence-preserving transformation from U1 to U
a
1 (again, we may draw an equivalence between

the steps in this transformation with those in S1 ! Sa
1
):

transformation U1!Ua
1

begin

U5 addClass manager(X) ` sta�#mval(X,true)
U6 addGeneralisation sta�#manager
U7 delAttribute sta�#mval(X,Y) ` manager(X),Y=true; sta�(X),not manager(X),Y=false
end

Since all UML schema transformations are equivalent to some HDM schema transformation,
our analysis from Section 3 can be applied to the evolution of source schemas expressed in UML. For
example, since U1 ! Ua

1
is an equivalence-preserving transformation, then the steps of U1 ! Ua

1

allow any query on U that used to execute on U1 to instead execute on Ua
1 using the transformation

pathway U ! U1;U1 ! Ua
1
:

transformation U!Ua
1

begin

U4 contractAttribute division#site

U3 addAttribute sta�#mval(X,Y) ` manager(X),Y=true; sta�(X),not manager(X),Y=false

U2 delGeneralisation sta�#manager

U1 delClass manager(X) ` sta�#mval(X,true)
U5 addClass manager(X) ` sta�#mval(X,true)
U6 addGeneralisation sta�#manager
U7 delAttribute sta�#mval(X,Y) ` manager(X),Y=true; sta�(X),not manager(X),Y=false
end

Applying the removal of redundant pairs of transformations in Section 3.2 to the higher-level
of UML level simpli�es this to:

transformation U!Ua
1

begin

U4 contractAttribute division#site
end

Our analysis of contraction and extension of HDM source schemas can also be applied to the
UML level in the obvious way. For example, the following UML contraction transformation from
Ua
1
to U b

1
is equivalent to the HDM contraction transformation Sa

1
! Sb

1
:

transformation Ua
1!U b

1

begin

U8 contractAssociation works in

CoopIS00 Paper P82 18

U9 contractAssociation part of
U10 contractClass dept
end

Thus, after we have performed Ua
1
! U b

1
, we have the same analysis as in Section 3.3 where

dept, works in and part of in U will map to VOID in U b
1 , but still map to an non-VOID extent in

U2 (the unillustrated UML equivalent of S2).
The remaining examples of Sections 3.3 and 3.4 transfer to the higher-level of UML in a similar

straightforward way.

5 Summary and Conclusions

In this paper we have shown how our framework for schema transformation can provide a compre-
hensive uniform approach to handling both schema integration and schema evolution in hetero-
geneous database architectures. Source schemas are integrated into a global schema by applying
a sequence of primitive transformations to them. The evolution of a source schema into a new
schema can be described using the same set of primitive transformations. The transformations
between the source schemas and the global schema can be used to systematically repair the global
schema and the global query translation pathways after changes to source schemas.

Our framework is based on a low-level hypergraph-based data model (HDM) whose primitive
constructs are nodes, edges and constraints. In previous work we have shown how the HDM
supports the representation of a wide range of higher-level data modelling languages [16] and how
use of our set of primitive schema transformations enables automatic query translation between
semantically equivalent or overlapping schemas [15].

Our use of the relatively simple HDM means that our approach to schema evolution is straight-
forward to analyse, but is also applicable to real-world modelling situations using more complex
data models for database schemas. Moreover, our use of the HDM as a common underlying rep-
resentation permits transformations to be de�ned which derive constructs of one data modelling
language from constructs of another data modelling language [16]. This means that we can inte-
grate and evolve source schemas that are expressed in di�erent data modelling languages without
�rst having to translate them into one common data model. For example, an administrator of
a relational database may specify the evolution of that database's schema using the primitive
schema transformations of the relational model even if that source schema was transformed into
a UML global schema.

For future work we plan to extend our schema transformation/integration framework to handle
dynamic aspects of databases such as ECA rules, in addition to static aspects. The condition
and action parts of ECA rules are relatively straightforward to transform (barring for the usual
problems of view updates). However, the translation of the event part of ECA rules, and the
interaction between translated actions and translated events, needs more careful study.

References

[1] J. Andany, M. Leonard, and C. Palisser. Management of schema evolution in databases. In
Proceedings of VLDB'91. Morgan-Kaufman.

[2] N. Ashish and C.A. Knoblock. Wrapper generation for semi-structured internet sources.
SIGMOD Record, 26(4):8{15, December 1997.

[3] R.J. Bayardo et al. InfoSleuth: Agent-based semantic integration of information in open and
dynamic environments. SIGMOD Record, 26(2):195{206, June 1997.

[4] Z. Bellahsene. View mechanism for schema evolution in object-oriented dbms. In Advances in
Databases: 14th British National Conference on Databases, BNCOD14, volume 1094, pages
18{35. Springer-Verlag, 1996.

CoopIS00 Paper P82 19

[5] B. Benatallah. A uni�ed framework for supporting dynamic schema evolution in object
databases. In Proceedings of ER99, LNCS, pages 16{30. Springer-Verlag, 1999.

[6] S.S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J.D. Ullman,
and J. Widom. The TSIMMIS project: Integration of heterogeneous information sources. In
Proc. 10th Meeting of the Information Processing Society of Japan, pages 7{18, October 1994.

[7] T. Critchlow, M. Ganesh, and R. Musick. Automatic generation of warehouse mediators using
an ontology engine. In Proc. 5th International Workshop on Knowledge Represenation Meets
Databases (KRDB '98), volume 10. CEUR Workshop Proceedings, 1998.

[8] J. Hammer, H. Garcia-Molina, S. Nestorov, R. Yerneni, M. Breunig, and V. Vassalos.
Template-based wrappers in the TSIMMIS system. SIGMOD Record, 26(2):532{535, June
1997.

[9] R. Hull. Managing sematic heterogeneity in databases: A theoretical perspective. In Pro-
ceedings of PODS, 1997.

[10] M. Kradolfer and A. Geppert. Dynamic workow schema evolution based on workow type
versioning and workow migration. In Proceedings of CoopIS 1999, pages 104{114, 1999.

[11] L.V.S. Lakshmanan, F. Sadri, and I.N. Subramanian. On the logical foundations of schema
integration and evolution in heterogeneous database systems. In Proceedings of DOOD'93,
pages 81{100, Phoenix, AZ, December 1993.

[12] A. Levy, A. Rajamaran, and J.Ordille. Querying heterogeneous information sources using
source description. In Proc 22nd VLDB, pages 252{262, 1996.

[13] P.J. McBrien and A. Poulovassilis. A formal framework for ER schema transformation. In
Proc. ER'97, volume 1331 of LNCS, pages 408{421. Springer-Verlag, 1997.

[14] P.J. McBrien and A. Poulovassilis. A formalisation of semantic schema integration. Informa-
tion Systems, 23(5):307{334, 1998.

[15] P.J. McBrien and A. Poulovassilis. Automatic migration and wrapping of database applica-
tions | a schema transformation approach. In Proc. ER'99, volume 1728 of LNCS, pages
96{113. Springer-Verlag, 1999.

[16] P.J. McBrien and A. Poulovassilis. A uniform approach to inter-model transformations. In Ad-
vanced Information Systems Engineering, 11th International Conference CAiSE'99, volume
1626 of LNCS, pages 333{348. Springer-Verlag, 1999.

[17] A. Poulovassilis and P.J. McBrien. A general formal framework for schema transformation.
Data and Knowledge Engineering, 28(1):47{71, 1998.

[18] M.T. Roth and P. Schwarz. Don't scrap it, wrap it! A wrapper architecture for data sources.
In Proc. 23rd VLDB Conference, pages 266{275, Athens, Greece, 1997.

[19] A. Sheth and J. Larson. Federated database systems. ACM Computing Surveys, 22(3):183{
236, 1990.

[20] M. Templeton, H.Henley, E.Maros, and D.J. Van Buer. InterViso: Dealing with the complex-
ity of federated database access. The VLDB Journal, 4(2):287{317, 1995.

[21] M.E. Vidal, L. Raschid, and J-R. Gruser. A meta-wrapper for scaling up to multiple au-
tonomous distributed information sources. In Proc. 3rd IFCIS Int. Conf. on Cooperative
Information Systems (CoopIS98), pages 148{157. IEEE-CS Press, 1998.

